Table 2.
Team | Architecture | Input size (slide layer level) | Optimization (learning rate) | Augmentation real-time | Pre-processing | Post-processing; inference for confidence |
---|---|---|---|---|---|---|
Fiffeb | Inception v3, RFC | 256×256×3 (6) Patch | SGD (0.9) | Color augmentation, horizontal flip, random rotation | Otsu thresholding, tumor (> 90%) and non-tumor (0% and > 20%) | Generation of heat map with image level 7 and feeding morphological information into FRC; RFC output |
DoAI | U-Net | 512×512×3 (0) Patch | SGD (1e-1, decay 0.1 each 2 epochs) | Rotation, horizontal and vertical flip | None | De-noising for false-positive reduction; CNN output |
GoldenPass | U-Net, Inception v3 | 256×256×3 (4) Patch | Adam (1e-3, 5e-4) | Rotation, horizontal and vertical flip, brightness (0.5-1) | Otsu thresholding, tumor (> 100%) | None; Max value for heat-map |
SOG | Simple CNN | 300×300×3 (4) Slide | Adadelta (1e-3) | None | None | None; CNN output |
SGD, stochastic gradient descent; RFC, random forest classifier; CNN, convolutional neural network.