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Abstract

Morphogenesis is a physical process that requires the generation of mechanical forces to achieve 

dynamic changes in cell position, tissue shape, and size as well as biochemical signals to 

coordinate these events. Mechanical forces are also employed by the embryo to transmit detailed 

information across space and detected by target cells leading to downstream changes in cellular 

properties and behaviors. Indeed, forces provide signaling information of complementary quality 

that can both synergize and diversify the functional outputs of biochemical signaling. Here we 

discuss recent findings that reveal how mechanical and biochemical signaling are integrated during 

morphogenesis and the possible context-specific advantages conferred by the interactions between 

these signaling mechanisms.

Introduction: force generation and detection in morphogenesis

Morphogenesis occurs across a range of time scales and physical space, requiring the 

coordinated interplay of a host of different cell behaviors. Although ligand-based 

biochemical signaling elicits cellular responses during tissue morphogenesis, the mechanical 
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forces generated by cells downstream of this signaling ultimately mold tissues. However, 

these forces can also be detected by cells leading to biochemical and mechanical signal 

propagation within and between cells, that not only regulate cellular behavior and fate 

changes, but also coordinate and diversify the functional outputs of biochemical signaling to 

propel morphogenesis. Here we focus on this particular form of mechanical signaling in 

development and examine in vivo examples where forces are utilized by cells to transmit 

information to other cells with unique advantages.

Cells and tissues can generate and transmit forces by several general mechanisms, but all of 

these begin with the cytoskeleton [1]. Actin polymerization generates pushing force during 

the establishment of cellular protrusions, and tension is generated when non-muscle myosin 

II (MyoII) binds to filamentous actin (F-actin) and hydrolyzes ATP to convert chemical 

energy into mechanical movement [2]. Forces generated by actomyosin contractility are 

transmitted across tissues through adhesion molecules that allow individual cellular forces to 

be translated into global changes in tissue shape. Adherens junctions (AJs) vary in their size 

and composition, but are mediated by classic cadherins that connect to the actin cytoskeleton 

intracellularly through binding to β-catenin, which in turn binds α-catenin (Fig. 1A). Under 

contractility-generated tension, α-catenin undergoes conformational changes to recruit 

vinculin, which connects to F-actin [3], resulting in maturation and growth of the AJ and 

recruitment of additional F-actin (Fig. 1A’) [3,4,5]. This mechanosensory function allows 

the AJ to react dynamically to other cells and actomyosin contractility while mechanically 

coupling the intracellularly-generated force with surrounding cells. Whereas most of the 

force generation for morphogenesis has been thought to derive from the actomyosin 

cytoskeleton, microtubules can also generate forces within cells, and this is coordinated by 

cell-signaling to regulate cell shape and epithelial morphogenesis in Drosophila [6–8].

In addition to cell-cell adhesion, cell-extracellular matrix (ECM) adhesion is critical to 

convey or buffer the transmission of forces across tissues during morphogenesis [9,10]. 

Physical coupling of cells to the ECM at focal adhesions (FA) is critical for cellular 

reorganization and movement, but the ECM is also an instructional biochemical signal 

received through integrin receptors to modulate downstream signaling cascades and control 

a variety of cell behaviors during development [9]. FAs are large multiprotein signaling hubs 

that include heterodimeric integrin receptors, which recruit intracellular adaptors including 

talin and vinculin, linking the FA to F-actin, and focal adhesion kinase (FAK) and SRC 

kinase, which can activate numerous downstream pathways (Fig. 1B, B’). Similar to α-

catenin in AJs, physical force exerted by actomyosin contractility mechanically induces a 

conformational change in TALIN, allowing increased actin binding and greater FA stability 

[11]. The strength of cell-ECM adhesions is also modulated by the stiffness of the ECM 

wherein stiffer substrates allow cells to adhere more strongly and exert higher tension. 

Integrin/ECM binding therefore allows the detection of distinct types and compositions of 

ECM and organizes the formation of signaling complexes with the actomyosin cytoskeleton 

[10]. In this way cells effectively convert mechanical information into biochemical signals 

and through changes in actomyosin contractility, can reciprocally remodel ECM, resulting in 

a host of cellular and tissue-level changes; this form of mechanosensation has been reviewed 

extensively elsewhere [9,12], and will not be the focus of this review, which will instead 

focus on the ways that cells utilize force to communicate with other cells. In addition to 
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providing a biochemical ligand for physical or chemical signaling into cells, ECM may 

generate forces signaling to cells; for example, hydration of chondroitin sulfate proteoglycan 

in the vegetal epithelium of sea urchins results in differential expansion and bending of a 

bilayered cell sheet [13].

One important consequence of mechanically sensitive signaling at FAs and AJs is the 

biochemical activation of the Yes Associated Protein (YAP) and WW Domain Containing 

Transcription Regulator 1 (TAZ), leading to changes in transcription that impact cell 

proliferation and differentiation. YAP and TAZ, initially identified as Yorkie in Drosophila 

(Yki/YAP/TAZ), are transcriptional effectors of the Hippo (Hpo/MST1/2) kinase signaling 

cascade [14]. When this pathway is active, Hpo/MST1/2 kinases bind to the Sav/SAV1 

adapter protein and phosphorylate Wts/LATS1/2 kinases to activate them. In turn, the Wts/

LATS1/2 serine/threonine kinases phosphorylate Yki/YAP/TAZ and prevent them from 

entering the nucleus and activating transcription (Fig. 1C). Inactivation of the Hippo 

pathway results in Yki/YAP/TAZ accumulation within the nucleus, where they bind to 

TEAD transcription factors to drive target gene expression and promote cell proliferation 

and survival (Fig. 1C’). Mechanical change detected by FAs and AJs under actomyosin-

generated contractility is a key force-sensing signaling mechanism that leads to activation of 

Yki/YAP/TAZ and transcriptional changes. Cell junctions serve as a site of assembly for 

Hippo pathway members and loss of AJ components can lead to increased YAP nuclear 

localization in different contexts [14]. In contrast, activation of YAP at FAs involves FAK 

and SRC activation of PI3K, leading to inhibition of LATS1/2 and nuclear accumulation of 

YAP [15]. Forces transmitted through FAs can also mechanically alter nuclear shapes and 

stretch nuclear pores to allow active nuclear YAP import [16]. Generally, the ability of 

Hippo signaling to measure junctional changes depends on actomyosin contractility, and 

thereby provides a central pathway for translating physical information into biochemical 

information in the form of gene expression changes.

In addition to the described mechanisms of force detection at cell junctions, dedicated 

mechanosensors can detect forces within a tissue. For example, PIEZO proteins are 

mechanically sensitive ion channels that are critical for mechanosensation in multiple 

contexts in development by sensing crowding forces to induce cell extrusion and control cell 

density [17], and to regulate stem cell proliferation and differentiation [18,19]. Although the 

mechanisms by which PIEZO transduces a biochemical signal are still under active 

investigation, it is clear that they can function through Ca2+ signaling [18], or by impacting 

YAP/TAZ function (Fig. 1D, D’) [19,20].

While mechanical forces can be detected and translated into biochemical signaling, it is also 

the case that biochemical signaling pathways that regulate morphogenesis have outcomes 

that generate forces. For example, EPH/EPHRIN signaling often regulates actomyosin 

contractility [21,22]; mitogenic signals such as WNT and SHH increase cell number, and 

chemoattractant pathways such as FGF increase cellular aggregation, both of which lead to 

increased cell density to generate compression forces. That these forces are transmitted 

throughout a tissue with both directional and magnitude information and detected by other 

cells suggests that these forces may be utilized as signal transducers downstream of 

biochemical signals. Here we review recent discoveries that connect biochemical signaling 
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with mechanical signaling, focusing particularly on those cases where mechanical forces 

mediate biochemical signaling to regulate morphogenesis. These studies support the idea 

that force is not only detected during development, but that it is actively employed to 

transmit and convey biochemical signaling information in a manner that provides unique 

advantages.

Mechanical signals coordinate physical information with cellular 

differentiation and proliferation

Several recent papers have demonstrated that forces can signal to couple cell position within 

a tissue with cell fate specification, thereby coordinating physical information and cellular 

differentiation (Fig. 2A). While it is known that the stemness of epidermal progenitors can 

be manipulated by altering cell shape or ECM stiffness [23,24], how mechanical changes are 

employed to enable specific cell fate decisions has remained unclear. Totaro et al. recently 

demonstrated that cell shape and ECM rigidity regulates YAP/TAZ, which in turn regulate 

Notch signaling and downstream differentiation within the epidermis. In epidermal stem 

cells experiencing higher mechanical forces from either cytoskeletal or ECM rigidity, YAP 

nuclear localization inhibits Notch signaling, promoting epidermal stemness [25]. 

Conversely, low mechanical force inhibits YAP/TAZ, thus releasing Notch signaling, 

promoting differentiation [25]. Interestingly, YAP/TAZ increase expression of several Notch 

ligands, including DLL1 and DLL3, which stimulate Notch activity in neighboring cells 

[25,26]. Importantly, these same ligands likely inhibit differentiation of basal cells through 

their cis-regulation, thus maintaining a layer of basal progenitors, and efficient 

differentiation of suprabasal cells [25,26].

Mechanical signals are integrated to coordinate boundary formation and cell differentiation 

during rhombomere formation in the developing hindbrain. Rhombomeres are 

developmentally transient blocks of neuroepithelial cells that give rise to distinct structures 

in the vertebrate hindbrain. Boundaries between rhombomeres are formed as a result of 

signaling between Eph receptor tyrosine kinases and their signaling partner, the Ephrins; in 

zebrafish, alternating rhombomeres express EphA4 and Ephrin-B3 such that EphA4/Ephrin-

B3 signaling only occurs at the rhombomere boundary [27–30]. Boundary cells express 

molecular markers that distinguish them from non-boundary cells, provide proliferating 

progenitors and organize spatially-restricted neurogenesis within segments [31–33], and are 

involved in boundary straightening through the formation of actomyosin-cable like 

structures at rhombomeric boundaries [34]. Disruption of either actomyosin contractility or 

Eph/Ephrin signaling disrupts boundary sharpness [34,35]. Interestingly, increased tension 

from actomyosin contractility at rhombomere boundaries creates this positional information, 

which impacts boundary cell identity [22,36]. EphA4 loss of function results in reduced 

actomyosin contractility at rhombomere boundaries and a loss of boundary cells in EphA4-

expressing rhombomere segments, indicating that EphA4 signaling generates positionally-

specific tension to simultaneously specify rhombomere separation and cell identity 

specification [22]. This increased tension at rhombomere boundaries promotes Taz nuclear 

localization and downstream activation of boundary markers [22,36] in EphA4-expressing 

boundary cells. When Yap/Taz pathway components are disrupted, border cell marker 
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expression is lost [22]. Yap also maintains the proliferative capacity and the progenitor 

potential in boundary cells, with neurogenesis coinciding with Yap downregulation as 

daughter cells exit the boundary domain [36]. Together these data elucidate a complete 

pathway linking boundary formation and maintenance through Eph/Ephrin signaling to 

downstream cell fate decisions by a mechanical signaling intermediary. Interestingly, as 

Notch pathway components are also expressed in boundary cells and have been shown to 

regulate neurogenesis in rhombomeres, it is intriguing to postulate that integration of 

mechanical signals and Notch activation may similarly exist here as in the example above to 

preserve progenitor state in boundary cells.

In many contexts, changes in force can be interpreted as morphogenetic signals to rapidly 

remodel and differentiate specialized cell types that further contribute to organ development 

and function (Fig. 2B). Shear force due to blood flow is detected during outflow tract (OFT) 

valve development in zebrafish, coupling the positions of highest shear force due to blood 

flow with positional specification of smooth muscle differentiation that results in valve 

morphogenesis [20]. In the regions of the OFT with the smallest diameter, where shear stress 

is highest, Piezo mechanosensitive channels detect this shear force, resulting in spatially-

restricted expression of Klf2 and Notch signaling within the valve endothelium, and Yap1 

activation and differentiation of the underlying smooth muscle. In the atrioventricular heart 

valve, Klf2a and Notch signaling activity are also high in regions experiencing high blood 

flow [37,38], though the structure of this valve, and the forces it experiences are somewhat 

different. Indeed, it is notable that Klf2 expression and Notch signaling are commonly 

mechanosensitive to blood flow during development [39,40], supporting them as common 

nodes in pathways converting mechanical to biochemical signaling information in a 

spatially-restricted manner.

Intra-organ communication is necessary to coordinate the growth and position of discrete, 

but interdependent structures (Fig. 2C). In zebrafish heart development, Wnt8a signaling is 

critical for promoting cardiomyocyte formation and its overexpression results in increased 

atrial and decreased ventricle myocardial size [41]. Interestingly, this effect is mirrored by 

changes in the size of the underlying atrial and ventricular endocardium [42]. Expansion of 

the myocardium places the endocardial cells under tension, which is sensed by junctional 

Cadherin-5 (VE-cadherin), resulting in nuclear Yap1 localization and increased proliferation 

of endocardial cells to compensate for myocardial overgrowth. These data reveal that tension 

generated by tissue growth can signal to neighboring tissues allowing the coordination of 

tissue-intrinsic growth rates.

Chemical signals modulate cell polarity, adhesion, and tissue deformability 

to signal mechanically

The emergence of coordinated collective cell behaviors requires the detection, coupling, and 

propagation of forces across groups of cells. Tissue rheology, or the way in which tissues 

mechanically react, arises from the contractility of the cells composing the tissue, the ECM, 

and the strength of the cell-cell contacts within a tissue. Viscoelasticity determines the 

deformability of the tissue and permissibility for cellular arrangement in response to 
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inductive signals. Modulation of these properties within a tissue allows for regulated 

deformation and shaping of a tissue.

Chemical signals can guide morphogenesis by tuning tissue mechanics and viscoelasticity 

through control of adhesion, cortical contractility, and associated cell polarity. This was 

recently demonstrated in the developing mouse pharyngeal arch, which is composed of a 

mesenchymal core surrounded by a single layer of epithelium, and undergoes extensive 

outgrowth and shape changes throughout development. Tao et al. demonstrated that, in the 

mesenchyme, WNT5a activates PIEZO1 to induce oscillations in cortical tension in the 

middle portion of the developing arch, resulting in reduced tissue viscoelasticity and 

increased cell intercalation to drive arch elongation [43]. In Wnt5a mutant mice the shape of 

the mandibular arch is disrupted with diminished cortical oscillations and a decrease in 

oriented cell intercalation, suggesting that WNT5a coordinates mandibular cell behaviors 

through control of cell polarity and cytoskeleton tension [43]. This study therefore 

demonstrates a mechanism by which chemical signals impact tissue mechanics to enable 

proper morphogenesis.

Signaling by WNT5a through the ROR2 receptor is also critical during angiogenesis, where 

it coordinates endothelial cell behavior by activating CDC42 and stabilizing vinculin at the 

AJ [44]. This results in mechanocoupling between endothelial cells and their collective 

polarization, which is necessary for their proper migration. Therefore, non-canonical WNT 

signaling tunes the sensitivity of endothelial cells to junctional force to modulate their 

behavior. Detection and sensitivity of cells to forces is often tuned by biochemical signaling 

pathways, thereby allowing these pathways to influence the cellular outcomes upon 

experiencing a given force. As in heart development, shear force from blood flow is critical 

for vessel reorganization during angiogenesis, such that the direction and strength of flow 

dictates endothelial cell polarization and migration. Endothelial non-canonical WNT 

signaling is required for the detection of shear force, and modulates sensitivity to this force 

in order to select which vessels undergo normal pruning [45]. Interestingly, VEGFR3 

signaling also influences sensitivity of endothelial cells to shear stress from flow, indicating 

that in this context multiple biochemical pathways converge to regulate sensitivity to a force-

based signal [46]. Differences in VEGFR3 levels may be a major determinant of differences 

in sensitivity to shear stress by vascular endothelial cells, compared with lymphatic 

endothelial cells, which have a higher sensitivity to shear stress allowing detection of lower 

flow rates and therefore the remodeling of these different vascular cell types at different 

force reception set-points [46].

Mechanical modulation of chemical signaling by cell density and crowding 

forces

As morphogenesis progresses, changes in tissue shape and cell organization can 

concurrently reshape the spatial distribution of signaling molecules (Fig. 3A). For instance, 

villi formation in the developing chick gut as a result of mechanical buckling of the 

endodermal epithelium distorts the SHH signaling gradient from the epithelium, 

concentrating the signal at the tip of each villus to activate high threshold response genes in 
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the mesenchyme that ultimately determine the location of intestinal stem cells [47]. This 

suggests that tissue mechanical forces can actively modulate signaling pattern via emerging 

cellular organization. This idea is consistent with recent findings in developing chick feather 

buds, which arise in the midline of the dorsal skin as regularly spaced mesenchymal 

aggregates beneath epidermal placodes, with subsequent new buds formed laterally in a 

spatiotemporal manner. Feather bud development is initiated as a result of MyoII-dependent 

mesenchymal contraction that amplifies randomly formed small cell clusters into larger 

aggregates [48]. Condensed mesenchyme in turn compresses the overlying epithelium and 

mechanically induces nuclear accumulation of β-catenin to initiate the follicle genetic 

program [48,49]. This mesenchymal contraction also concentrates and upregulates local 

FGF20 signaling from the epithelium to further promote mesenchymal condensation 

[50,51]. Simultaneously, condensed mesenchyme begins to express BMP4, which diffuses 

and inhibits epithelial Fgf20 expression neighboring the condensate [50]. Tissue mechanical 

forces thus help shape FGF20 and BMP4 expression pattern with altering peaks and troughs 

of FGF20 and BMP4 signaling activities, which function as the activator and inhibitor 

respectively in a Turing reaction-diffusion system [52] to establish the formation of feather 

buds repetitively at a regular interval.

Formation of repetitive structures can also be achieved through molecular oscillators, such 

as in the vertebrate presomitic mesoderm (PSM). In this model, cyclic activation of Notch 

and WNT pathways and corresponding signaling responsive genes generate periodic 

travelling waves of signaling activation and instruct the formation of segmented structures 

called somites [53]. Interestingly, when PSM cells are dissociated and scrambled in primary 

cell culture, they continue to oscillate and produce waves of Notch signaling [54]. However, 

this phenomenon is only maintained when the cell density is above certain threshold. The 

system exhibits a quorum sensing behavior involving YAP, which functions as a checkpoint 

to only allow full Notch signaling when a certain cell crowding threshold is reached. 

Intriguingly, quorum sensing via YAP can be modulated by cell shapes and actin-dependent 

mechanical forces, raising the possibility that signaling oscillation during somite formation 

is regulated by mechanical inputs associated with changes in crowding-force [54]. It will be 

interesting to determine if such an excitable density detection system similarly functions in 

other developmental contexts involving cell condensation, such as in the feather bud 

example above, to govern local activation of specific signaling cascades and generation of 

signaling waves.

Mechanical force as a long-range intermediary signal to regulate 

morphogenesis

While paracrine signaling is only effective over a relatively short distance of 50–100 μm 

(spanning 5–10 cells) due to rapid signal dilution and decay in its intensity [55–57], 

mechanical forces can be directionally transmitted over a longer distance and function as a 

long-range morphogenetic signal downstream of a localized biochemical stimulus (Fig. 3B). 

One example demonstrating mechanical signaling over distance is the regulation of zebrafish 

body elongation by the tail organizer [58]. Bmp signaling from the tail organizer is 

postulated to promote an ordered anterior-to-posterior cell flow in the tail bud that 
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contributes to body elongation [59,60]. When Bmp signaling is perturbed, a cell-to-cell relay 

of disturbed cell motion in the tail bud results in a mechanical transmission of cellular 

jamming that travels posterior-anteriorly, resulting in disorganized cell motion outside the 

Bmp signaling range [58]. This hints at a mechanism whereby signaling ligands may induce 

directional movement of cells outside the signaling range by propagating mechanical signals 

through neighboring cells.

How then do cells propagate mechanical signals over distance without dampening force 

transmission? A recent paper addressed this question by studying Drosophila endoderm 

morphogenesis, a MyoII-dependent process involving invagination of endoderm primordium 

moving posterior-anteriorly [61]. Importantly, while Rho1/MyoII activation is initiated by 

secreted Fog/GPCR signaling, a wave of MyoII actomyosin contractility continually 

propagates endoderm invagination anteriorly along the dorsal epithelium without Fog signal 

propagation. As MyoII can be activated in response to mechanical stimuli, such as increased 

cellular tension [62–64], cellular forces associated with epithelial buckling trigger apical 

spreading in unbuckled cells at the anterior edge of the furrow and activate MyoII in these 

cells and their subsequent buckling, thus cyclically amplifying the travelling mechanical 

wave. Interestingly, sequential activation of MyoII is also observed in other developmental 

contexts, such as the mechanical interaction between the invaginating endoderm and 

extending germband in Drosophila and the zippering process during neural tube closure in 

Ciona intestinalis [65,66], all suggesting that mechanical forces can act as a long-range 

signal and as a second messenger to regulate morphogenesis at a distance. Future work will 

determine whether such mechanisms can also control other cell behaviors, such as 

differentiation, proliferation, and polarity in this and other developmental processes.

Conclusions and perspectives

Cells may have evolved to actively utilize force as an extracellular second messenger to 

transduce information between cells with several advantages. The recent studies that we 

describe above give insight into this idea, and present explanations of the advantages that 

might be achieved by employing mechanical signals: these signals can coordinate growth of 

organs, specify cell fate with respect to tissue architecture, modulate chemical signals, and 

act over longer distances than biochemical signals. Importantly, mechanical force is a 

multiparameter signal; whereas a biochemical signal detected at a single point has only a 

magnitude value, mechanical force is a vector quantity, encoding both magnitude and 

directional information. This property makes mechanical forces particularly compelling for 

providing information to organize directed cell behaviors such as cell polarity and cell 

migration. Multiple biochemical signals may therefore converge to collate and convert 

information from multiple cellular inputs into a mechanical force signal that can be 

transmitted in a coordinated fashion. As mechanical signals have been historically 

challenging to observe, increasingly integrating techniques such as atomic force microscopy 

and laser ablation with genetic and biochemical approaches as well as the application of new 

techniques such as the application of oil droplets, or magnetic beads to measure and apply 

forces, will be transformative in further understanding the interplay between mechanical and 

biochemical signals during development [67,68].
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Figure 1. Mechanisms of mechanosensation.
Mechanical forces are sensed and transmitted across cells and tissues through a variety of 

mechanisms. (A) Cadherins, bound intracellularly to β-catenin, which in turn binds α-

catenin, make up adherens junctions. (A’) Under tension, generated by actomyosin 

contractility, α-catenin recruits the actin binding protein vinculin. The mechanosensory 

function of adherens junctions allows the mechanical coupling of adjacent cells. (B) Focal 

adhesions, composed of Integrins, couple cells to the ECM providing cells with both 

mechanical and biochemical information. (B’) Under tension a series of intracellular 

adaptors are recruited to focal adhesions, including FAK, SRC, Talin and Vinculin, linking 

the focal adhesions to actomyosin. (C) The Hippo/YAP/TAZ pathway is a critical 

mechanosensitive signaling pathway. When there is low mechanical input MST1/2 kinases 

bind SAV1, phosphorylating LATS1/2 kinases which in turn phosphorylate YAP/TAZ, 

preventing them from entering the nucleus. (C’) When there is high mechanical input Hippo 

signaling is inactive, allowing YAP/TAZ to translocate to the nucleus, where they bind to 

TEAD transcription factors, driving target gene expression. (D) Dedicated mechanosensors, 

such as PIEZO proteins, can also detect forces within a tissue. (D’) When sensing crowding 

forces, PEIZO channels undergo a conformational change, enabling a calcium influx into the 

cell to impact downstream signaling.
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Figure 2. Integration of mechanical and biochemical signaling during morphogenesis.
Mechanical and biochemical signaling can be integrated to affect various morphogenetic 

outcomes including tissue growth and cellular differentiation. (A) In developing zebrafish 

rhombomeres morphogenesis is coupled to cellular differentiation through Eph/Ephrin 

signaling generated actomyosin contractility, which in turn activates Yap/Taz signaling in 

boundary cells. Additionally, YAP/TAZ mechanotransduction inhibits NOTCH signaling in 

the developing mouse epidermis to maintain epidermal stemness in basal cells, while 

promoting differentiation of the suprabasal layer. (B) In the zebrafish heart myocardial and 

endocardial growth are coupled through tension sensing via VE-cadherin and Yap1 to 

regulate cell proliferation. (C) Mechanical and biochemical signaling can also be integrated 

to modulate tissue viscoelasticity as demonstrated in the developing mandibular arch, where 

WNT5a acts upstream of YAP and Piezo1 to coordinate cellular polarity and force 

oscillations in the middle arch to diminish tissue rigidity, enabling cell intercalations.
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Figure 3. Mechanical modulation of chemical signaling.
Tissue mechanical forces can modulate the gradient and pattern of biochemical signaling. 

(A) In the chick feather buds, condensing mesenchyme contracts overlying epithelium to 

concentrate local FGF20, and at the same time secrets BMP4 that diffuses and inhibits 

neighboring FGF20 expression, resulting in a Turing-like pattern. In the chick presomitic 

mesoderm (PSM), YAP integrates mechanical information from the substrate and cell 

density to transform signaling pulses into oscillations and waves. (B) Tissue forces can also 

function as a second messenger downstream of a biochemical source to relay its instructive 

signal across space. For instance, in the zebrafish tailbud, the anterior-to-posterior cell flow 

is modulated by mechanical signals transmitted from cell to cell and thus beyond the range 

of Bmp signaling in the tail organizer. Similarly, during Drosophila endoderm invagination, 

although the initial MyoII activation is initiated by Fog signaling, the subsequent traveling 

wave of MyoII activation and apical contraction is independent from Fog signaling and is 

induced by cyclic forward pushing of buckling cells and apical spreading of edge cells along 

the vitelline membrane (VM).
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