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A B S T R A C T   

COVID-19 diagnosis is usually based on PCR test using radiological images, mainly chest Computed Tomography 
(CT) for the assessment of lung involvement by COVID-19. However, textual radiological reports also contain 
relevant information for determining the likelihood of presenting radiological signs of COVID-19 involving lungs. 
The development of COVID-19 automatic detection systems based on Natural Language Processing (NLP) 
techniques could provide a great help in supporting clinicians and detecting COVID-19 related disorders within 
radiological reports. In this paper we propose a text classification system based on the integration of different 
information sources. The system can be used to automatically predict whether or not a patient has radiological 
findings consistent with COVID-19 on the basis of radiological reports of chest CT. To carry out our experiments 
we use 295 radiological reports from chest CT studies provided by the ‘‘HT médica" clinic. All of them are 
radiological requests with suspicions of chest involvement by COVID-19. In order to train our text classification 
system we apply Machine Learning approaches and Named Entity Recognition. The system takes two sources of 
information as input: the text of the radiological report and COVID-19 related disorders extracted from SNOMED- 
CT. The best system is trained using SVM and the baseline results achieve 85% accuracy predicting lung 
involvement by COVID-19, which already offers competitive values that are difficult to overcome. Moreover, we 
apply mutual information in order to integrate the best quality information extracted from SNOMED-CT. In this 
way, we achieve around 90% accuracy improving the baseline results by 5 points.   

1. Introduction 

The new coronavirus 2019 disease (COVID-19) is creating an 
important and urgent threat to global health. Since the outbreak in early 
December 2019 in Wuhan, Hubei Province, China, more than 180 
countries contain a high number of infected people and the number is 
still rising. To mitigate the burden on the healthcare system, while 
providing the best possible care for patients, an efficient and effective 
diagnosis of the disease is needed [1]. 

Many efforts are being focusing on developing automated solutions 
to support medical experts in the early detection of the disease based on 
medical images. Prediction models that combine variables or features to 
estimate the risk of people becoming infected is helping clinicians to 
deal with the COVID-19 outbreak [2]. These models require innovative 
approaches that provide immediate and real-time results. In particular, 

the Named Entity Recognition (NER) task aims to detect mentions of 
interesting entities within unstructured textual reports which can help to 
refine the COVID-19 detection task [3]. 

Chest, and more specifically, lung involvement is by far the most 
common site of organ involvement in COVID-19. Together with pa
tient’s symptoms, the use of Ray-X and Computed Tomography (CT) are 
the commonest approaches to diagnosis and staging the severity of lung 
involvement by COVID-19. Several studies have tested the viability and 
specificity of chest CT for the COVID-19 disease being currently included 
in most clinical protocols for COVID-19 assessment. The most typical CT 
features of COVID-19 chest involvement are ground-glass opacities, 
usually bilateral with peripheral distribution and the presence of bron
chovascular thickening or bronchiectasias within lesions. Atypical 
findings for COVID-19 are considered pleural effusion, lymphadeno
paties, lung consolidations or cavitations [4–7]. 
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Nowadays, although radiologists and clinicians are able to accurately 
detect and characterize cases of COVID-19 based on chest CT exami
nations, their tasks are manual and time-consuming, especially when 
many cases need to be examined, making it necessary to automate 
support tools for medical specialists. As we referenced before, most ef
forts have been focused on developing supporting Artificial intelligence 
(AI) tools to help in the evaluation of medical images (mainly RX and 
CT) for the diagnosis of COVID-19. However, few studies have addressed 
this issue from the perspective of the clinical and radiological text-based 
reports. Disorder-related clinical or radiological text-based reports are a 
potential source of information about the likelihood of presenting signs 
of COVID-19 manifestations for each patient. In this paper, we propose 
an automatic system for extracting and analyzing disorders related to 
COVID-19 from CT radiological reports. We apply AI and Natural Lan
guage Processing (NLP) tools to automatically extract disorders. For our 
experiments we have used a corpus composed of 295 radiological re
ports suspicious of COVID-19 and labeled in binary form (whether the 
patient has the virus or not). This corpus contains chest CT scans and has 
been provided by the radiological clinic ‘‘HT médica". 

The main goal of this paper is to study the impact of integrating 
external information from biomedical ontologies to improve the auto
matic detection of COVID-19 in textual radiological reports. However, 
other important motivations can be highlighted like for example the 
detection of unexpected findings related to COVID-19 and early notifi
cation of the cases, and monitoring the incidence and prevalence of 
COVID-19 in radiology units. 

In addition, in order to detect disorders we use in our experiments 
the latest available Spanish version of SNOMED-CT as a source of 
knowledge (release date: 2020-04-30). This version is updated with the 
most recent concepts related to COVID-19. Disorders extracted from the 
text (e.g. bronchiectasis) are an important feature of the classification 
system. It should be noted that not all the disorders detected have the 
same relevance for achieving a correct classification. For this reason, we 
will use mutual information to distinguish those disorders that provide 
important information. In other word, a fracture does not contribute as 
much to detecting the COVID-19 as a bilateral pneumonia. Our system 
includes these important features by using different word representation 
vectors concatenated with the text of the radiological report. Finally, the 
final vector is included in the classification algorithm. 

The remainder of the paper is structured as follows: in Section 2 we 
comment on some related studies. The dataset used and the automatic 
disorder extraction system are described in Section 3. In Section 4 we 
study the representation of the features. Machine learning approaches 
are shown in Section 5. The results are presented in Section 6. Finally, 
discussion and conclusions are presented in Sections 7 and 8 
respectively. 

2. Related work 

In the current literature, many studies have been conducted on the 
automatic detection of COVID-19. Most of these studies have focused on 
the classification of CT images by using Machine Learning (ML) tech
nologies due to their high capability of feature extraction. 

On the one hand, traditional ML algorithms are beginning to be a key 
technology in the detection of the virus. Barstugan et al. [8] used Sup
port Vector Machine (SVM) and features to label images as coronavirus 
and non-coronavirus (infected/non-infected). This study used 150 C T 
images for COVID-19 classification. On the other hand, deep learning 
has been growing in recent years, driven largely by increased computing 
power and the availability of massive new datasets. Using these algo
rithms, Butt et al. [9] classified CT images of COVID-19 into three 
classes: COVID-19, influenza-A viral pneumonia, and healthy cases. The 
dataset consisted of total 618 images and they achieved an 87.6% 
overall classification accuracy. 

Given the importance of early prediction of COVID-19, there are 
many other studies related to deep learning and classification of CT 

images achieving competitive results [10–14]. Moreover, Wynants et al. 
[1] conducted a review and critical evaluation of published studies of 
predictive models for the diagnosis of COVID-19 in patients with sus
picious of infection. These prediction models can be divided into three 
categories: models for the general population to predict the risk of being 
infected of COVID-19, models to support the diagnosis of COVID-19 in 
patients with suspicious of infection, and models to support the prog
nostication of patients with COVID-19. All models reported moderate to 
excellent predictive performance. 

Concerning the treatment of textual information for detecting 
COVID-19, not very much research can be found. For example, some 
studies use NLP to automate the extraction of COVID-19-related dis
cussion from social media [15] or to analyze the research literature on 
COVID-19 [16–18]. There are also studies on biomedical corpus avail
able in English that have been explored to extract signs and symptoms 
from texts [13]. Moreover, some recent studies show the potential 
benefit of using NLP in the classification of textual radiological reports 
[19,20]. However, no specific research can be found on the automatic 
detection of possible cases of COVID-19 applying NLP technologies such 
as NER or information extraction. 

On the other hand, ontologies have become an increasingly impor
tant component of biomedical studies, especifically in NER tasks. This is 
due to the fact that they provide researchers with common terminologies 
for presenting information in a structured way. Ontologies, terminol
ogies and dictionaries such as UMLS [21], SNOMED-CT [22] and ICD-10 
are the most popular. These ontologies make it possible to identify and 
extract relevant information from the biomedical literature such as 
fractures, abnormalities, disorders, findings, and so on [23–26]. Zuccon 
et al. [27] use SNOMED-CT as a feature for the classification task of 
radiological texts. 

Several classification methods integrate different features extracted 
from ontologies. However, the inclusion of a number of features does not 
always improve the final system. In fact, dimensionality is a major 
problem when using high dimensional features [28]. For this reason, 
several approaches have been proposed and used for dimensionality 
reduction [29]. Feature selection involves the election of a subset of the 
original, which is a widely used dimensionality reduction technique. 
Several studies have experimented with approaches to the selection of 
subsets of features [30,31]. They demonstrate that the use of an effec
tively selected subset of characteristics can achieve better performance 
than the use of the original set. In this context, many techniques have 
been used to reduce the dimensionality of features [32–34], more spe
cifically in the biomedical domain [28,35–37]. 

In this study we address a classification task of radiological reports. 
This is a difficult task since all the reports are from CT studies with initial 
clinical suspicion of COVID-19 being labeled as consistent with COVID- 
19 and not consistent with COVID-19. To carry out this study, we first 
use an automatic entity recognizer to extract virus-related disorders 
using SNOMED-CT terminology. Next, we applied a method of dimen
sionality reduction in order not to take into account all the recognized 
disorders. Finally, the features and report are jointly entered into the ML 
algorithm to predict whether a patient has chest involvement by COVID- 
19 or not. 

3. Materials and resources 

3.1. Dataset 

A real-life dataset for document classification is used to evaluate 
different document representation methods. The dataset is composed of 
295 anonymous CT scan reports with suspicious of COVID-19 collected 
between April 3, 2020 and April 24, 2020. This clinical corpus has been 
provided by the radiological clinic ‘‘HT médica’‘. The dataset was an
notated by radiology experts and all reports included in the corpus 
contain suspicious of COVID-19 making the automatic classification to 
detect whether a patient has the disease a hard challenge. In addition, 
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the corpus is labeled in binary form: consistent with COVID-19 and not 
consistent with COVID-19. 

The corpus is written in Spanish and is anonymized to preserve pa
tient identity. In addition, the radiology reports are divided into sections 
such as patient’s age, examination performed (chest CT), clinical in
formation, findings and conclusions. Fig. 1 displays an example of a 
radiology report of a patient with COVID-19. 

The study included 295 patients, 52.2% men and 47.8% women, 
aged 16 to 97 with a mean age of 56 years. Other corpus statistics are 
presented in Table 1. 

3.2. Named Entity Recognition using SNOMED-CT 

As we mentioned previously, one of the main purposes of this study is 
to automatically extract disorders related to COVID-19. In order to 
detect these disorders we use the BSB NER system for Spanish described 
in Ref. [38]. This system, among other things, uses information sources 
related to the biomedical domain such as UMLS, SNOMED-CT and 
ICD-10 to extract all entities in a determined text. To carry out the task of 
NER, the system develops a normalizing process in the text. BSB tries to 
match concepts with ontologies and terminologies in a way that returns 
the beginning and end of each entity. 

Since SNOMED-CT offers semantic categories to easily extract con
cepts included in them, we decided to apply a filter to the BSB system to 
extract only the SNOMED-CT biomedical concepts included in the se
mantic type ‘‘disorder".1 Moreover, we also include an updated list2 of 
SNOMED-CT concepts related to SARS-CoV-2 not included in the April 
release version. 

In addition, the SNOMED-CT National Reference Center for Spain 
has activated a contingency mechanism to respond to the challenge of 
having standardized and sufficiently accurate concepts for coding clin
ical and epidemiological records relating to Severe Acute Respiratory 
Syndrome (SARS) coronavirus.3 Therefore, it is considered a reference 
terminology with regard to COVID-19. The terminology describes that a 
disorder is ‘‘always and necessarily an abnormal clinical state". 

Fig. 2 shows an example of the process carried out by the entity 
extraction system using SNOMED-CT terminologies as the information 
source. The system recognizes ‘‘disorders” such as bilateral opacities in 
ground glass (opacidades en vidrio deslustrado), atypical pneumonia 
(neumonía atípica) and patchy infiltrate (infiltrado parcheado), among 
others. 

4. Features selection 

Features selection is the process of finding a subset of characteristics 
from the original set of features forming patterns in a given dataset, 
according to the defined criterion [39]. Features selection plays an 
important role in text categorization because it can provide additional 
information to the ML algorithm for better classification. 

The input to the classification system is the text of the radiological 
report and the concepts extracted from SNOMED-CT, and therefore two 
independent representation models are created. These representation 
models are explained below. 

4.1. Document representation 

For the representation of the text included in the radiological report, 
we tried different methods of representation including word 

embeddings and TF-IDF [40]. TF-IDF is combination of two statistical 
techniques, Term Frequency (TF) and Inverse Document Frequency 
(IDF). The main benefit of the TF-IDF score is that its value increases 
with the corresponding number of times a word appears in the docu
ment, but is offset by the occurrence of the word in the collection of 
documents. 

The TF-IDF is a Bag Of Words (BOW) weighting model used to give 
weights to the terms in a document collection by measuring how often a 
term is found within a document (TF), offset by how often the term is 
found within the entire collection (IDF). The BOW assumption is that a 
document can be considered as a feature vector where each element in 
the vector indicates the presence (or absence) of a word. The BOW 
model is the simplest approach used in NLP and text classification. In 
this model, a text (such as a word or sentence) is represented as the bag 
(multiset) of its keywords. 

First, in the IDF calculation (Eq (1)) we use smooth to prevent zero 
divisions, specifically the constant ‘‘1′′ is added to the numerator and 
denominator of the IDF as if an extra document was seen containing 
every term in the collection exactly once. 

IDFt =Log[(1+N) / (1+DFt)] + 1 (1)  

where: 
N = total number of documents in the collection. 
DFt = number of documents containing t (term). 
Afterwards, Eq. (2) shows the calculation of the TF-IDF used. TF-IDF 

incorporates local and global parameters, because it takes into consid
eration not only the isolated term but also the term within the document 
collection. 

TF − IDFt,d = TFt,d ⋅IDFt (2)  

where: 
TFt,d = number of occurrences of t in d (document). 
The use of this simple TF could lead to problems when we have a 

repeated term in a document, therefore, the TF of a document in a vector 
space is usually also normalized. In all our experiments we use the L2 
normalization or Euclidean norm. 

On the other hand, neural networks use an embedding layer as an 
input, which makes it possible to represent words and documents using a 
dense vector representation. In our case, we use FastText embeddings 
from SUC (Spanish Unannotated Corpora4) because they provide greater 
coverage for our vocabulary [41]. 

In this study, four different BOW methods are explored to represent 
the text of the radiology report:  

(1) TF-IDF.  
(2) TF-IDF by disabling the reweighting of the IDF.  
(3) TF-IDF with word-based n-grams model. This method uses not 

only unigrams but also bigrams and trigrams. For example, for 
the sentence ‘‘bilateral pleural effusion” we would have the 
following n-grams: ‘‘bilateral”, ‘‘pleural”, ‘‘effusion”, ‘‘bilateral 
pleural”, ‘‘pleural effusion”, and ‘‘bilateral pleural effusion”. With 
this method we can better capture the semantics using the 
proximity of the words and their occurrence in the document.  

(4) TF-IDF with word-based n-grams model and disabled IDF. This 
method uses unigrams, bigrams and trigrams and disables the IDF 
calculation.  

(5) FastText SUC. 

4.2. SNOMED-based features representation 

For the representation of the concepts extracted by the automatic 
1 https://confluence.ihtsdotools.org/pages/viewpage.action?pag 

eId=71172245.  
2 https://www.mscbs.gob.es/profesionales/hcdsns/areaRecursosSem/s 

nomed-ct/SNOMED_doc/Conceptos_relacionados_SARS-CoV-2-Version7.0.pdf.  
3 https://www.mscbs.gob.es/profesionales/hcdsns/areaRecursosSem/sno 

med-ct/SNOMED_CT_COVID-19.htm. 

4 https://github.com/dccuchile/spanish-word-embeddings/#fasttext- 
embeddings-from-suc. 
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entity detection system it is also necessary to use numerical vectors. 
After conducting several tests with different representation vectors, 

we decided to use two types:  

(1) TF. This method consists of assigning the frequency of the 
SNOMED-CT concept (number of occurrences in the radiological 
report) in the representation vector. 

(2) Binary TF. In this case we use a binary vector in which 1 repre
sents that the concept SNOMED-CT occurs in the report and 0 that 
it does not occur. 

In order to clarify the concept representation vector, Fig. 3 displays 
an example where each position represents an SNOMED-CT concept. In 
the example of the vector, the second position in the vector refers to the 
concept of ‘‘bilateral bronchopneumonia” and it occurs twice in the 
radiological report. It is important to highlight that the NER system has 
recognized 164 different disorders in the COVID-19 corpus and for that 
reason the vector size is 164. 

4.3. Mutual information and feature reduction 

In this section we introduce the process carried out for the reduction 
of dimensionality of the features. Dimensionality reduction of the raw 

input variable space is an essential pre-processing step in the classifi
cation process. We apply dimensional reduction for two main reasons: 
computational cost and classification accuracy. It has been observed that 
added irrelevant features may actually degrade the performance of 
classifiers if the number of training samples is small relative to the 
number of features [34]. In order to reduce the dimensionality, we first 
need to use an approach that identifies the most relevant features to our 
classification problem and the less relevant ones. Later, we select the 
most informative features using the top percentiles. In other words, 
those disorders related to the COVID-19 that provide more information 
to the classification algorithm. 

One of the most effective approaches for optimal feature extraction is 
based on Mutual Information (MI). MI is known to characterize the 
dependence between random variables beyond the second order 
moment (correlation) and can be used for multivariate selection, by 
choosing the features which jointly maximize the prediction given a set 

Fig. 1. Example of Spanish radiology report annotated with COVID-19. (See the English translation in Figure A.11 in Appendix A).  

Table 1 
Dataset analysis.   

COVID-19 Non-COVID-19 

Number of documents 158 137 
Vocabulary size 2162 2017 
Avg. of sentence in the reports 24.58 23.32 
Avg. of tokens in the reports 161.11 147.97  

Fig. 2. Example of disorder extraction system using SNOMED-CT terminology. Translation: Signs compatible with bilateral basal pneumonic focus associated with 
pleural effusion, low probability of COVID-19. Cardiomegaly. Signs of pulmonary hypertension. Discrete tracheomalacia. 

Fig. 3. Example of SNOMED-CT concept representation vector using TF.  
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of previously selected features [42]. The function relies on 
non-parametric methods based on entropy estimation from k-nearest 
neighbors distances as described in Ref. [42,43]. 

We apply the MI scoring function to all previously extracted 
SNOMED-CT disorders. We found 164 different disorders named in the 
radiology reports. Table 2 summarizes the top 10 high-scoring features 
and the associated SNOMED-CT code. In this table we can appreciate 
disorders such as bilateral pneumonia, ground-glass opacities and bilateral 
bronchopneumonia are common disorders when the prognosis corre
sponds to COVID-19. All these disorders are usually related to pneu
monia and infectious lung problems. 

On the contrary, the MI approach offers disorders that are not related 
to COVID-19 such as breast carcinoma, pericardial effusion and lung car
cinoma. These disorders are common to detect in chest CT but are not 
related to the virus. For this reason we apply dimensional reduction in 
the features. 

Selecting the optimal number of features to be included in the ML 
algorithm is an essential part of our experiments. For the experimenta
tion we use the top 50th percentile of our features. Initially, we found 
164 different disorders in the radiology reports. After selecting the top 
50th percentile of the features, we will use 82 disorders (the 82 most 
informative disorders for our classification system). 

5. Automatic classification methodology 

ML provides an effective way to automate the analysis and diagnosis 
for medical reports. This approach can potentially reduce the workload 
of radiologists. In this section we will briefly detail the models and al
gorithms used in our study and then show the results obtained in the 
following section. 

5.1. Traditional machine learning 

After testing several traditional ML algorithms, we decided to show 
the experiments using SVM because we have obtained the best results 
with this simple ML algorithm. SVM transfers features into space where 
it can better classify features with kernel functions [44,45]. SVM-based 
approaches can handle large feature spaces with excellent classification 
accuracy. This technique is the first kernel bases learning algorithm and 
the most commonly used kernel are linear, polynomial, Radial Basis 
Function (RBF) and sigmoid. Linear kernel function was used in our 
system with the parameter C = 1. The parameter C controls the trade-off 
between frequency of error and complexity of decision rule. 

5.2. Deep learning 

Deep learning is a subfield of machine learning that has been 
growing in recent years, driven largely by increased computing power 
and the availability of massive new datasets. The objective of deep 
learning is to capture non-linear patterns in data by adding layers of 
parameters to the model. In our study, we explore three techniques 
associated with deep learning: LSTM, BiLSTM and CNN. 

Hochreiter and Schmidhuber [46] showed a variation of a recurrent 
neural network named Long Short Term Memory network (LSTM) that 
with a special hidden unit acting like a memory cell plus a 
gradient-based back-propagation technique makes it possible to selec
tively retain relevant information from previous step, while the input 
sequence is being parsed element by element [47]. Afterwards, 
Bi-directional Long Short-Term Memory (BiLSTM) is an extension of 
traditional LSTM that can improve model performance on sequence 
classification problems [48]. The main goal of BiLSTM is to split the 
neurons of a regular LSTM into two directions, one for positive time 
direction (forward states), and another for negative time direction 
(backward states). On the other hand, Convolutional Neural Network 
(CNN) uses layers with convulsion filters that are applied to local fea
tures [49]. Finally, we also tested a basic Artificial Neural Network 
(ANN) with different word representations. This network is structured in 
a sequential mode and composed of dense layers. 

We have tested these networks with different hyperparameter values 
and the ones that performed the best are presented below. For the 
hyperparameter optimization we have tried the following parameters 
and values: size of layers: [50, 100, 150], batch size: [8, 32, 64], dropout 
rate: [0.25, 0.5], activation: [relu, tahn]. 

After conducting the hyperparameter optimization, we have used 
100 neurons in the case of LSTM, BiLSTM and ANN, and 50 neurons for 
CNN. A batch size of 8 for BiLSTM, CNN and ANN, and 16 for LSTM was 
employed. For all networks, a max pooling layer was appended to the 
model and a dense layer of size 50 with Rectified Linear Unit (ReLU) 
activation added. After this, we applied a dropout function to help 
prevent overfitting. Specifically, we have used a dropout rate of 0.25. 
This was followed by a dense layer with the sigmoid activation function 
in order to produce the desired binary output. For the optimizer, we 
leverage the adam optimizer which performs well for NLP data. 

Finally, the proposed architecture is shown in Fig. 4. As we can see, 
the first step consists of disorders entity recognition within the radio
logical report. The disorders are represented using different types of 
BOW. Mutual information is used on the disorders to reduce the 
dimensionality of the BOW vector obtaining those SNOMED-CT con
cepts most important for the virus classification. In addition, the text of 
the radiological report is also represented using a BOW vector. The 
representation vectors are concatenated and introduced into the ML 
algorithm to predict whether the patient contains the COVID-19 infec
tion or not consistent with COVID-19 called non-COVID-19. 

6. Results and analysis 

We investigate the performance of the proposed methods using the 
suspected corpus of COVID-19 and compare the results obtained with 
the well known feature extraction methods proposed: TD-IDF, TF, MI- 
based feature extraction method and word embeddings for neural 
networks. 

In order to present the results and make an analysis of them, we have 
divided this section into four subsections including the evaluation 
metrics used to evaluate the systems, the results obtained, an analysis of 
the features used, and finally an error analysis showing the confusion 
matrix. 

6.1. Evaluation metrics 

Five statistical parameters such as precision, recall, accuracy, F1- 
score and Matthews Correlation Coefficient (MCC) are applied to 
determine the evaluation of the proposed approach using the macro- 
average method. The equations of the different metrics are described 
below: 

Precision(P)=
TP

TP + FP
(3)  

Table 2 
Top 10 high-scoring features of COVID-19 related disorders.  

# SNOMED-CT code Disorder 

1 407,671,000 Bilateral pneumonia 
2 63,531,000,122,103 Ground-glass opacities 
3 396,286,008 Bilateral bronchopneumonia 
4 68,409,003 Organized pneumonia 
5 63,521,000,122,101 Patchy infiltrate 
6 95,436,008 Lung consolidation 
7 101,401,000,119,103 Pulmonary granuloma 
8 233,935,004 Pulmonary thromboembolism 
9 59,282,003 Pulmonary embolism 
10 63,541,000,122,106 Interstitial Pneumonia  
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Recall(R)=
TP

TP + FN
(4)  

F1=
2∗P*R
P + R

(5)  

Accuracy(Acc)=
TP + TN

TP + FP + TN + FN
(6)  

MCC=
(TP*TN) − (FP*FN)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (7)  

where TP, TN, FP and FN mean true positive, true negative, false positive 
and false negative, respectively. 

6.2. Experimental result 

To evaluate the performance of the classification model, a 10-fold 
cross-validation method was used. 

Table 3 shows the general results in terms of accuracy using the SVM 
classifier. The rows of the table display the representation technique for 
the radiology report (see Section.4.1), while the columns of the table 
show the method chosen to represent the disorders related to COVID-19. 
These methods are: baseline (without SNOMED-CT features), TF, TF +
MI (TF with reduced dimensionality), TF-bin (binary TF) and TF-bin +
MI (binary TF with reduced dimensionality). 

Since the corpus contains suspicious reports of COVID-19 the base 
systems already reach high values, around 85% in detecting the virus. 
This means that all reports contain information about the virus but the 
algorithm is able to detect whether the patient definitely has COVID-19. 
This baseline obtains high values that are difficult to surpass. 

The results show that the use of all the extracted features (164 dis
orders related to COVID-19) does not improve the baseline. For example, 
using as document representation TF-IDF and n-grams, the baseline 
obtained 85.08% of accuracy, and by adding the vector of disorder 
features the accuracy decreases to 83.39% and 85.02% (TF and binary 
TF, respectively). 

However, the reduction in dimensionality using the recognized 
SNOMED-CT disorders surpasses the baseline values. In this case, 
instead of using 164 disorders we used the 82 most important and 
representative ones. This indicates that applying few but good features 
increases the accuracy of the classifier. 

All the results applying MI improve the baseline. For instance, using 
TF-IDF to represent the radiology report and binary TF with MI to 

represent the disorders, we achieve our best result (89.15% of accuracy). 
To better clarify the results obtained previously, we provide Table 4. 

In this table we can see the results according to each class (COVID-19 
and Non-COVID-19). In addition, we also show the measure macro- 
average. With this table we try to show the improvement over the 
baseline (without features) by using and integrating binary TF and MI, 
reducing the dimensionality of the feature vector. In terms of precision, 
recall, F1, AUC and MCC in all scenarios the integration of disorders 
improves the baseline. 

On the other hand, AUC (Area under the ROC curve) measures the 
entire two-dimensional area underneath the entire Receiver Operating 
Characteristic (ROC) curve. The ROC curve is a common tool used with 
binary classifiers in machine learning methods. ROC curves have been 
frequently used in the biomedical domain [50,51] because it provides an 
effective approach for characterising the performance of classifiers in 
terms of sensitivity to specificity. Fig. 5 shows the ROC curve with the 
AUC values of each 10-fold cross-validation using the best system pre
sented before (SVM classifier, text representation with TF-IDF and 
SNOMED represented with binary TF and mutual information). This 
figure displays that each folder obtains different AUC, reaching a 
maximum of 0.93 of AUC and a minimum of 0.81. Finally, the mean 
obtained is 0.89 of AUC. 

Additionally, in this section we present a basic comparison of the 
different neural networks using the same dataset as mentioned above 
and 10-fold cross-validation. Since neural networks are currently widely 
used in different areas of the NLP, we would like to show how they work 
in this particular domain by detecting suspected cases of COVID-19. 

Table 5 summarizes the best results obtained after testing different 
hyperparameters of neural networks and word representations. As we 
can appreciate, in all cases the neural networks achieve better results 
with the incorporation of features using mutual information on COVID- 
19 related disorders. The best result without using extra features 
(baseline) has been obtained with CNN and using FastText SUC em
beddings reaching 84.03% accuracy. On the other hand, the best result 
adding SNOMED features has been obtained by the basic ANN with TF- 
IDF n-grams and disable IDF as document representation and binary TF 
with MI to represent the features. In this scenario, the system achieves 
84.75% accuracy. In our particular case, we can conclude that the 
neuronal networks are far from reaching the best system proposed in 
Table 3 in which 89.15% accuracy is achieved. 

6.3. Improving the system by applying MI and feature reduction 

In this section we present how to improve the use of dimensionality 
reduction using MI. To accomplish this task, we designed Fig. 6. This 
figure has been created using the best system obtained in the previous 
results (SVM algorithm). For the representation of the radiological 
report we use the TF-IDF method. In order to represent the SNOMED-CT 
features related to the COVID-19 we use the binary TF method. 

On the Y-axis the figure shows the accuracy obtained by the classi
fication system. X-axis shows the percentile used, in other words, how 
many disorders to use and include in the system. 

Initially we had 164 COVID-19 related disorders, but as we have seen 
from the results in Table 3, using all 164 disorders does not improve the 
classification; instead using the 50th percentile improves the baseline, 
achieving up to 89.15% accuracy. 

Fig. 4. Machine learning system architecture for COVID-19 detection.  

Table 3 
Summary of results obtained Acc. with different features representations using 
the SVM algorithm.  

Document 
representation 

SNOMED-CT representation 

Baseline 
(%) 

TF 
(%) 

TF + MI 
(%) 

TF-bin 
(%) 

TF-bin +
MI (%) 

TF-IDF 85.08 83.39 87.10 85.02 89.15 
TF-IDF disable IDF 84.90 81.69 87.39 82.71 87.12 
TF-IDF n-grams 84.88 81.02 86.42 81.36 86.78 
TF-IDF n-grams 

disable IDF 
85.42 81.36 87.14 82.36 87.46  
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This figure shows the use of different percentiles and the results 
obtained by the system. The 50th percentile was the decision chosen 
since it obtained the best score, and with the 50th percentile the feature 
vector was reduced to 82 disorders. These 82 disorders were the features 
that provided the most extra information to the classifier for detecting 
whether a patient had the virus or not. 

Finally, Fig. 7 shows the SNOMED-CT concepts obtained by applying 
MI and taking into account the 50th percentile. This figure shows the 20 
disorders that are most representative for the classification system and 
its value by using MI. We do not show the 82 disorders for reasons of 
space. 

6.4. Error analysis 

A good error analysis shows something about why a given method is 
effective or ineffective for a problem. Basically, error analysis involves 
examining the errors committed by a system. 

Fig. 8 shows the confusion matrix obtained with the best experiment 
using SVM algorithm with TF-IDF for document representation and the 
binary TF method to represent the SNOMED-CT features related to the 
COVID-19. In this image we can observe that of 295 radiology reports, 
the model does not classify well 10.85% (32 documents). On the other 
hand, the system labels 263 documents correctly. In addition, the matrix 
presents the number of TP, TN, FP and FN. In our particular case the 
system returns 147 TP, 116 TN, 11 FN and 21 FP which means that the 
method is very successful. 

To better understand the system errors, one example of false positive 
is shown in Fig. 9 and one of false negative is shown in Fig. 10. 

In Fig. 9, the system detected that the patient had COVID-19 because 
in the report words were found like: activar protocolo COVID (activate 
COVID protocol), infiltrados (infiltrates), engrosamientos bronquiales 
(bronchial thickenings) or neumonía viral (viral pneumonia). All these 
words are closely related to the virus although some of them are terms of 
denial and this causes confusion in the classification algorithm. 

The false negative shown in Fig. 10 shows the examination of a 

Table 4 
Deeper summary of the SVM algorithm and performance improvement using different representations of documents and features.  

Doc. Repr. SNOMED-CT Repr. COVID-19 Non-COVID-19 Macro-avg AUC (%) MCC (%) 

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) 

TF-IDF Baseline 84.34 88.61 86.42 86.05 81.02 83.46 85.19 84.81 84.94 84.81 70.01  
TF-bin + MI 87.50 93.04 90.18 91.34 84.67 87.88 89.42 88.85 89.03 88.95 78.27 

TF-IDF Baseline 85.19 87.34 86.25 84.96 82.48 83.70 85.07 84.91 84.98 84.91 69.99 
disable IDF TF-bin + MI 84.88 92.41 88.48 90.24 81.02 85.38 87.56 86.81 87.03 86.71 74.27 
TF-IDF n-grams Baseline 83.53 89.87 86.59 87.20 79.56 83.21 85.36 84.72 84.90 84.72 70.08  

TF-bin + MI 86.50 89.24 87.85 87.12 83.94 85.50 86.81 86.59 86.68 86.59 73.40 
TF-IDF n-grams Baseline 84.43 89.24 86.77 86.72 81.02 83.77 85.57 85.13 85.27 85.13 70.70 
disable IDF TF-bin + MI 85.80 91.77 88.69 89.68 82.48 85.93 87.74 87.13 87.31 87.13 74.87  

Fig. 5. Cross-validation ROC curve using SNOMED-CT disorders detected.  

Table 5 
Results using different neural networks and document presentations detecting suspicious cases of COVID-19.  

Model Doc. Repr. SNOMED-CT Repr. P (%) R (%) F1 (%) Acc.(%) AUC (%) MCC (%) 

Basic ANN TF-IDF n-grams Baseline 79.57 81.05 79.55 81.49 81.05 63.23  
disable IDF TF-bin + MI 85.66 85.23 85.28 85.54 85.24 70.90 

CNN FastText SUC Baseline 84.17 84.52 83.66 84.03 84.52 68.67   
TF-bin + MI 85.17 84.96 84.47 84.75 84.96 70.11 

LSTM FastText SUC Baseline 80.22 77.45 75.77 76.59 77.45 57.46   
TF-bin + MI 82.66 81.01 79.11 79.69 81.01 63.51 

BiLSTM FastText SUC Baseline 78.01 74.40 71.63 73.00 74.40 52.01   
TF-bin + MI 78.92 76.45 75.41 76.62 76.45 55.09  

Fig. 6. Results in terms of accuracy according to the selected percentile of MI.  
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patient with COVID-19 but was wrongly detected by our system. In this 
examination we find words like: no se observan (not observed) and no 
presentan (not present). In addition, it also includes some adjectives that 
minimize the importance of findings such as pequeña (small) and no 
significativas (not significant). In this example we also see that the expert 
used words like consolidation and condensation instead of infiltration 
which may have caused the system not to detect and classify it incor
rectly. In conclusion, these errors suggest improvements in the system 
for future work. 

7. Discussion 

COVID-19 has spread widely around the world since the first case 
was detected at the end of 2019. Early diagnosis of the disease is 
important for treatment and patient isolation in order to prevent the 
spread of the virus. 

Most studies are based on chest CT images [8,11,13,14]. Regarding 
textual analysis, other studies use NLP to automate the extraction of 
COVID-19-related discussion from social media [15] or to analyze the 

Fig. 7. The 20 most representative SNOMED-CT disorders detected to enhance COVID-19 text classification.  

Fig. 8. Confusion matrix using SNOMED-CT disorders detected.  

Fig. 9. False positive radiology report in Spanish for a patient with no COVID-19. (See the English translation in Figure A.12 in Appendix A).  
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research literature on COVID-19 [16–18]. There are also studies on 
biomedical corpus available in English that have been explored to 
extract signs and symptoms in texts [13]. Since these studies use the 
existing literature, we propose a novel method focused on NLP using a 
dataset based on chest CT examinations to detect and characterize actual 
cases of COVID-19 suspicion in patients. 

This is an experimental study that uses terminology related to the 
biomedical domain to extract relevant information. Specifically, we 
used the most relevant disorders as features in order to help the classi
fication system predict more effectively. On the one hand, we use as 
baseline radiological reports from chest CT studies, and on the other 
hand, we use the MI method to extract those relevant features and 
incorporate them into the classification algorithm. 

In order to extract the disorders, we use an automatic entity 
extraction system created in previous studies. The source of information 
used has been SNOMED-CT in its latest version and an updated list of 
concepts related to COVID-19 proposed by SNOMED-CT. All the disor
ders recognized by the system were not considered equally important. 
For this reason, we apply a feature reduction method based on its 
importance in detecting COVID-19. 

In relation to the terms detected, pulmonary embolism and pulmo
nary thromboembolism are important disorders automatically detected 
by the NER system. The available biological and clinical data raise 
concerns about unsuspected pulmonary embolism, and these studies 
shows that patients with COVID-19 are at risk of acute pulmonary em
bolism and pulmonary thromboembolism [52–55]. Since we have added 
a list of virus-related terms proposed by SNOMED-CT, the NER system 
has recognized four of them and classified them among the 40 best for 
predicting COVID-19 (three of these terms are included in the top 10). 
These terms are: bilateral interstitial pneumonia, interstitial pneumonia, 
patchy infiltrate and ground-glass opacities. 

This study was carried out using 295 radiological reports provided by 
‘‘HT médica". All of these reports contain cases of COVID-19 suspicion 
and are labeled as COVID-19 (consistent with COVID-19) and not 
COVID-19 (not consistent with COVID-19). Since all the reports are 
cases of suspicion, the classification task can be considered a difficult 
challenge. 

Our results show that by adding extra information to the classifier, it 
improves the base case. Our best result was obtained using TF-IDF for 
the representation of the CT exam, TF in binary form to represent the 
concepts of SNOMED-CT and dimensionality reduction taking into ac
count 82 virus-related disorders. The ML classifier that presented the 

best results was SVM achieving 89.15% accuracy. 
We find some limitations during the development of the NLP system 

and its validation: the number of CT chest exams provided was limited, 
so the number of disorders detected was as well. In addition, there are 
automatically recognized disorders that are only loosely related to 
COVID-19 so they do not add extra information to the classification 
system. 

Although the main goal of our paper is the integration of disorders 
extracted from SNOMED-CT in order to develop a system for detecting 
suspicious cases of COVID-19 in textual radiological reports, there are 
also other interesting motivations that arise from our study:  

• Detection of unexpected findings related to COVID-19 in patients 
who attend the clinic for another reason not related to the virus.  

• Monitoring the incidence and prevalence of COVID-19 in radiology 
or clinical units through radiological reports, using these to detect 
new outbreaks of the disease.  

• Early notification of COVID-19 cases.  
• Retrospective search for COVID-19 findings in patients with chest CT 

in the months prior to the pandemic. 

8. Conclusion 

A robust ML model is developed using automatically extracted 
radiological findings consistent with COVID-19 in chest CT reports. 
These results demonstrate that a traditional ML approach has the ability 
to predict the presence of the virus in a radiological examination. To 
improve the approach, a NER system was used to extract COVID-19 
related disorders and include them as additional information to the 
algorithm. 

The best system proposed (SVM) is potentially efficient, quality and 
cost effective obtaining 89.15% accuracy. For this reason, this system 
will be used in real scenarios by radiologists as a decision support tool 
for detecting suspicious cases of COVID-19. 

In future work, we are planning to study the impact of negation in 
our systems because it is demonstrated that the correct treatment of 
negation cues such as ‘‘without” or ‘‘not” is paramount when we work 
with clinical textual information, e.g. no se visualiza derrame pleural (no 
pleural effusion visualized). In addition, and since our system will be put 
into practice in the ‘‘HT médica", we will enrich the corpus with new 
training samples because the clinic experts will continue to evaluate 
future radiology reports for detection of suspicious cases of COVID-19. 

Fig. 10. False negative radiology report in Spanish for a patient with COVID-19. (See the English translation in Figure A.13 in Appendix A).  
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Using these new examinations we will perform more in-depth analysis 
comparing different classification models [56,57]. The system will be 
retrained on new studies and it is expected that the accuracy will be 
increased. Other ontologies and terminologies related to the biomedical 
domain will be explored in future work, as well as other semantic types 
(findings, procedures and body structure, among others) will be 
included in the system in order to detect COVID-19 in radiological re
ports. Finally, the processing of acronyms such as COPD (chronic 
obstructive pulmonary disease or EPOC in Spanish) or LSI (lódulo supe
rior izquierdo in Spanish) is another important task in the biomedical 
domain that could be interesting to study. As future work we plan to use 
both the description and the acronym in clinical documents in order to 

see their impact on the final system. 
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Appendix A. Translation cases

Fig. A.11. Example of English radiology report annotated with COVID-19.  

Fig. A.12. False positive radiology report in English for a patient with no COVID-19.   
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Fig. A.13. False negative radiology report in English for a patient with COVID-19.  
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