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Abstract

Pancreatitis is a fibro-inflammatory disorder of the pancreas that can occur acutely or chronically
as a result of the activation of digestive enzymes that damage pancreatic cells, which promotes
inflammation. Chronic pancreatitis with persistent fibro-inflammation of the pancreas progresses
to pancreatic cancer, which is the fourth leading cause of cancer deaths across the globe.
Pancreatic cancer involves cross-talk of inflammatory, proliferative, migratory, and fibrotic
mechanisms. In this review, we discuss the role of cytokines in the inflammatory cell storm in
pancreatitis and pancreatic cancer and their role in the activation of SDF1a/CXCR4, SOCS3,
inflammasome, and NF-xB signaling. The aberrant immune reactions contribute to pathological
damage of acinar and ductal cells, and the activation of pancreatic stellate cells to a myofibroblast-
like phenotype. We summarize several aspects involved in the promotion of pancreatic cancer by
inflammation and include a number of regulatory molecules that inhibit that process.
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1. INTRODUCTION

The pancreas produces a variety of digestive enzymes, including trypsin and chymotrypsin
which digest proteins, amylase which digests carbohydrates, and lipase, which breaks down
fats. Islet cells supply the endocrine component of pancreatic function by releasing insulin
and glucagon to maintain sugar balance in the body.

Pancreatic cancer (PC) is the third leading cause of cancer deaths and poses a severe health
burden globally. The median survival rate of PC is six months to a maximum of five years in
less than 5% of patients. The histological futures of pancreatic cancer involve a progression
from dysplasia to invasive carcinoma. The major genetic changes in carcinogenesis of the
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pancreas include the activation of KRAS and inactivation of TP53, CDKN2A, SMAD4.
Less frequently, mutations in ARID1A, GL13, MLL3, DNAH11, SYNE1, HMCN1, LRP1B,
MUCI16, FLG, OBSCN, FAT3, DNAH14, ZNF559, WDFY4, ASTN1, RNF43, TGFBR2,
ZNF568, MLL2, PXDN, PREX2, PCDH15, COL6A5 occur in pancreatic cancer [1].
Although prevention may be an effective strategy, early diagnosis is essential for successful
therapy. Further research is required to design treatments to reduce the mortality rate of this
devastating disease.

Cytokines are diverse group of molecules produced by nucleated cells that play essential
roles in regulating cell growth, inflammation, and metastasis [2, 3]. Uncontrolled
inflammation of the pancreas, chronic pancreatitis, is one of the risk factors for the
development of various malignancies. Activation and recruitment of immune cells produce a
cytokine- and chemokine-enriched environment, which promotes cancer development and
impairs immune detection of the tumor. Chronic pancreatitis leads to changes in endocrine
and exocrine functions of the pancreas and may lead to obesity, diabetes mellitus,
calcification of the pancreatic parenchyma, dilatation, distortion, and stricturing of the
pancreatic ducts [4-8]. The immune system has enormous potential to destroy tumors;
however, immune dysregulation leads to the expansion of the tumor, metastasis, and poor
survival of individuals [9].

In the present review, we discuss the role of cytokine-mediated immune cell infiltration and
SDF-1a/CXCL12-CXCR4, SOCS, NLRP3, and NF-xB inflammation signaling that
contributes to pancreatic acinar, stellate and ductal cell pathology in pancreatitis and
progression to pancreatic cancer. Further, we discuss the role of cytokine inhibitors/inducers
and chemokines, immune cells, and inflammation signaling inhibitors in combating
pancreatitis and pancreatic cancer.

2. PANCREATITIS

Activation of digestive enzymes in the pancreas before release into the small intestine causes
injures to pancreatic cells, leading to inflammation with abdominal pain. Acute or chronic
pancreatitis may be related to autoimmunity or hyperlipidemia. A low-fat diet and avoiding
alcohol consumption and smoking are key to controlling the progression of acute to chronic
pancreatitis [10].

2.1. Acute Pancreatitis (AP)

Acute pancreatitis is the leading cause of hospitalization for gastrointestinal disorders
accompanied by epigastric pain. The diagnosis of the disease involves the detection of serum
amylase or lipase =3 times the upper limit of normal levels. Severe acute pancreatitis is
accompanied by organ failure with peri-pancreatic fluid collection, pancreatic and peri-
pancreatic necrosis, pseudocyst formation, and walled-off necrosis [11]. Acute pancreatitis
can be diagnosed by computed tomography or magnetic resonance
cholangiopancreatography identification of retained common bile duct stones. Endoscopic
retrograde cholangiopancreatography for patients with suspected gallstone pancreatitis and
magnetic resonance imaging helps in distinguishing walled-off necrosis from a pseudocyst.
Endoscopic ultrasonography is a highly sensitive test for detecting cholelithiasis and chole-
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docholithiasis in acute pancreatitis [12]. Patients with acute pancreatitis can recover
completely; however, risk factors like smoking, alcohol consumption, and pancreatic
necrosis in those patients can lead to the development of recurrent or chronic pancreatitis
after the first episode [13].

2.2. Chronic Pancreatitis (CP)

Chronic pancreatitis is a progressive fibro-inflammatory disease frequently related to
excessive consumption of alcohol, cigarette smoking, exposure to industrial chemicals, or
analgesics. Genetic mutations in a trypsin-controlling gene or the cystic fibrosis
transmembrane conductance regulator account for hereditary forms of the disease [14].
Pancreatitis begins as pancreastasis or the prevention of apical exocytosis in pancreatic
acinar cells. Consequently, newly synthesized and stored digestive enzymes are released via
the basolateral membrane into lymphatics by way of the interstitium into the bloodstream,
which causes inflammation [15-17].

2.3. Autoimmune Pancreatitis (AIP)

AIP is chronic inflammation due to the self-reactivity of the pancreas by the immune
system, which leads to calcification and obstruction characteristic of chronic pancreatitis.
Medication for AIP involves immune suppression by steroidal therapy. Type 1 AIP, also
called lymphoplasmacytic sclerosing pancreatitis, is characterized by abundant infiltration
with immunoglobulin G4 (IgG4)-positive plasma cells, whereas Type Il AIP is characterized
by granulocytic epithelial lesions in the pancreas without systemic involvement and is duct-
centric [18]. The symptoms of AIP include dark urine, pale or floating stools, jaundice, pain
in the upper abdomen, nausea, vomiting, weakness, loss of appetite, and weight loss.
Pancreatic complications in AIP include pancreatic insufficiency/inability to make
pancreatic enzymes, diabetes, and pancreatic calcifications.

2.4. Hyperlipidemia-Hypertriglyceridemia Pancreatitis (HTGP-AP)

Severe hypertriglyceridemia (HTG) is a common cause of acute pancreatitis. HTGP-AP
occurs in approximately 15-20% of subjects referred to lipid clinics. Pathophysiology of
HTGP-AP includes hydrolysis of triglycerides by pancreatic lipase and excessive formation
of free fatty acids with inflammatory changes that promote capillary injury. Therapeutic
measures in HTG-AP include dietary modifications, use of antihyperlipidemic agents,
insulin, and heparin treatment [19]. Women with abnormal lipid metabolism are also at risk
of developing hyperlipidemic gestational pancreatitis [20].

2.5. Obesity-Induced Pancreatitis (OIP)

Obesity, a risk factor for acute pancreatitis, aggravates the disease severity by damaging the
intestinal mucosal barrier and changing the microbiota composition [21]. Adipose tissue
produces adipokines, including adiponectin, leptin, visfatin, and resistin. In addition, adipose
tissue-related MCP-1, TNF-a, and IL-6 enhance inflammation to worsen the severity of
acute pancreatitis in diabetes patients [5]. Another comorbidity of chronic pancreatitis
associated with obesity is an increased lifetime risk of developing pancreatic cancer.
Upregulation of cytokines, chemokines, and other inflammatory mediators contributes to
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disease severity in pancreatitis and pancreatic cancer in obesity through activation of
transcription factors such as NF-xB, AP-1, NFAT, STAT3 with immune suppression and a
decrease in NK, i-NKT cells and immune surveillance function of CD8* T cells [22].

2.6. Diabetes-Induced Pancreatitis (DIP)

There is a correlation between diabetes and pancreatitis and vice versa. Chronic pancreatitis
is observed in type 1 diabetes patients with pancreatic ductal hyperplasia/dysplasia with a
reduction in pancreas weight [23]. Animal studies showed that diabetes aggravates
pancreatitis and suppresses regeneration of the pancreas [24]. Type 2 diabetes mellitus
increased the risk of developing pancreatitis [6, 25]. Girman et a/. [25] demonstrated that
T2DM is a high-risk factor for acute pancreatitis compared with patients without diabetes.
Chronic pancreatitis patients also develop Type 2 diabetes [26]. Diabetes mellitus secondary
to chronic pancreatitis is accompanied by pancreatic exocrine dysfunction with deficient
insulin secretion and classified as type 3c diabetes. In patients with chronic calcified or
alcoholic pancreatitis, the incidence of retinopathy and neuropathy is high [27].

3. CHRONIC PANCREATITIS AND THE DEVELOPMENT OF PANCREATIC

CANCER

Chronic pancreatitis is linked with an increased risk of pancreatic cancer. The incidence of
pancreatic cancer is higher in chronic pancreatitis patients at an older age, and the
prevalence increases with smoking and alcohol consumption. Diabetes, obesity, and an age
>60 years also contribute to pancreatic cancer risk [28]. Metaplasia of pancreatic acinar cells
is observed in chronic pancreatitis progression to pancreatic ductal adenocarcinoma. Oxido-
nitrosative stress and fibro-inflammatory signals contribute to the development of
pancreatitis and cooperate with oncogenic KRAS mutations and loss of tumor suppressor
barriers p16/INK4A/CDKN2A, TP53 and SMAD4/DPC4 and subsequent progression to
pancreatic intraepithelial neoplasias. The pathological progression increases from PanIN-1A,
PanIN-1B, and PanIN 2/3 lesions and, ultimately, to invasive ductal adenocarcinoma [29].

4. CYTOKINES AND THEIR ROLE IN CHRONIC PANCREATITIS AND
PANCREATIC CANCER

Cytokines are released in the systemic circulation in response to various stimuli to defend
against attacks of antigens and pathogens in the biological system. The pro-inflammatory
response is opposed by an anti-inflammatory response, and an imbalance between these two
systems leads to localized tissue destruction and organ damage [30]. In pancreatitis, the
excessive release of cytokines stimulates various inflammatory signals and cytokine release,
which in turn induces accumulation of inflammatory cells and depletes T cell response.
These events cause acinar cell injury accompanied by fibrosis with the activation of
quiescent pancreatic stellate cells to activated myofibroblast-like phenotype and pancreatic
damage [31] (Fig. 1). Likewise, in pancreatic cancer, the response to inflammatory cytokines
leads to acinar, ductal, and stellate cell proliferation with epithelial to mesenchymal
transition and progressive tumorigenesis. Treatment for pancreatic cancer requires a portion
of the organ to be removed if detected early or complete removal of the pancreas if detected
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in later stages, and life expectancy reduces to less than five years in most cases [32]. Hence,
understanding the role of cytokines in pancreatitis and its progression to pancreatic cancer
will delineate new avenues for the discovery of anti-inflammatory and cytokine and
chemokine inhibitory therapies in these disease states to reduce disease progression and to
increase quality of life and survival. Cytokine inhibitors/inducers for pancreatitis and
pancreatic cancer are listed in Table 1. Further, we describe some of the cytokines that play a
crucial role in pancreatitis and pancreatic cancer.

IL-4 is a Th2 cytokine that regulates cell proliferation and apoptosis and plays a role in
inflammation [54, 55]. IL-4 levels are upregulated in cerulein-induced pancreatitis in mice,
and IL-4 stimulates macrophages and activates pancreatic stellate cells. Blocking IL-4/IL-13
in the cerulein model using a peptide antagonist inhibits pancreatic damage and disease
progression [34]. Pancreatic cancer cells and tissues express high levels of IL-4 and IL-4
receptors, and IL-4 acts as a growth factor in pancreatic cancer cells, facilitating pancreatic
tumor growth and metastasis. Neutralizing IL-4 antibodies inhibits the growth of pancreatic
cell lines [56]. IL-4 receptor-targeted cytotoxin is a potent target for pancreatic cancer
therapy. Intra-tumoral injections of IL-4-Pseudomonas exotoxin exhibit antitumor activity
against human pancreatic tumors implanted subcutaneously in immunodeficient animals
[57].

IL-5 is a proinflammatory cytokine that plays a critical role in eosinophil initiation,
development, migration, and recruitment to the tissues in allergy and inflammation [58].
GATA-1 and IL-5 deficiency inhibits the induction of eosinophil active chemokines and
profibrotic cytokines, and protects mice from an experimental model of pancreatitis induced
fibro-inflammatory pathology of the pancreas as described in Fig. (2) [59]. The role of IL-5
has been demonstrated in bladder cancer cells where it enhances the migration and invasion
via activation of ERK1/2, MMP-9, NF-xB, AP-1, and p21WAF1 [60]. Eosinophils play an
active role in tumor immune surveillance and kill methylcholanthrene-induced fibrosarcoma
in IL-5 transgenic mice [61].

IL-6 signaling plays a pivotal role in chronic inflammation, autoimmunity, and
inflammation-associated cancer. IL-6 signaling controls the differentiation and activation of
T lymphocytes via induction of the Jak/STAT-3 and Ras/Erk/C/EBP pathways and regulates
the balance between Treg cells and Th17 cells [62]. Pancreatitis is associated with elevated
IL-6 levels, which promotes acinar cell damage in mice. In humans, IL-6 levels are a
prognostic indicator in acute pancreatitis [59]. Acute lung injury (ALI) is associated with
severe acute pancreatitis. IL-6 KO mice had a lower death rate compared with wild-type
mice with acute pancreatitis; however, mice challenged with IL-6 developed lethal ALI via
phosphorylation of STAT3 and production of neutrophil attractant CXCL1. Therapeutic
inhibition of IL-6 may prevent severe acute pancreatitis associated with acute lung injury
[62]. IL-6 plays a role in tumor progression in pancreatic cancer, and its expression is
localized to the stroma of tumors. IL-6 and PD-L1 blockade showed antitumor activity in
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mice bearing orthotopic KPC-luc tumors and inhibited tumor progression increased overall
survival in KPC-Brca2 mice [63].

IL-13 is produced by Th2 cells and plays a critical role in allergic diseases [64, 65].
Activation of macrophages is dependent on IL-4 and IL-13 signaling, and mice lacking
IL4Ra and IL-4/IL-13 are less susceptible to cerulein-induced pancreatic fibrosis [34]. IL-13
is produced by PanIN and Tuft cells in the development of pancreatic cancer, and promotes
macrophage polarization and contributes to PanIN cell proliferation and fibrosis. IL-13
neutralizing antibody decreases activated macrophages in ADM/PanlIN lesions and reduces
fibrosis and pancreatic lesion growth [66].

IL-15 shares structural similarity with IL-2, and it activates NK cell proliferation,
cytotoxicity, and cytokine production and regulates NK cell/macrophage interaction. IL-15
plays an anti-inflammatory role against asthma and eosinophil-mediated allergic diseases
[65, 67]. IL-15 treatment produces an increase of interferon-y-responsive invariant natural
killer T (iNKT) cells in the blood. In the tissue, it protects against cerulein-induced
pancreatic fibro-inflammation in mice, as illustrated in Fig. (3). [59]. IL-15 promotes NK
cell-mediated cytotoxicity as a treatment for pancreatic cancer and stellate cells [47].

IL-17 is a pro-inflammatory Th17 cytokine that plays a role in host defense, promoting
inflammatory pathology and inducing eosinophil-mediated allergic diseases [68]. Stimulator
of interferon genes (STING) activation worsens acute pancreatitis; however, it is protective
in chronic pancreatitis and limits fibrosis. STING deficiency leads to IL-17 polarization,
which is possibly inhibited by STING activation. IL-17A neutralization inhibits STING
deficiency-mediated chronic pancreatitis [69]. Immune cell-derived IL-17 regulates the
development of tuft cells and stem cell features of pancreatic cancer cells v/a increased
expression of DCLK1, POU2F3, ALDH1AL, and IL-17RC and promotes pancreatic tumor
growth and progression in mice and humans [70].

IL-18, also called IFN-y-inducing factor, is a proinflammatory cytokine that is converted to
an active form by IL-1 p converting enzyme caspase-1. IL-18 plays a central role in
inflammation and contributes to the pathogenesis and pathophysiology of inflammation and
eosinophil-mediated allergic diseases [67, 71-73]. An increase in IL-18 levels was observed
in chronic pancreatitis in mouse and human samples and served as a prognostic marker [39,
74]. IL-18 is increased in the blood and tissues of most cancer patients, including pancreatic
cancer, and is associated with disease progression, metastatic recurrence risk, and reduced
survival [75].
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IFN-+y plays a crucial role in host defense in innate and acquired immunity and exhibits both
pro- and anti-tumorogenic roles [76]. Cerulein-induced pancreatitis is exacerbated in IFN-y
—/- mice with increased neutrophil recruitment. IFN-y administration induced anti-
inflammatory effects and attenuated cerulein-induced acute pancreatitis in both WT and
IFN-y—/- mice, with a reduction in NF-xB activation and COX-2 expression [77]. NKT
cells are the source of IFN--y, and recently we showed that cerulein induces a decrease in
IFN-+y in a mouse chronic pancreatitis model. However, IL-15 administration induces IFN-y
and protects pancreatic pathology via NKT cell recruitment [59]. Interferon-y released in
the tumor microenvironment inhibits human pancreatic carcinoma cell growth v7a caspase-1
dependent induction of apoptosis [53].

TNF a is a proinflammatory cytokine that contributes to oxidative stress at sites of
inflammation, participates in vasodilatation and edema formation, and plays a role in
malignancy and inhibition of pancreatic cancer [78, 79]. TNFa directly induces premature
protease activation and necrosis in pancreatic acinar cells v7a calcium and cathepsin-B
activity. Genetic deletion of TNFa and neutralizing antibodies against TNFa prevented
neutrophil- and macrophage-induced trypsin activity and necrosis in pancreatic acini treated
with phorbol-12-myristate-13-acetate, cerulein, or TNFa, and prevented cerulein-induced
experimental pancreatitis in mice [80]. Anti TNF-a reduces desmoplasia and the
inflammatory microenvironment in pancreatic ductal adenocarcinoma, and anti-TNFa.
combined with chemotherapy killed tumor cells [81].

5. CHEMOKINES AND THEIR ROLE IN CHRONIC PANCREATITIS AND
PANCREATIC CANCER

Chemokines are secondary pro-inflammatory mediators induced by cytokines that stimulate
the recruitment of leukocytes. The major chemokine sub-families based upon the position of
cysteine residues are CXC and CC chemokines [82]. Chemokines and their receptors are
critical mediators of cell migration during immune surveillance. Chemokines promote the
tumorigenesis, proliferation, metastasis, and angiogenesis of a variety of cancers [83, 84]. In
an earlier study, Yubero ef a/. [85] reported that oxidant-mediated MAPK, NF-xB, and
STAT3 activation triggers chemokine expression in pancreatic acinar cells in pancreatitis in
rats [85]. Chemokine receptor antagonists are a favorable therapeutic approach for the
treatment of inflammatory diseases and cancer. Chemokine inhibitors for pancreatitis and
pancreatic cancer are listed in Table 2.

5.1. The CC Family of Chemokines

CC chemokines influence allergic inflammation and progression of cancer [97, 98]. The
following CC family chemokines are well reported in pancreatitis and pancreatic cancer and
are reviewed in brief.
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5.1.1. CCL2—Monocyte chemoattractant protein-1 (MCP-1/CCL2) regulates migration
and infiltration of monocytes/macrophages [99]. MCP-1 upregulation is seen in acute and
chronic pancreatitis in animal models and human tissues and contributes to the pathogenesis
of mononuclear infiltration [100, 101]. Mutant MCP-1 inhibited intrapancreatic cytokine and
chemokine expression and suppressed the development of pancreatic fibrosis in chronic
pancreatitis induced by dibutyltin dichloride in rats [102]. Induction of pancreatitis by
cerulein in mice involves the migration of CD11b high CD11c-Gr-1 low macrophages from
the bone marrow mediated by CCL2 via CCR2 and SOCS-3 dependent activation. CCL2—/-
mice exhibited less infiltration of CD11b high CD11c-Gr-1 low macrophages with less
severe pancreatitis upon cerulein-induced pancreatitis [103]. Monocyte recruitment is
critical to pancreatic cancer progression and increased monocyte prevalence in the peripheral
blood, and its decrease in bone marrow correlates inversely with survival. Human pancreatic
tumors express CCL2, and immunosuppressive CCR2* macrophages infiltrate these tumors
with low CD8 T-cells. CCR2 blockade depletes inflammatory monocytes and macrophages
from cancer and exhibits antitumor immunity, decreased tumor growth, and reduced
metastasis in mice [104].

5.1.2. CCL5—CCLS5, also known as RANTES, is expressed in various immune cells such
as macrophages, dendritic cells, and memory T cells. The receptor for CCL5 is CCR5.
CCLS5 plays an essential role in inflammatory diseases and promotes carcinogenesis and
stroma genesis [105]. In chronic pancreatitis, CCR5, CCL5, and MIP-1a mRNA levels were
increased 12.9, 13.3, and 9.2-fold, respectively. Most CCR5-positive cells were also CD68-
positive macrophages, and the study demonstrated that CCR5 is most likely involved in the
attraction and activation of CD68-positive macrophages in chronic pancreatitis [106]. CCR5
and CCLS5 interaction increased pancreatic cancer cell invasion through F-actin
polymerization. Pancreatic cancer metastases showed elevated epithelial staining for CCR5
and CCL5. Pancreatic cancer cell lines (AsPc-1, BxPc-3, and MIA PaCa-2) showed higher
expression levels of CCR5 and invasive potential. Treatment with the CCRS5 inhibitor
maraviroc appeared beneficial in preventing metastasis and may serve as a therapeutic
strategy to control pancreatic cancer progression [107].

5.1.3. CCL18—CCL18, also called macrophage inflammatory protein 4, is expressed in
monocytes, macrophages, and immature dendritic cells. The chemokine plays a crucial role
in immune and inflammation responses and attracts lymphocytes and immature dendritic
cells. CCL18 induces collagen deposition by fibroblasts and plays a role in the progression
of malignant tumors [108]. Serum CCL18 levels were higher in patients with pancreatic
ductal adenocarcinoma. Cancer epithelial cells and macrophages in pancreatic ductal
adenocarcinoma tissues expressed CCL 18 that correlated with lymph node metastasis.
Treatment with recombinant human CCL18 promoted the migration and invasion of
pancreatic cancer cells and induced EMT by upregulation of SNAIL1 [109].

5.1.4. CCL20—CCL20, a direct target gene of RelA-containing NF-xB dimers, attracts
immune cells to the site of the tumor and modulates the resistance of the cancer cells
through their interaction with immune cells. The receptor for CCL20, CCR®, is expressed on
a variety of immune cells, including macrophages, dendritic cells, and T-cells, as well as on
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different tumor cells. The TRAIL-RelA-CCL20 signaling pathway in pancreatic ductal
adenocarcinoma cells leads to paracrine immune cell modulation and resistance towards
TRAIL-induced apoptosis in pancreatic ductal adenocarcinoma cell lines. Dissection of the
CCL20-CCR6 cancer-immune cell interaction is required for anti-tumor therapy [110].
CCL20 and CCR6 levels are increased in pancreatic carcinoma and play a role in the
development and progression of the tumor. Inhibition of CCR6 signaling or neutralization of
CCL20 or inhibition of its production and activity may be useful in preventing further
progression of pancreatic carcinoma [111]. Aberrant expression of CCL20 is observed in
tumor-associated macrophages of pancreatic cancer tissue. CCL20 secreted by IL-4-
challenged M2 macrophages promotes the migration and epithelial-mesenchymal transition
[112]. Expression of CCL20 was significantly higher in pancreatic cancer than in chronic
pancreatitis and adjacent normal tissue, and may therefore be a new parameter for
histological diagnosis and discrimination between pancreatic cancer and chronic pancreatitis
[113].

5.1.5. CCL21—CCL21, an efficient chemoattractant for lymphocytes, is found on
endothelial venules and within the T cell zones of both spleen and lymph nodes. It is
selective in its recruitment of naive T cells and dendritic cells, and it influences integrin-
mediated dendritic cell transmigration [114-117]. In the lymph nodes, CCL21 plays a role in
the initiation of an immune response by colocalizing naive T cells with dendritic cells
presenting antigens [118, 119]. CCRY7 is a receptor for CCL21 that is expressed on all naive
T cells, memory T cells, B cells, and mature dendritic cells. CCR7 plays a central role in
lymphocyte infiltration and homing to lymph nodes [120, 121]. CCL21/CCR?7 signaling is
involved in regulating inflammation, development and progression of several types of cancer
[122]. CCL21 expression is associated with microvessel density, while CCR7 expression is
associated with microlymphatic vessel density. CCR7 and its ligand, CCL21, are critical in
the progression of pancreatic cancer, and induction of angiogenesis and lymphangiogenesis
by chemotactic interaction [123]. CCL21/CCR7 promotes migration and survival of
CD133+ pancreatic cancer stem cells viaactivation of ERK/NF-xB signaling and promoting
EMT and lymph node metastasis markers E-cadherin, N-cadherin, and LYVE-1 [124].

5.2. The CXC Family of Chemokines

CXC chemokines regulate tumor-associated angiogenesis, as well as cancer cell metastases
[125]. Here we discuss the role of the following CXC chemokines in pancreatitis and
pancreatic cancer.

5.2.1. CXCL1—CXCL1, also known as neutrophil-activating protein 3 and melanoma
growth stimulating activity a, signals via CXCR2 on neutrophils, which mediates mammary
tumor growth and lung metastasis [126, 127]. An experimental model of cerulein-induced
pancreatitis and acute lung injury in C57BL/6 mice activated IL-6 and induced
phosphorylation of STAT3, which elevated CXCLL1 in the serum, BALF and pancreatic
acinar cells [62]. RelA activation promotes oncogene-induced senescence via elevation of
CXCL1, which activates CXCR2 during pancreatic carcinogenesis. In Kras mice, pancreas-
specific inactivation of CXCR2 prevented oncogene-induced senescence, which correlated
with increased tumor proliferation and decreased survival. In human tissues, reductions in
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CXCR2 levels were associated with advanced neoplastic lesions, which demonstrates that
the RelA/CXCL1/CXCR2 axis is an essential mechanism of tumor surveillance in pancreatic
ductal adenocarcinoma [128]. CXCL1 is highly expressed in mouse and human pancreatic
ductal adenocarcinoma. High RIP3 (a critical regulator of programmed necrosis/necroptosis/
inflammatory cell death) expression correlated with higher expression of CXCL1, and RIP3
deletion reduced /n vivo and in vitro expression of CXCL1. Macrophage inducible Ca2*-
dependent lectin receptor (Mincle) deletion also slowed the rate of oncogenesis. Targeting
these networks represents a therapeutic approach for pancreatic ductal adenocarcinoma
[129].

5.2.2. CXCL4—CXCL4, also called platelet factor 4, drives inflammation-mediated
cancer aggravation and angiogenesis and promotes antitumor immunity [130]. CXCL4
secreted from platelets is a stimulator of neutrophil infiltration and subsequent pancreatic
tissue damage v/ia CXCL2 activation that also mediates cancer regrowth after chemotherapy
[131]. Taurocholate infusion into the pancreatic duct or by intraperitoneal administration of
L-arginine induced pancreatitis in C57BL/6 mice with increased plasma levels of CXCL4,
whereas depletion of platelets markedly reduced CXCL4 plasma levels, demonstrating that
circulating levels of CXCL4 are derived from platelets in acute pancreatitis. CXCL4
inhibition decreased taurocholate-induced neutrophil recruitment, 1L-6 secretion, edema
formation, amylase release, and tissue damage in the pancreas. CXCL4 reduction also
diminished plasma and lung levels of CXCL2 and neutrophil infiltration and tissue damage
in the inflamed pancreas [132]. CXCLA4 levels are also elevated in mild and severe acute
pancreatitis, which directs CXCL4 inhibition as a therapy for the treatment of pancreatitis. A
paralog of CXCL4, CXCL4L1, hindered cell proliferation and migration in patient tumors,
tumor cell lines, and murine xenografts and increased substantially in primary and metastatic
pancreatic ductal adenocarcinoma. Myofibroblasts induce CXCL4L1 in tumor cells.
Administration of a monoclonal antibody (mAb) against CXCL4L1 blocked the growth of
tumors positive for CXCR3, a receptor for CXCL4, and inhibited pancreatic ductal
adenocarcinoma development via the antiangiogenic function [130].

5.2.3. CXCL8—CXCLS, also called monocyte-derived neutrophil chemotactic factor or
neutrophil-activating protein 1 or IL-8 in humans, is a pro-inflammatory chemokine.
Leukocytes and tumor cells secrete CXCL8, which plays a role in immune surveillance,
inflammation, and angiogenesis and modulates endothelial cell proliferation and migration.
The cellular response to CXCLS8 is affected by CXCR1 and CXCR2, which cross-link with
CXCLS8 and exert biological function. IL-8 levels increased in human subjects with
pancreatitis, and Pooran et al. [133] recommend IL-8 as a marker for the evaluation of
pancreatitis. Pancreatic cancer cell-derived CXCL8 and fibroblast-derived CXCL12 promote
HUVEC proliferation, migration, and invasion. CXCL12 enhanced CXCL8 production by
pancreatic cancer cells, and drugs targeting CXCR4 and CXCR2 block metastasis and
angiogenesis in pancreatic cancer [134]. Chen et al. [135] found that IL-8 levels were
increased in the serum of patients with pancreatic adenocarcinoma and recommend IL-8 as a
serum marker for predicting the prognosis.
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5.2.4. CXCL10—CXCL10, also called 10 KDa interferon gamma-induced protein, binds
to its receptor CXCR3 to exert biological effects such as chemotaxis, induction of apoptosis,
regulation of cell growth, and mediation of angiostatic effects. CXCL10 correlates with
inflammation, immune dysfunction, tumor development, and metastasis [136]. In response
to inflammation, immune cells like neutrophils, eosinophils, monocytes, and other cells such
as epithelial cells, endothelial cells, and stromal cells secrete CXCL10 [137-139]. CXCL10
was elevated in human pancreatic ductal adenocarcinoma specimens and cocultures of
pancreatic cancer cells with pancreatic stellate cells and correlated with high stroma content
and decreased median survival in patients with pancreatic cancer. CXCL10 and its receptor
CXCR3 are associated with the intratumoral presence of T reg cells, and CXCL10
stimulated the ex vivo recruitment of CXCR3* effector T cells as well as CXCR3* T reg
cells leading to immunosuppressive and tumor-promoting effects [140].

5.2.5. CXCL16—CXCL16, a transmembrane and soluble chemokine, plays a role in
inflammation, and its expression promotes tumor growth, proliferation, metastasis, NF-xB
regulation, and angiogenesis [141, 142]. Increased levels of CXCL16 are observed in
humans with severe pancreatitis and confirmed bacterial infection, and in mice challenged
with sodium taurocholate and Escherichia coli-mediated necrotizing pancreatitis [143].
CXCL16 and CXCR6 are induced in chronic pancreatitis and pancreatic ductal
adenocarcinoma tissues. Proinflammatory cytokines increase CXCL16 and silencing of
ADAM10 inhibits CXCL16 [144]. sst2+/— mice showed PI3K/AKT activation, whereas
KRASG12D sst2+/- mice showed premalignant lesions, tumors, and lymph node metastases
and activation of PI3K signaling via AKT, NF-xB activation, and CXCL16 production,
which prompted neoplastic lesions. Pancreatic ductal adenocarcinoma tissues and
surrounding acini from mice and humans expressed higher CXCL16 and its receptor
CXCR®6 in pancreatic tissues. Neutralizing CXCL16 in KRASG12D mice reduced
PI3K/AKT/NF-xB signaling and blocked carcinogenesis. sst2 is progressively lost in mouse
lesions that expressed KRASG12D with PI3K activation that progressed to pancreatic ductal
adenocarcinoma [145].

6. THE IMMUNE CELLS ACTIVATED IN CHRONIC PANCREATITIS AND
PANCREATIC CANCER

Host immune cells defend against microbial and foreign substances in the tumor
environment. Reports demonstrate that acute pancreatitis provoked after the consumption of
food products like mustard, milk, egg, banana, fish, and kiwi fruits and food allergies are a
possible cause for the initiation of pancreatitis associated with cytokine release and
activation and release of immune cells [146]. In pancreatic cancer-immune cell infiltration
like pan-macrophages, M2, Neu, or the ratio of T reg cells to CD4*T cells associated with
shorter survival [147]. Proper activation of immune cells when required, and inhibition of
aberrant infiltration of immune cells, are key to countering pancreatitis progression and
development to pancreatic cancer. Immune cell inhibitors/inducers for pancreatitis and
pancreatic cancer are listed in Table 3.
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6.1. Dendritic Cells

Dendritic cells protect against cell stress and are required for pancreatic viability in mice
with acute pancreatitis. Major histocompatibility complex 11+CD11c+ DCs are increased in
pancreata of mice with acute pancreatitis along with increased IL-6 and TNF-a.. With the
depletion of dendritic cells, mice died upon challenge with cerulean or L-arginine and
exhibited acinar cell death and neutrophil infiltration [151]. Blockade of the MyD88-
independent TRIF pathway is protective against pancreatic cancer neoplastic transformation
by augmenting the DC-Th2 axis, whereas blockade of the MyD88-dependent pathway
exacerbates pancreatic inflammation and malignant progression. The protumorigenic and
fibroinflammatory effects of MyD88 inhibition are mediated by dendritic cells (DCs), which
induce pancreatic antigen-restricted Th2-deviated CD4* T cells and promote the transition
from pancreatitis to carcinoma [152].

6.2. Macrophages

Macrophages execute a critical role in disease progression in pancreatitis in mice and human
tissues. M1 macrophages are predominant in acute pancreatitis. In contrast, macrophages are
alternatively activated in chronic pancreatitis, promote proliferation and activation of PSCs
and express high levels of TIMP2 and MMP9, which regulate ECM turnover. Alternatively,
enabled macrophages are dependent on IL-4 and IL-13 signaling, and mice lacking IL-4Ra.,
and IL-4/I1L-13 were less susceptible to pancreatic fibrosis. Pharmacologic inhibition of
IL-4/IL-13 decreases alternatively activated macrophages and fibrosis in the pancreas [34].
Macrophages play an essential role in mediating tumor progression. M2-polarized tumor-
associated macrophages induce epithelial-mesenchymal transition in the progression to
metastasis. Activation of TLR4 on M2-polarized TAMs stimulates an increase in the
cytokine IL-10 and increased EMT of pancreatic cancer cells [153]. PI3Ky, an essential
macrophage lipid kinase, regulates macrophage transcriptional programming, leading to
stimulation of CD8* T-cell-mediated tumor suppression, desmoplasia, tumor cell invasion,
and metastasis in pancreatic adenocarcinoma. Genetic or pharmacologic inhibition of PI3K~y
restores antitumor immune responses and improves responsiveness to standard-of-care
chemotherapy in animal models of pancreatic ductal adenocarcinoma. [154].

6.3. Mast Cells

Mast cell number and IgE-dependent mast cell activation are higher in chronic pancreatitis
than in the healthy pancreas and localized in the fibrotic areas and the residual acinar
parenchyma [155]. Perineural mast cells are enriched in pancreatic neuritis, a
histopathological hallmark of pancreatic neuropathy in chronic pancreatitis and pancreatic
adenocarcinoma [156]. Mast cell degranulation is observed in the pancreas with sodium
taurodeoxycholate-induced pancreatitis in rats [157]. Mast cells are critical components of
the tumor-stromal microenvironment in several solid and hematological malignancies. Mast
cell infiltration increases in pancreatic cancer and plays a role in promoting angiogenesis
and tumor growth [158]. In contrast to mast cells in acute pancreatitis, the mast cells in
pancreatic ductal adenocarcinoma were found degranulated [159]. Mast cells contribute to
the aggressiveness of pancreatic ductal adenocarcinoma, enhancing the expression of several
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pro-angiogenic factors such as VEGF, FGF-2, PDGF, and angiopoietin-1 as well as
stimulating the pancreatic cancer cell proliferation by IL-13 and tryptase activity [160].

6.4. Neutrophils

Neutrophils are critical in mediating pancreatic and lung tissue damage in severe acute
pancreatitis in taurocholate-induced pancreatitis in mice. Trypsinogen activation is
dependent on neutrophil activation in the pancreas [161]. Neutrophils make use of histone
citrullination, an epigenetic post-translational modification of histone arginine to citrulline
by peptidyl arginine deiminase-4 (PADI4), upon contact with particulate agents to extrude
decondensed chromatin as neutrophil extracellular traps (NETs) and form macroscopically
visible aggregates. PADI4 is critical for intraductal aggregate formation, and PADI4-
deficiency abrogates disease progression. Components of pancreatic juice, such as
bicarbonate ions and calcium carbonate crystals, induce aggregated NET formation. Ductal
occlusion by aggregated NETs emerges as a pathomechanism with relevance in a plethora of
inflammatory conditions involving secretory ducts with IL-17A/cerulean challenge [162].
Neutrophil gelatinase-associated lipocalin secreted by neutrophils and other cell types is a
prognostic marker in pancreatitis and pancreatic cancer [163, 164]. The transition of
epithelial to mesenchymal phenotype in pancreatic cancers coincides with the
polymorphonuclear infiltrate, a contribution of the inflammatory response in tumor
progression [165].

6.5. Basophils

Basophils are proinflammatory granulocytes released in response to allergy and
inflammation that infiltrate the tumor microenvironment [166]. Basophils activated by
TLR2/TLRA4 stimulation in type 1 AIP were significantly higher than those in healthy
subjects and showed an essential role in the pathophysiology of type 1 AIP [167]. Mouse
models of pancreatic cancer demonstrate the functional role of basophils during tumor
progression. Basophils expressing IL-4 are enriched in tumor-draining lymph nodes of
patients with pancreatic ductal adenocarcinoma. Basophils rely on the release of CCL7/
MCP3 by “alternatively activated” monocytes, whereas basophil activation is induced by T-
cell-derived IL-3. Basophils present in TDLNs correlate with the Th2/Th1 cell ratio in
tumors [168].

6.6. Monocytes

Monocytes can differentiate into macrophages and dendritic cells and play a role in host
defense against microorganisms and dead cells. Monocyte infiltration in pancreatitis, and
increased numbers of CD14+CD163- and CD14+CD163-MAC387+ monocytes were
detected in mild acute pancreatitis patients [169]. An increase in monocytes in the blood and
decrease in the bone marrow correlates with poor survival in pancreatic cancer. The
chemokine CCL2 and CCR2* macrophages infiltration with low CD8T cells are observed in
pancreatic tumor patients. CCR2 blockade augments antitumor immunity, decreases tumor
growth, and reduces metastasis with depletion of inflammatory monocytes and macrophages
from the primary tumor and premetastatic liver in mice [104].
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6.7. Eosinophils

Eosinophils are a type of leukocyte that are released in response to allergic stimuli and play
a critical role in allergic disease. An increase in eosinophils is observed in mouse and human
pancreatitis [39, 71]. Eosinophilic pancreatitis is a rare form of recurrent acute and/or
chronic pancreatitis characterized by localized or diffuse periductal, acinar, and septal
inflammatory eosinophilic infiltration of the pancreas and elevated serum immunoglobulin E
levels [170, 171]. Eosinophil accumulation and degranulation were observed in human and
mouse pancreatitis and may have a critical role in promoting pancreatitis pathogenesis and
fibrosis [39]. Eosinophilia in pancreatic cancer is rare [172]. In a human study of pancreatic
adenocarcinoma, eosinophilia was observed with infiltration of the duodenal wall
characterized by multiple eosinophilic extracellular deposits consistent with non-calcified
psammoma bodies [172].

6.8. T Cells

The pancreatic ductal adenocarcinoma microenvironment is predominantly infiltrated with
immune suppressive cells. The checkpoint inhibitors such as cytotoxic T lymphocyte
antigen-4 (CTLA-4), programmed death 1 (PD-1), and its ligand PD-L1 have failed to
demonstrate responses given as single agents to PDA patients [173]. The combination of
aCD40/chemotherapy plus aPD-1 and a CTLA-4 induced regression of subcutaneous
tumors, and improved overall survival by priming T-cell response in pancreatic ductal
adenocarcinoma [174]. PD-1 blockade increased effector CD8+ T lymphocytes and tumor-
specific interferon-yy production of CD8+ T cells in the tumor microenvironment for
pancreatic ductal adenocarcinoma [173].

6.8.1. CD4*T Cells—CD4*CD25high Tregs cells are observed in autoimmune
pancreatitis patients and influence 1gG4 production, and decreased T reg cells are involved
in the pathogenesis of autoimmune pancreatitis [175]. The severity of cerulein-induced acute
pancreatitis is also reduced by 77 vivo CD4* (but not CD8%) T-cell depletion, and Fas ligand-
targeted mutant mice display a decrease in histological lesions, serum hydroxylase and IFN-
v, IL-12, and FasL gene transcription [176].

6.8.2. CD8*T Cells—Tumor-derived GM-CSF is an essential regulator of inflammation
and immune suppression within the tumor microenvironment. GM-CSF drives the
development of Gr-1* CD11b* cells that suppress antigen-specific T cells in the KPC mouse
model of spontaneous pancreatic ductal adenocarcinoma in which expression of oncogenic
KrasG12D and mutant p53R172H are targeted to the pancreas. Abrogation of tumor-derived
GM-CSF inhibited the recruitment of Gr-1* CD11b* cells to the tumor microenvironment
and blocked tumor development dependent on CD8* T cells to rescue the tumor growth
[177].

6.8.3. NK Cells—Pancreatic tissue of chronic pancreatitis patients shows an increase in
activated CD56" NK cells, which mediate HLA-independent cytotoxicity [178]. NK cells
constitutively express receptors for several cytokines, including IL-21, which promotes the
maturation of NK cells. IL-21 enhances NK cell-mediated effector functions against

Endocr Metab Immune Disord Drug Targets. Author manuscript; available in PMC 2020 October 22.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Kandikattu et al.

Page 15

cetuximab-coated pancreatic tumor cells irrespective of KRAS mutation status and reduced
pancreatic tumor burden /n vivo [49].

6.8.4. NKT Cells—The absence of NKT cells leads to aggressive development of
pancreatic cancer, with an increase in pancreatic intraepithelial neoplasia lesions and 5-LOX
and mPGES-1 expression in M2-type macrophages, and cancer stem-like cells in pancreatic
tumors of CD1d-/- mice deficient in both invariant and variant NKT cells with the
KrasG12D mice [179].

6.8.5. i-NKT Cells—Reduction in i-NKT cells is observed in human chronic pancreatitis
and cerulean-induced chronic pancreatitis in mice, whereas 1L-15 treatment mediates an
increase in the interferon-y-responsive invariant natural killer T cells in the blood and tissue
and protects against cerulein-induced pancreatic pathology in mice [59].

6.8.6. T Regulatory Cells—Type 1 autoimmune pancreatitis patients show an increase
in T reg cells and 1gG4-sclerosing cholangitis (IgG4-SC) in the pancreas, and the numbers
of infiltrated T reg cells correlate with 1gG4-positive plasma cells. The increase in the
inducible costimulatory molecule (ICOS)* and IL-10* T reg cells influence 1gG4 production
via IL-10 in Type 1 autoimmune pancreatitis [180]. T reg cell infiltration constitutes an
immunosuppressive phenotype on tumor-associated CD11c* DCs that then fail to activate a
cytotoxic CD8* T cell-mediated delay in tumor growth by suppressing the expression of
costimulatory ligands. Targeting this interaction is a therapeutic strategy for the treatment of
PDA and dependent on CD8" T cell activation [181].

6.9. B Cells

Pancreatic neoplasms harboring oncogenic Kras are pointedly compromised in B-cell-
deficient mice. B cells elicit a pro-tumorigenic effect via IL-35-mediated tumor cell
proliferation released by CD1dhiCD5™ B cells in pancreatic cancer pathogenesis [182].
Hifla deletion promotes pancreatic ductal adenocarcinoma initiation with increased
intrapancreatic accumulation of B cells, B1b” B-cell subtype in Kras®12D-driven pancreatic
neoplasia. B-cell depletion by aCD20 monoclonal antibodies suppresses pancreatic
tumorigenesis [183]. CD19*CD24highCD27* regulatory B cells are involved in the
development of type 1 autoimmune pancreatitis and increase conquers the severity of disease
activity [184]. 1gG4-related autoimmune pancreatitis mimicking acute pancreatitis is
observed in humans [185].

7. THE ROLE OF THE COMPLEMENT SYSTEM

The complement system is made of plasma proteins that defend the host by opsonizing
pathogens and inducing inflammatory responses that help fight infections. Loss of
complement component 5 (C5) or injection of a C5a-receptor antagonist reduces the level of
fibrosis in cerulein-induced chronic pancreatitis in mice, and C5a induces activation of
primary stellate cells delineating its antifibrotic effects in chronic pancreatitis [186]. The
expression levels of complement C3, complement C4b1, and apoE were higher in pancreatic
cancer. Complement C4b1 and apoE markedly correlated with tumor staging and lymph
node metastasis. Complement C3 may be used as a marker for the diagnosis of early-stage
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pancreatic cancer, while C4b1 and apoE might be used as diagnostic markers of advanced
pancreatic cancer [187].

8. INFLAMMATORY MECHANISMS IN CHRONIC PANCREATITIS AND
PANCREATIC CANCER

Chronic pancreatitis increases the risk of pancreatic cancer by 10 to 20-fold, and
inflammatory mediators play a crucial role in disease progression. Although the exact
inflammatory mechanisms are not yet determined, disease initiation and progression is due
to a combined effect of several inflammatory mechanisms in response to cytokine and
chemokine infiltration in pancreatitis and pancreatic stroma (Fig. 4). Understanding these
inflammatory pathways and development of inhibitors that inhibit aberrant activation of
inflammatory signals is a key for pancreatitis and pancreatic cancer therapy [188]. Some of
the inflammation signaling inhibitors for pancreatitis and pancreatic cancer are listed in
Table 4.

8.1. Stromal-Derived Factor-1a/CXCL12-CXCR4 Signaling

SDF-1a/CXCR4 plays a role in the proliferation and maturation of human fetal pancreatic
endocrine progenitor cells, where its increased expression is associated with inflammation
[199]. Mice with experimental acute pancreatitis exhibit enhanced pancreatic SDF-1 a
expression. The SDF-1a/CXCR4 axis promotes the migration of transplanted bone marrow
mesenchymal stem cells towards the injured pancreas to facilitate a reparative process to
combat the progression of acute pancreatitis [200]. CXCR4 upregulated on the surface of
tumor cells of epithelial origin and CXCR4-positive tumor cells could migrate toward
distant organs in response to an SDF-1a gradient [201]. SDF-1a /CXCR4 are expressed at
higher levels in pancreatic cancer cells, and the expression level influences the clinical
outcome of pancreatic ductal adenocarcinoma patients [202, 203]. Survival was lower in
patients positive for CXCR4 expression than in patients negative for CXCR4 expression.
Abrogation of SDF1a/CXCR4 influences the pancreatic cancer cell phenotype, including
cell proliferation, colony formation, and cell invasion. Inhibition of Wnt targets genes and
the mesenchymal markers vimentin and Slug, and may be a promising therapeutic target to
delay pancreatic cancer progression [204].

8.2. SOCS Signaling

The suppressor of cytokine signaling (SOCS) proteins are inhibitors of activation of the
JAK-STAT pathway, and studies demonstrated critical roles for SOCS1 and SOCS3 in
inflammation and the development and progression of cancers [205]. Abnormal expression
of SOCS1 and SOCS3 is associated with dysregulation of signals from cytokine receptors,
Toll-like receptors (TLRs), and hormone receptors, resulting in inflammation and
malignancies in cancer cells and human carcinomas including pancreatic cancer [206].
Inhibition of SOCs can exert protective effects against severe acute pancreatitis-associated
acute lung injury, and this effect could be partially mediated by restraining mitochondrial-
associated apoptosis of pulmonary microvascular endothelial cells [207]. SOCS3 suppresses
the I1L-6-mediated STAT3 activation that mediates the suppression of TLR/NF-xB signaling
in macrophages, and the lack of the SOCS3 signaling pathway can accelerate STAT3
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activation and amelioration of pancreatitis [103]. Activated IL-6/STAT3 signaling induces
SOCS3 methylation via DNA methyltransferase 1 (DNMT1), which leads to pancreatic
cancer growth and metastasis, whereas inhibitors of STAT3 or DNMT1 are therapeutics for
treating pancreatic cancer [208].

8.3. NLRP3 Inflammasome Signaling

The db/db mice with diabetes are susceptible to acute pancreatitis, and the pancreatic tissues
showed NLRP3 inflammasome activation [209]. NLRP3 signaling in macrophages drives
the differentiation of CD4* T cells into tumor-promoting Th2, Th17, and regulatory T cell
populations and suppresses Th1 cell polarization and cytotoxic CD8* T cell activation, while
the transfer of PDA-entrained macrophages or T cells from NLRP3-/- mice was protective,
and targeting NLRP3 is immunotherapy for PDA [196]. Caspase-1, ASC, and NLRP3 are
required for inflammation in acute pancreatitis. TLR9 and P2X7 are important DAMP
receptors upstream of inflammasome activation. Genetic deletion of TLR9 and pretreatment
with the TLR9 antagonist IRS954 reduced pancreatic edema, inflammation, and pro-IL-1p
expression in pancreatitis. IRS954 also decreased pancreatic necrosis and lung inflammation
in taurolithocholic acid 3-sulfate-induced acute pancreatitis and is a therapeutic strategy for
treating acute pancreatitis [210].

8.4. NF-xB Signaling

NF-xB is activated in the early stages of pancreatitis and regulates genes that control
inflammation, survival, proliferation, and migration [211-212]. Huang et a/. [213]
demonstrated that acute pancreatitis by cerulein challenge to p65 transgenic mice showed
higher levels of NF-xB activity in acinar cells and inflammation. Constitutive expression of
IKK2 increased the activity of NF-xB in acinar cells and induced pancreatitis, and
prolonged action of IKK2 for three months activated stellate cells, loss of acinar cells, and
fibrosis with characteristic chronic pancreatitis. Co-expression of IKK2 and p65 also
increased the inflammatory mediators and the severity of pancreatitis in mice. Activation of
NF-xB is observed in pancreatic cancer, and its inhibition reduces pancreatic tumors.
Blocking NF-xB by BAY11- 7082, an NF-xB pathway inhibitor, and recombinant IL-18
improved survival in a murine pancreatic cancer model [214].

9. PANCREATIC CELLS IN CHRONIC PANCREATITIS AND PANCREATIC

CANCER

The pancreas, located in the upper left area of the abdomen behind the stomach near the
duodenum, has endocrine and exocrine compartments. The exocrine compartment consists
of acinar, ductal, and centroacinar cells that produce enzymes essential to digestion. The
pancreatic juices and bile that release into the duodenum help digest fats, carbohydrates, and
proteins. The endocrine compartment of the pancreas consists of islets of Langerhans cells
a, B, 6, e, and pancreatic polypeptide cells that release hormones directly into the
bloodstream. The primary pancreatic hormone insulin acts to lower blood sugar, and
glucagon works to raise blood sugar, maintaining proper blood sugar level balance in the
body for vital functioning of organs [215].
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9.1. Pancreatic Acinar Cells

The pancreatic acinar cell is the functional unit for pancreas exocrine function. Premature
activation of digestive enzymes in pancreatic acinar cells initiates pancreatitis [216]. In
pancreatitis and pancreatic cancer, acinar cells may undergo redifferentiation into ductal
cells and blockade of the ductal system [217]. Reducing Ca?* influx and inhibition of
amylase secretion reduced cellular damage in cerulean-induced pancreatitis in mice [218].
Defective lysosomal function, resulting in impaired autophagy, leads to pancreatitis.
LAMP-2 deficient mice exhibit lysosomal/autophagic dysfunction, show a decrease in
pancreatic digestive enzyme content, and inhibit cholecystokinin-induced amylase secretion
by acinar cells and mimic the genetic model of human pancreatitis, explaining the
homeostatic role of LAMP2 in pancreatic acinar cell health [219]. Cerulein-induced
pancreatitis in mice revealed inflammation-associated death of acinar cells with pancreas-
specific Rel A/p65 truncation [220]. Kras activation itself is not enough to drive pancreatic
carcinogenesis beyond the level of premalignancy. A secondary stimulus, such as
inflammation-induced signaling, is required for tumor formation. Inflammatory transcription
factor NFATc4 is highly induced and localizes to the nucleus in response to inflammation-
induced EGFR signaling, and drives acinar-to-ductal conversion and pancreatic ductal
adenocarcinoma initiation through direct transcriptional induction of Sox9 [221].

9.2. Pancreatic Ductal Cells

In pancreatic injury due to KRAS hyperactivity and increased inflammatory signaling with
the loss of cell-cell and cell-matrix contacts, loss of polarity can drive acinar cells to
transdifferentiate to a duct-like phenotype with acinar-to-ductal metaplasia and initiate
further progression to low-grade precancerous lesions [222]. Chronic stimulation and
proliferation of the pancreatic duct gland in response to islet inflammation in type 2 diabetes
mellitus (T2DM) is linked with increased risk for pancreatitis in T2DM [223]. Pancreatic
ductal adenocarcinoma is a type of exocrine pancreatic cancer, and account for 95% of all
pancreatic cancers. It is an aggressive malignancy, and surgical removal of the tumor is a
possible cure. However, 90% of patients possess a high grade of the disease and are
surgically incurable at the time of clinical presentation [224]. LCNZ2 is upregulated in
patients with pancreatic ductal adenocarcinoma and obesity. Depletion of LCN2 diminished
ECM deposition, immune cell infiltration, PanIN formation, tumor growth and increased
survival in both obesity-driven and syngeneic orthotopic pancreatic ductal adenocarcinoma
mouse models via modulation of proinflammatory cytokines secreted by pancreatic stellate
cells [225]. TNF-a. expression is elevated in the pancreatic ductal adenocarcinoma initiation
process, and anti-TNF-a antibodies have shown promising effects in pancreatic ductal
adenocarcinoma in preclinical models v7a killing tumor cells and diminishing desmoplasia
and inflammation in the pancreatic ductal adenocarcinoma tumor stroma [81].

9.3. Pancreatic Stellate Cells (PSCs)

Pancreatic stellate cells, which comprise about 4-7% of the pancreas, are normally quiescent
and play a role in standard tissue architecture by regulating extracellular matrix turnover
[226]. PSCs can synthesize and secrete acetylcholine and play a role in mediating exocrine
secretion from acinar cells [227]. PSCs transition to activated myofibroblast-like cells in
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response to inflammation. These cells play a vital role in ECM production, migration, and
proliferation, and foster progression of chronic pancreatitis to pancreatic cancer [228]. PSCs
respond to pro-inflammatory cytokines in acute pancreatitis and may exacerbate the disease
to chronic pancreatitis with pancreatic injury and fibrosis [229]. TLR9 ligation induces
pancreatic stellate cells to secrete chemokines and become fibrogenic and proliferative, and
mediate pro-tumorogenic effects via CCL11 [230]. Understanding the biology of the
pancreas and its cell types could provide avenues to treat pancreatic pathology in disease
states.

CONCLUSION AND FUTURE THERAPEUTIC PERSPECTIVES

Understanding of the mechanisms of pancreatitis and progression of pancreatic cancer has
advanced but much remains unclear. Inflammation and fibrosis with epithelial to
mesenchymal transition are critical factors in pancreatic carcinogenesis, and hence novel
anti-fibrotic agents in combination with those anti-inflammatory effects might be therapeutic
in targeting acinar to ductal metaplasia and pancreatic ductal adenocarcinoma. A multitude
of molecular, fibrotic, stress, and signal transduction pathways and factors that determine
progression remains the main obstacle to combating this aggressive disease. Targeting
multiple pathways may be effective in the treatment of pancreatitis and inhibiting its
progression to pancreatic cancer.

Complementary and combinational therapeutics such as immunogenic, signal transduction
targeted agents, chemotherapeutics, and therapies aimed against the tumor
microenvironment will hopefully be a beneficial treatment. Targeted therapies towards the
control of pro-inflammatory cytokines and chemokines, to inhibit immune cell infiltration
and aberrant inflammatory signals and to enhance T cell activation that contributes to the
disease pathology in pancreatitis and pancreatic cancer, might be helpful to inhibit
pancreatitis progression to pancreatic cancer and metastasis.
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LIST OF ABBREVIATIONS

ADM Acinar-ductal metaplasia

AlP Autoimmune pancreatitis

ALDH1A1 Aldehyde Dehydrogenase 1 Family Member Al
ALl acute lung injury
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AP-1
ARID1A
AsPC-1
ASTN1

BAY 11-7082

Brca2
BxPC-3
C/EBP
Cap43
Capan-1
Capan-2
CC Chemokine
CCL18
CCL2
CCL20
CCL5
CCR2
CCRG6
CD11b
CD11c
CD18
CD206
CD4'T
CD8'T
CDKN2A
CFPAC-1
COLG6AS

COX-2

Activator protein 1
AT-Rich Interaction Domain 1A
Human pancreatic adenocarcinoma cells

Astrotactin 1

irreversible inhibitor of IKK a and phosphorylation of

cytokine-inducible IxBa

Breast Cancer Type 2 Susceptibility Protein
Human pancreas adenocarcinoma cell line
CCAAT Enhancer Binding Protein Beta

N-Myc Downstream Regulated 1

Human pancreatic ductal adenocarcinoma cell line

Human pancreatic ductal adenocarcinoma cell line

C-C motif chemokine

C-C Motif Chemokine Ligand 18

C-C Motif Chemokine Ligand 2

C-C Motif Chemokine Ligand 20

C-C Motif Chemokine Ligand 5

C-C Motif Chemokine Receptor 2

C-C Motif Chemokine Receptor 6
CD11 Antigen-Like Family Member B
CD11 Antigen-Like Family Member C
Integrin beta chain-2

Cluster of Differentiation 206

Cluster of differentiation 4 T cells
Cluster of differentiation 8 T cells
Cyclin Dependent Kinase Inhibitor 2A
Pancreatic ductal adenocarcinoma cell line
Collagen Type VI Alpha 5 Chain

Cyclooxygenase-2

Endocr Metab Immune Disord Drug Targets. Author manuscript; available in PMC 2020 October 22.



1duosnue Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Kandikattu et al.

CXCL1
CXCR2
CXCR4
DAMPS
Dan-G cdlls
DCLK1
DNAH11
DNAH14
DNMT1
DPC4
ED-B
EGFR
EMT
ERKL1/2
FAT3
FLG
GATA-1
GL13
Gr-1
HMCN1
HPAC
HPAF-11
HTGP-AP
ICE
|FN-y
1gG4
IKK2
IKKB

IL-10
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C-X-C Motif Chemokine Ligand 1

C-X-C Motif Chemokine Receptor 2

C-X-C Motif Chemokine Receptor 4
Damage-associated molecular patterns

Human Pancreas cancer cell line

Doublecortin Like Kinase 1

Dynein Axonemal Heavy Chain 11

Dynein Axonemal Heavy Chain 11

DNA methyltransferase 1

Deletion Target In Pancreatic Carcinoma 4
Extra-domain B

Epidermal Growth Factor Receptor
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Fig. (1).
Activation of cytokines and chemokines, induction of inflammatory signaling mechanisms,

immune cell infiltration, and fibro-inflammation in pancreatitis and progression to
pancreatic cancer. (A higher resolution / colour version of this figure is available in the
electronic copy of the article).
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Fig. (2).
Role of eosinophils and mast cells in the initiation and progression of pancreatitis

pathogenesis via induction of IL-5, IL-18 and fibrosis. (A higher resolution / colour version
of this figure is available in the electronic copy of the article).
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Fig. (3).
IL-15 treatment mitigates cerulein induced pancreatitis via induction of i-NKT cells, IFN-y

and inhibits pancreatic inflammation and fibrosis. (A higher resolution / colour version of
this figure is available in the electronic copy of the article).
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Pancreatic cancer microenvironment. (A higher resolution / colour version of this figure is
available in the electronic copy of the article).
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