Skip to main content
. 2020 Jun 30;52(4):1103–1111. doi: 10.4143/crt.2020.337

Table 2.

Algorithm descriptions and hyper parameters

Team Architecture Input size (slide layer level) Optimization (learning rate) Augmentation real-time Pre-processing Post-processing; inference for confidence
Fiffeb Inception v3, RFC 256×256×3 (6) Patch SGD (0.9) Color augmentation, horizontal flip, random rotation Otsu thresholding, tumor (> 90%) and non-tumor (0% and > 20%) Generation of heat map with image level 7 and feeding morphological information into FRC; RFC output
DoAI U-Net 512×512×3 (0) Patch SGD (1e-1, decay 0.1 each 2 epochs) Rotation, horizontal and vertical flip None De-noising for false-positive reduction; CNN output
GoldenPass U-Net, Inception v3 256×256×3 (4) Patch Adam (1e-3, 5e-4) Rotation, horizontal and vertical flip, brightness (0.5-1) Otsu thresholding, tumor (> 100%) None; Max value for heat-map
SOG Simple CNN 300×300×3 (4) Slide Adadelta (1e-3) None None None; CNN output

SGD, stochastic gradient descent; RFC, random forest classifier; CNN, convolutional neural network.