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Abstract

Background –—Atrial fibrillation (AF) can be maintained by localized intramural reentrant 

drivers. However, AF driver detection by clinical surface-only multi-electrode mapping (MEM) 

has relied on subjective interpretation of activation maps. We hypothesized that application of 

Machine Learning (ML) to electrogram frequency spectra may accurately automate driver 

detection by MEM and add some objectivity to the interpretation of MEM findings.

Methods –—Temporally and spatially stable single AF drivers were mapped simultaneously in 

explanted human atria (n=11) by subsurface near-infrared optical mapping (NIOM) (0.3mm2 

resolution) and 64-electrode MEM (Higher-Density (HD) or Lower-Density (LD) with 3mm2 and 

9mm2 resolution, respectively). Unipolar MEM and NIOM recordings were processed by Fourier 

Transform analysis into 28407 total Fourier spectra. Thirty-five features for ML were extracted 

from each Fourier spectrum.

Results –—Targeted driver ablation and NIOM activation maps efficiently defined the center and 

periphery of AF driver preferential tracks and provided validated classifications for driver vs non-

driver electrodes in MEM arrays. Compared to analysis of single electrogram frequency features, 

averaging the features for each surrounding 8 electrodes neighborhood, significantly improved 

classification of AF driver electrograms. The classification metrics increased when less strict 

annotation including driver periphery electrodes were added to driver center annotation. Notably, 

f1-score for the binary classification of HD catheter dataset were significantly higher than that of 
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LD catheter (0.81 ± 0.02 vs 0.66 ± 0.04, p<0.05). The trained algorithm correctly highlighted 86% 

of driver regions with HD but only 80% with LD MEM arrays (81% for LD+HD arrays together).

Conclusions –—The ML model pre-trained on Fourier spectrum features allows efficient 

classification of electrograms recordings as AF driver or non-driver compared to the NIOM gold-

standard. Future application of NIOM-validated ML approach may improve the accuracy of AF 

driver detection for targeted ablation treatment in patients.
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Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia and the leading cause of 

stroke in the world.1,23 The mechanism of this disease remains unclear, but several 

experimental and clinical studies suggest that AF may be caused and maintained by 

spatially-stable, extra-pulmonary sources of repetitive rotational activity called reentrant AF 

drivers.4–6 Driver ablation can slow the rate of AF, convert it to atrial tachycardia, or 

terminate AF and restore sinus rhythm.7 Unfortunately, clinical multi-electrode mapping 

(MEM) can record only the electrical signals from the atrial surface and may not detect the 

transmural conduction within the 3-dimensional structure of the human atria.8,9

One potential solution to improve AF treatment is related to the widespread adoption of 

Machine Learning (ML) techniques. In particular, several studies have applied machine and 

deep learning algorithms to classify ECG recordings into sinus rhythm, AF, and other 

arrhythmias.10,11 ML has even been used to identify paroxysmal AF patients based on their 

sinus rhythm ECG.12 In line with the goals of our own study, ML was used in-silico to 

identify the location of computationally simulated reentrant AF drivers 13; however, many 

limitations have prevented translation of this work. Paramount among these limitations is the 

lack of a gold standard for AF driver detection in the clinical setting as clinical MEM is 

plagued by both false positives and false negatives.8,14,15 Without a gold standard for 

validation, it would be impossible to correctly annotate the ML training set. Thus, an urgent 

need exists to develop a validated ML algorithm to improve AF driver detection for 

successful patient-specific AF ablation.
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Our previous studies4,8,16 have shown that these limitations in the visualization of reentrant 

AF drivers can be overcome in the ex-vivo human heart by high-resolution subsurface near-

infrared optical mapping (NIOM) with submillimeter resolutions. We hypothesized that ML, 

verified by high-resolution NIOM, can efficiently distinguish MEM electrograms as 

originating from a reentrant AF driver or non-driver based on frequency features (e.g. the 

characteristics of the Fourier spectrum). Furthermore, since reentrant AF drivers cover an 

area greater than a single electrode, we explored if averaging the features across 

neighborhoods of electrodes could improve automated driver identification.

Methods

The data that support the findings of this study are available from the corresponding author 

upon reasonable request.

Explanted Human Hearts and Inclusion Criteria

Deidentified, coded human hearts were obtained from The Ohio State University Cardiac 

Transplant team (with left ventricular hypertrophy, ischemic and non-ischemic heart failure, 

atrial fibrillation, SND and comorbidities including chronic hypertension and diabetes) and 

LifeLine of Ohio (with and without arrhythmia history and comorbidities including 

hypertension, diabetes) in accordance with The Ohio State University Institutional Review 

Board. Clinical history of explanted hearts is shown in Supplementary Table I. Due to the 

focus of the study, only atrial preparations with sustained AF (>1min) and localized drivers 

confirmed by NIOM were included in this study’s driver analysis. The following exclusion 

criteria were applied to ex-vivo human hearts with sustained AF: 1. Experiments where 

MEM did not efficiently cover NIOM-defined drivers (n=2). 2. Experiments with poor 

quality electrogram recordings (n=2). 3. Hearts (n= 3) with 2–3 NIOM-defined temporally 

competing, intermittent drivers observed during the 8–16 seconds recording. In total, 11 

hearts had MEM grid driver coverage of a single NIOM-defined driver with temporal and 

spatial stability throughout the recording were used for the analysis.

Near-Infrared Optical Mapping of Coronary-Perfused Human Atria to Define AF Driver 
Regions

We employed high-resolution NIOM, the only approach currently able to reveal subsurface 

conduction in human atria and thus detect intramural AF driver activation as previously 

described4,17,18. Human atria were isolated, coronary-perfused, immobilized with 

blebbistatin (10 μM, Abcam), and stained with near-infrared voltage sensitive dye, di-4-

ANBDQBS (10–40 μM, University of Connecticut Health Center). Ex-vivo panoramic and 

transmural NIOM employed three to four CMOS cameras (spatial resolution 0.3–1.1 mm, 

1000 fps, MiCAM Ultima-L, SciMedia Ltd, CA), as previously described4,8. Biatrial (n = 6) 

and lateral right atrium (n=5) NIOM was conducted during sustained AF episodes to identify 

AF drivers as the ground truth with a MatLab program4.

Induction of sustained AF by burst pacing was attempted in all hearts at baseline conditions 

in the absence of all pharmacologic stimulation. If AF was uninducible or spontaneously 

terminated, AF induction was then tested during mild pharmacologic challenge, as 
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previously described4,8,17 to represent autonomic tone or metabolic stress experienced by 

AF patients. Atria in which AF could not be sustained during mild pharmacologic challenge 

were excluded from the study. In 8 out of 11 experiments, targeted radiofrequency ablation 

was used to confirm the driver region as previously described4,8(Figure 1). In 3 experimental 

procedures, ablation of driver sites was not performed due to technical issues with ablation 

delivery.

Multi-Electrode Mapping Electrograms

For simultaneous NIOM and clinically relevant MEM, two types of 64-electrode (8×8) 

catheter grids were used, provided by Abbott EP (Table 1). The Lower Density (LD) grid 

had an inter-electrode distance of 9 mm, 64-electrode FIRMap catheters (Abbott Labs, 

Chicago, Illinois) were customized and flattened so they could have ~7×7 cm2 atrial surface 

coverage, as described previously8. The flattened LD catheter has the same electrode size 

(1×2mm2) and inter-electrode distances as its clinical counterpart the FIRMap catheter. The 

Higher Density (HD) grid had electrodes (1mm in diameter) made of the same gold-plated 

material as FIRMap catheters but with an inter-electrode distance of 3mm, and 22 × 22mm2 

surface coverage as described previously19. Unipolar electrograms were recorded from the 

LD or HD MEM with the indifferent electrode placed in the perfusion bath. The high pass 

filter was set at 0.05Hz and low pass filter at 500Hz with a 50Hz notch filter compared to a 

high pass filter of 30Hz and low pass filter of 500Hz for typical bipolar recording on the 

Ensite Velocity system (Abbott). The catheter grid was placed on the atrial tissue to cover 

the driver region indicated by the NIOM activation map (Figure 1). All recordings from HD 

grids were located within 2 cm to driver sites, but LD grids always contained EG recordings 

more than 2 cm away from the driver regions (~1×2cm) with their ~7×7 cm2 coverage. Each 

recording was taken with the electrodes in a single position and point-by-point mapping was 

not used. Electrograms were recorded during the AF episodes using either LD (n =25) or 

HD (n =7) catheters simultaneously with NIOM optical action potentials (OAPs). The 

duration of the recordings varied from 8 to 16 seconds, as dictated by high-resolution four 

cameras NIOM recording system (a limitation of the high-resolution cameras).

Data Annotation Workflow

The ground truth for driver annotation was obtained similarly to the prior studies4,8. First, 

NIOM dominant frequency (DF, the frequency of the highest peak in the Fourier spectrum) 

was used to identify the fastest activating region, and then activation patterns based on the 

maximum derivative of NIOM OAPs were used to determine surface activation patterns 

within this region. As we previously published4,8, intramural reentrant AF drivers could be 

identified at the surface with reentrant (>270° rotation), partial reentrant (>180° rotation), or 

focal (centrifugal activation) patterns. The preferential conduction paths of the AF drivers, as 

seen by NIOM, were used as the ground truth for electrode annotation. The preferential 

driver activation paths were defined independently by three reviewers and final reported 

annotation represents agreement among all three reviewers. Electrodes within one ablation 

lesion distance (~5mm) of the paths were defined as driver center electrodes (class 1) and 

electrodes outside of this distance threshold were defined as non-driver (class 0). 

Furthermore, non-diagonal adjacent electrodes were defined as driver periphery electrodes 

and were considered non-driver (class 0) in “driver center dataset” and driver (class 1) in 
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“driver center plus periphery dataset”. (Figure 1). Uninformative recordings (e.g., from 

electrodes with bad tissue contact) were annotated as outliers (class −1). Datasets were also 

labelled in accordance with the catheter resolution (Table 2). A simultaneously recorded 

NIOM OAP was manually selected within less than 1 mm adjacent to each electrode 

location for comparison.

Raw Signal Preprocessing

We applied signal normalization and 2–20 Hz Butterworth band-pass filtering to all 

recordings. MEM and NIOM recordings were then resampled into 5 second segments by a 

sliding window with 0.5 second steps (for Short-Time Fourier Transformation20,21). Fourier 

spectra were then calculated for each 5 second recording using a Fast Fourier Transform 

from NumPy library in Python (https://numpy.org/).

A set of frequency features for training a ML model was then generated from each Fourier 

spectrum, including DF listed as Frequency 1 among all other features in Table 3. The 

integer number n in the feature’s name corresponds to the number of the nth highest peak in 

the Fourier spectrum, ranging from n = 1 peak (the peak of DF) to n = 5 (the fifth highest 

peak). Spectral features height, width, frequency, and prominence, for each of the five 

highest peaks, were calculated using scipy.signal library in Python. An example of a MEM 

spectrum and the aforementioned features are shown in Figure 2A. Features #peaks_0.05 
and #peaks_0.1 correspond to the number of peaks higher than a given threshold (5% and 

10% of the height of the DF peak, respectively) to reflect values of noise present in the 

recordings. The peak-to-standard deviation ratio (PSDR) feature was calculated as the ratio 

between the average height of the two highest peaks to the standard deviation of heights 

across the whole spectrum. The other features are the ratios between features for each of the 

five tallest peaks.

For a given feature, each “Neighborhood” feature was then generated as a mean of the 

feature values of the 8 adjacent electrodes in a 3×3 grid, as visualized in Figure 2B. 

Examples of Fourier spectra from driver and non-driver neighborhood electrograms and 

OAPs are shown in Supplementary Figure I. The total number of generated features is equal 

to 35 for MEM feature sets.

Algorithm Selection and Testing

We tested 5 ML algorithms for binary classification: k-Nearest Neighbors (kNN), Support 

Vector Machine (SVM), Scalable Gradient Boosting (XGBoost), Random Forest (RF) and 

Logistic Regression (LR). The training/testing sets were randomly obtained from a 

70%/30% split of the dataset, with each set having been stratified to provide the same 

balance of driver and non-driver recordings. Importantly, all windows from one electrogram 

were allocated to either the training or testing set.

In a subset analysis on driver prediction within the grid of a full MEM catheter recording, 

the training sets contained all recordings by a catheter (LD or HD), except for the 64 hold-

out recordings from a single 8×8 catheter grid for testing. Recordings in the testing set 

labeled as uninformative were also excluded from the analysis. The algorithm then predicted 

the labels of each electrode M number of times, with M being equal to the number of the 
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sliding windows from the data sampling step. The final probability of the electrode to be a 

driver is the mean of the probabilities of each sliding window to be a driver. We then 

visualized these probabilities as a heatmap, normalizing them from 0 (0% predicted driver 

probability) to 1 (100% predicted driver probability).

Performance Metrics

We used accuracy, precision, recall, f1-score and, area under the curve (AUC) for receiver 

operating characteristic (ROC) for each ML classification algorithm to evaluate its 

performance. Recall (or sensitivity) is the fraction of true positive driver electrodes selected 

by the algorithm among all possible driver electrodes. Precision (or positive predictive 

value) is the fraction of true positive drivers selected by the algorithm among all predicted 

drivers. AUC under ROC shows the prediction performance of the algorithm. f1-score is the 

harmonic mean of precision and recall, see the formula below.

ROC curve was used to select the best threshold for the binary classification between driver 

and non-driver recordings. The threshold was chosen to provide the best balance between 

recall and precision, and the best f1-score:

fl‐score= 2 ∙ precision ∙ recall
precision+recall .

The metrics for all datasets throughout the text are shown for the kNN algorithm, unless 

otherwise indicated, for the ease of reader interpretation. We investigated which features are 

the most valuable for the classification and how few features can be used without suffering a 

loss in f1-score. The subordinate features were removed until the value of f1-score dropped 

below the original confidence interval.

To carry out the feature importance analysis, we used an integrated feature importance 
function from the XGBoost library. The results were sorted in the descending order, with the 

most valuable feature being listed first and the relative contribution of the other features 

being normalized to the most valuable one.

To assess the possibility to identify the driver region within the whole grid, we calculated the 

averaged probability densities per electrode in the ground-truth location of the driver center 

plus periphery [Ddriver] and in the background area outside of the driver (the non-driver 

region) [Doutside]. The quality of the prediction of the driver in a given part of the grid image 

(given the ground-truth annotation) is then optimally described by the driver contrast 

formula:

Drivercontrast =
Ddriver − Doutside
Ddriver + Doutside

If the driver contrast is equal to 0, the prediction within the driver annotation mask is not 

distinguishable from any other regions; the higher the contrast is greater than 0, the easier it 

for a user to distinguish the driver region as the higher probability levels.
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Statistical Analysis

Metrics are presented as mean ± standard deviation, calculated on 10 folds of the testing set. 

The performance of the binary classification on the reduced feature set is also reported as 

mean ± confidence interval. The analysis was done using the scipy.stats library in Python. 

Statistical significance between metrics on different options of feature sets for the same 

dataset or between metrics on different datasets was analyzed by Tukey’s range test for 

pairwise samples or Repeated Measures ANOVA test for multifactor samples, with the p-

value < 0.05 being considered as significant. The assumption of the metrics to be sampled 

from the normal distribution was verified using the Shapiro-Wilk test.

Results

Samples

The final dataset (LD+HD) consisted of 32 AF episodes in 11 explanted human atria with 

temporally and spatially stable AF drivers mapped by MEM and NIOM (Figure 1, Table 1). 

Each AF episode was mapped by a 64-electrode grid, resulting in a total of 32 × 64 = 2048 

electrogram recordings. We expanded this number using data augmentation by Fourier 

transforming the windows of AF recordings, similarly to other works20,22. All data were 

later distributed into 2 datasets (LD or HD) based on catheter resolution.

Driver vs Non-Driver Classification

Amongst the 4 MEM frequency feature sets tested with the ML algorithm to classify MEM: 

single-electrode features of driver center annotation, single-electrode features of driver 

center plus periphery annotation, electrode-neighborhood features of driver center 

annotation and electrode-neighborhood features of driver center plus periphery annotation 

(for all n = 35 features); neighborhood electrodes of driver center plus periphery annotation 

performed best. The ROC curves of the 5 ML algorithms considered (kNN, SVM, XGBoost, 

RF and LR) for the AF LD+HD dataset are shown in Figure 3A. kNN accounting for 3 

neighbors had the highest f1-score for the LD+HD dataset with driver center annotation, all 

5 algorithms showed comparable f1-scores for driver center plus periphery annotation of LD

+HD dataset. The performance metrics (accuracy, precision, recall, and f1-score) for the 

different feature sets and the highest f1-scores are presented in Figure 3B.

Performance of driver classification could be improved by averaging the features of eight 

surrounding neighborhood electrodes. Figure 3B shows that the values of metrics for the 

electrode-neighborhood feature set are all significantly higher than those for the single-

electrode feature set. Similar dynamics were found for NIOM electrode-neighborhood 

feature set (Supplementary Figure II).

We also assessed how differences in catheter resolution could affect driver classification 

(Figure 4). Resolution was especially important for the electrode neighborhood dataset. 

Though the accuracy corresponding to the HD dataset was approximately equal to that for 

the LD dataset (89.2 ± 0.5% vs 89.3 ± 1.1% for driver center; 87.5 ± 0.1% vs 87.5 ± 0.2% 

for driver center plus periphery), other metrics were always higher for the HD dataset. The 

precision values ranged from 0.26 ± 0.05 for the LD MEM dataset of driver center 
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annotation to 0.78 ± 0.03 for the HD MEM dataset of driver center plus periphery 

annotation. Furthermore, HD datasets had the highest recall and f1-score (0.84 ± 0.04 and 

0.81 ± 0.02 for driver center plus periphery) while LD datasets had lower recall and f1-score 

(0.63 ± 0.05 and 0.66 ± 0.04 for driver center plus periphery). Moreover, Figures 3 and 4 

show that regardless of catheter resolution the center plus periphery driver annotation always 

resulted in the highest performance metrics in comparison with driver center annotation. A 

full report on the metrics for all datasets predicted by the 5 ML algorithms can be found in 

Supplementary Table II.

Additionally, we tested how a pre-trained algorithm handles recordings without any driver 

electrodes in the vicinity, by placing the HD catheter remotely from the driver region. We 

tested 3 novel recordings of Heart #11 from the HD catheter after training on the AF LD

+HD center+periphery neighborhood training set. The algorithm performed robustly in this 

task, yielding f1-score of 0.944 ± 0.003.

Feature Importance

The most valuable features for MEM are listed in Figure 5. The most valuable feature was 

the relative height (prominence) of the DF, with its frequency and the ratios between the DF 

height and heights of other peaks among the other most valuable features. The features that 

describe the noise in the spectrum (e.g., signal-to-noise ratio, number of peaks above a 

threshold, and prominence) were also found to play a vital role in the classification task. The 

order of the most valuable features slightly varied in different datasets (e.g., LD and HD 

datasets), as presented in Supplementary Figures III–IV. In addition, Supplementary Figure 

V shows the most valuable features for center vs center plus periphery annotation of LD

+HD single-electrode dataset and Supplementary Figure VI shows an example of the 

distributions of features for Heart #8. Importantly, using only the single feature of electrode 

DF to predict AF driver electrodes had a precision of 0.31, a sensitivity of 0.26, and an f1-

score of 0.28, which emphasizes the importance of our multi-feature ML based approach. 

We found that keeping only the 10 most valuable features (out of 35 MEM features) 

maintained an f1-score within the confidence interval of the full feature set.

Driver Localization on the Multi-Electrode Grid

Finally, we tested the ability of ML to highlight the location of the AF driver within a 

simultaneously recorded, clinically relevant 8×8 electrode grid by using the best 

classification dataset.

Figure 6 and Supplementary Figure VII show examples of driver probability heat maps for 

HD and LS catheter sets by all features and 10 most valuable driver features, respectively. 

The ML algorithm pre-trained on electrode neighborhoods and based on driver center plus 

periphery annotation correctly defined driver area as a region with the highest driver 

probabilities. Quantitatively, driver contrast from the background non-driver region 

demonstrates that the pre-trained algorithm can highlight the driver region for all three 

datasets with driver contrast higher than zero in 86% HD recordings and in 80% LD 

recordings. Complete results for all recordings are shown in the Supplementary Table III.
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Discussion

We present here the first study in human hearts using ML approaches to predict the 

probability that MEM recordings originate from reentrant AF drivers based on extensive 

frequency characteristics. We investigated which features are the most valuable for driver 

classification. We observed that f1-score is significantly higher if electrode-neighborhood 

features are analyzed instead of single-electrode analysis; f1-score is significantly higher for 

center plus periphery driver annotation in contrast with center-only annotation; and f1-score 

for the HD dataset is higher than the LD dataset. We have also demonstrated the ability of 

the pre-trained ML algorithm validated by NIOM to define reentrant AF driver locations 

within clinically relevant electrode arrays.

Validation of AF Driver Location and Borders by NIOM Activation Maps

We validated the locations of reentrant AF drivers by NIOM, because NIOM can overcome 

the well-known limitations of MEM. NIOM can record signals over a depth of 4 mm, at a 

much higher resolution and does not require direct contact with the tissue8. Optical 

activation maps were able to clearly show driver activity at the driver site where targeted 

ablation terminated the AF episode (Figure 1), and thus provided validation of driver 

annotations. Importantly, no universal definition of AF drivers and their borders seen by 

MEM currently exist and current AF driver detection methods employed clinically are prone 

to both false positives and false negatives 8,14,15.

Our study shows a significant difference in classification metrics between center and center 

plus periphery driver annotation. Mechanistically, center plus periphery driver electrodes 

may cover the driver domain region that has predominantly one-to-one conduction with the 

driver. Thus, a “spill over” of features in the frequency domain may be present from 

preferential driver tracks to the immediately surrounding driver domain. As seen in 

Supplementary Figure IV, all features related to DF peak are less impactful for center 

annotation than for center plus periphery annotation. Further clinical and experimental 

studies will be necessary to hone more strict AF driver classification or possibly guide 

clinicians to the optimal ablation target within the driver domain.

Driver Temporal Stability and Plurality

In the current study, we used only AF recordings with single, temporally and spatially stable, 

NIOM-defined drivers to diminish uncertainty in the electrogram annotation for the training 

data set. However, the existence of several competing drivers in human AF is frequent. Our 

previous studies 23 showed that sustained AF in explanted human hearts may be maintained 

by two or more spatially stable, but temporally competing, reentrant drivers in both left and 

right atria. The presence of two or more spatially stable reentrant drivers within the human 

atria may allow these drivers to be temporally unstable or intermittent while permitting AF 

to be constantly maintained by at least 1 active driver. Furthermore, during ex-vivo human 

heart experiments where radiofrequency ablation successfully disrupted the track of the 

primary AF driver, a secondary slower AF driver could be unmasked in a different location, 

which would require subsequent mapping and targeted ablation.
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Previous clinical5,7,24 contact and non-contact6 MEM studies as well as experimental 

NIOM16,17 studies showed that AF can be maintained in patient-specific manner by either 

multiple competing recurring drivers or a single localized driver. Furthermore, in similar 

experimental ex-vivo human heart studies we recently revealed that due to limitations of the 

clinical MEM (surface only recordings) and the phase based analysis of clinical EG can 

simultaneously visualize more “false positive” drivers (~1.1 per AF visualization), during 

AF episodes vs true NIOM drivers confirmed by targeted ablation8. Thus, while we 

acknowledge the appearance of two or more simultaneous competing AF drivers may also 

result from the high false-positive rate of current clinical AF driver detection methods, as we 

previously reviewed7. Future studies must be done to test the effect of partial driver stability 

less than 5 seconds and the presence of multiple competing drivers on the predictive value of 

the ML algorithm.

Feature Selection

ML and deep learning approaches have begun to be used in the cardiovascular field25,26. We 

selected the ML approach because of the ‘black box’ problem of deep learning algorithms27 

and limited size of the current dataset. ML techniques are better suited for interpretable 

predictions when instead of relying on a set of abstract features generated by the machine, 

the mathematical model is purposely engineered using observable and handpicked, 

potentially meaningful characteristics of the signal. Unlike agnostic deep learning methods, 

we can clarify which features are valuable for the classification, in this case features of the 

frequency spectra of MEM. The ML algorithm appears to allow detection of subtle 

differences between the features originating from the driver and non-driver regions in the 

atria as measured by both MEM and NIOM.

Several clinical and animal studies show the importance of frequency characteristics in the 

task of AF driver detection28–31, including instantaneous frequency calculations32. 

Unsurprisingly, it is the DF peak and its characteristics that hold the greatest classification 

power in detecting AF driver in the MEM (Figure 5) and NIOM (Supplementary Figure IV) 

feature datasets. This agrees with the previous work8,28,30,33 where the features of AF 

drivers were studied. However, a number of studies show the inability of DF, the most 

common frequency of the signal, to be the sole feature for classification14,34–36. Our 

previous study showed that DF strongly correlated with AF driver regions on high-resolution 

NIOM maps, but MEM DF was not a specific driver feature8. Our current study also showed 

DF as the sole feature resulted in an f1-score of 0.28.

Instead, we observed that the frequencies, heights, and prominences of other highest peaks 

in the Fourier spectra, as well as the ratios between them, make important contributions to 

AF driver classifications by ML. Furthermore, several features of electrogram frequency 

spectra, aforementioned and noise-related such as PSDR or the number of peaks above some 

threshold, are critically important for distinguishing drivers from non-drivers. With these 

novel insights, future work could uncover how these features may inform driver mechanisms 

and the pathophysiology of the fibrillating heart. The list of all features sorted by their 

contribution (Figure 5) could be used to guide such future research. Moreover, we showed 

that if only the combination of the 10 most important features are used to highlight possible 
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driver area, the locations of the highest driver probabilities remain in the same regions of the 

grid and still are inside the ground-truth driver region (Supplementary Figure VII). 

Although, contribution of each of these signal features should be validated in a separate 

clinical or pre-clinical study, the most important features are consistent with our current 

understanding about the mechanism of AF drivers.

Performance Metrics Depend on MEM Catheter Resolution

A ML model trained on single-electrode features performed below our expectations, leading 

us to consider the features calculated as an average of the electrodes within the surrounding 

neighborhood. The classifiers based on electrode-neighborhood features provide improved 

metrics for both MEM and NIOM data (Supplementary Figure II), which suggest the benefit 

of looking at AF drivers as a region instead of a single point, supported by the ~1.5 cm x 0.6 

cm average area of reentrant AF drivers previously reported16. Importantly, f1-score, 

precision, and recall for the binary classification of HD catheter dataset were higher than the 

metrics of LD catheter dataset, emphasizing the importance of neighborhood resolution in 

driver classification. One of the reasons for these improvements could be that the average 

number of driver electrodes per recording was higher for HD compared to LD MEM arrays 

(10.9 ± 4.3 vs 4.0 ± 1.3). The distance between electrodes plays an important role in 

reentrant AF driver detection by MEM37 as moderate resolution MEMs can miss a part of 

the driver reentrant track7, with NIOM identifying reentrant tracks between and unmapped 

by widely spread electrode splines.

Traditionally, catheter resolution has been sacrificed for panoramic coverage of the atria, as 

sequential activation mapping with higher density grid is insufficient for driver detection 

during chaotic AF activation patterns7. The ML-based approach developed here could 

remove the need for activation mapping and allow the use of higher density catheters for 

improved AF driver identification. Specifically, this ML detection algorithm could be 

applied to sequential mapping, as long as each location will be mapped for at least 5 

seconds. Alternatively, a panoramic LD catheter could be used first, and then an HD catheter 

moved to a region of interest for confirmation and better defining of the driver region.

Limitations

There are several limitations in our study. Findings from this small number of hearts with 

induced AF may not be representative amongst all persistent AF patients or mapping 

techniques. Moreover, the number of electrogram recordings were increased by sampling 

overlapping windows for the binary classification of the MEM recordings, which could 

introduce over fitting of the model. We used only recordings with stable single drivers in the 

current work to remove the variability in driver temporal stability from affecting electrogram 

annotation. We used only Fourier spectrum features for ML models training; other features 

of MEM electrogram analysis such phase mapping features and activation maps may also 

allow efficient classification of electrograms recordings as AF driver or non-driver and will 

be considered in future studies.
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Conclusion

This pilot study has shown for the first time that a ML-based approach validated by high-

resolution NIOM in human hearts can efficiently classify MEM electrograms as AF driver or 

non-driver by using the features from the Fourier spectra. This approach performed better 

when considering features from electrogram neighborhoods instead of single electrograms. 

The ML approach was also better at classifying electrodes at the driver center and its 

periphery than classifying the driver center alone. All types of classification performed 

better for recordings from HD MEM than LD MEM. Further application of the algorithm 

allowed prediction of AF driver location within electrode grids with modest 81% accuracy. 

Further validation of MEM recordings by NIOM and training with a larger dataset would 

improve future ML models to become complementary tools during clinical AF ablation 

procedures, bringing essential enhancement to conventional clinical MEM approaches to 

detect AF drivers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Nonstandard Abbreviations and Acronyms

AF Atrial Fibrillation

MEM multi-electrode mapping

NIOM near-infrared optical mapping

ML Machine Learning

HD Higher-Density

LD Lower-Density

OAP optical action potentials

DF dominant frequency

PSDR peak-to-standard deviation ratio

kNN k-Nearest Neighbors
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SVM Support Vector Machine

XGBoost Scalable Gradient Boosting

RF Random Forest

LR Logistic Regression

ROC-AUC area under the curve for receiver operating characteristic
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What Is Known?

• Persistent atrial fibrillation (AF) in humans can be maintained by localized 

reentrant drivers that requires personalized mapping for accurate locating and 

ablating for treatment.

• Identification of AF drivers by clinical multi-electrode mapping (MEM) is 

challenging due to primarily surface-only mapping and unvalidated 

interpretations of electrogram recordings.

• Subsurface high-resolution near-infrared optical mapping (NIOM) surpasses 

surface-only MEM due to its ability to properly resolve intramural conduction 

and detect AF drivers in the complex 3D structure of the human atria.

What this Study Adds?

• Simultaneous mapping of ex-vivo human atria with MEM and gold-standard 

NIOM can provide ground-truth labels for the supervised machine learning 

algorithm to efficiently classify MEM electrograms as AF driver or non-

driver.

• Machine learning algorithms trained on Fourier spectra features of atrial 

electrograms may efficiently detect AF drivers and eventually guide targeted 

ablation.
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Figure 1. 
Analytical Pipeline for Driver Prediction. (A) - Example of sustained AF episode maintained 

by reentrant driver, which was recorded simultaneously by clinical MEM (Higher-Density 

(HD) and Lower-Density (LD) catheters) and high-resolution NIOM (Cameras 1–2). (B) - 

Ground-truth labels for electrodes (red – center of driver, blue – non-driver) were acquired 

by NIOM, driver periphery labels (red/blue) were counted as driver in center plus periphery 

annotation or as non-driver in driver center annotation. (C) - Fourier spectra of annotated 

unipolar HD electrograms and co-located NIOM OAPs were used for generation of 
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frequency features for Machine Learning approach. LAA/RAA = Left/Right Atria 

Appendage, I/SVC = Inferior/Superior Vena Cava, MEM = Multi-Electrode Mapping, 

NIOM = Near-Infrared Optical Mapping, OAP = Optical Action Potential, A.U. = Arbitrary 

Units.
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Figure 2. 
Features Calculation for Machine Learning Algorithm. (A) - Example of Fourier spectra for 

MEM recording with several of the 35 features labeled. The height of the highest peak (peak 

of DF) is indicated as purple line at 100%, the numbers of peaks above two thresholds of 5 

and 10 % of the highest peak’s height (dashed purple lines) were also used as features for 

Machine Learning algorithm. (B) - Calculation of the contribution of electrode 

neighborhood features at each electrode. DF = Dominant Frequency, A.U. = Arbitrary Units.
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Figure 3. 
Performance of Binary Classification. (A) - The Receiver Operating Characteristic (ROC) 

curves for different feature sets of AF dataset as analyzed by 5 algorithms. (B) - 

Performance metrics of kNN binary classification into AF reentrant driver vs non-driver 

recordings for different feature sets. Asterisk shows the significant difference between any 

two metrics within the group by ANOVA. MEM = Multi-Electrode Mapping, NIOM = Near-

Infrared Optical Mapping. AUC = Area Under the Curve, kNN = k-Nearest Neighbors, 

SVM = Support Vector Machine, RF = Random Forest, XGB = XGBoost Classifier.
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Figure 4. 
Performance Metrics for HD and LD datasets. (A) - The ROC curves for different feature 

sets of AF HD dataset as analyzed by 5 algorithms. Below, performance metrics of binary 

classification into AF reentrant driver vs non-driver recordings from AF HD dataset for 

different feature sets. Asterisk shows the significant difference between any two metrics 

within group of three. (B) - The ROC curves for different feature sets of AF HD dataset as 

analyzed by 4 algorithms. Below, performance metrics of binary classification into AF 

reentrant driver vs non-driver recordings from AF LD dataset for different feature sets. 
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Asterisk shows the significant difference between any two metrics within the group by 

ANOVA. Abbreviations as in Figure 3, LD = Lower-Density catheter, HD = Higher-Density 

catheter.
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Figure 5. 
The Most Valuable Features for Binary Classification. Relative feature importance of the top 

10 most valuable features for neighborhood-electrodes MEM feature sets. Abbreviations as 

in Figure 1, PSDR - peak-to-standard deviation ratio.
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Figure 6. 
Driver Prediction on 64 Electrodes Catheters. Examples of the Machine Learning probability 

prediction heat maps for two 64-electrode catheters - (A) Higher-density (HD) catheter and 

(B) Lower-density (LD) catheter. Ground truth driver region (center plus periphery) is 

outlined by black bold line. The color bar encodes probability of an electrode to be a driver.
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Table 1.

Human heart mapping approaches.

Heart # Preparation MEM NIOM Sample numbers Driver

1 Biatrial LD Epi LD_1 1

2 LRA
LD Epi/Endo LD_2, LD_3 1

LD Epi/Endo LD_4, LD_5 2

3 LRA
LD Endo LD_6 1

LD Epi/Endo LD_7, LD_8 1

4 LRA LD Endo LD_9 1

5 LRA

LD Epi/Endo LD_10, LD_11 1

LD Epi/Endo LD_12, LD_13 1

LD Epi/Endo LD_14, LD_15 2

LD Epi/Endo LD_16, LD_17 1

6 LRA
LD Epi/Endo LD_18, LD_19 1

LD Epi/Endo LD_20, LD_21 1

7 Biatrial
HD/LD Endo HD_1, LD_22 1

HD/LD Endo HD_2, LD_23 1

8 Biatrial HD/LD Endo HD_3, LD_24 1

9 Biatrial LD Endo LD_25 1

10 Biatrial HD Epi HD_4 1

11 Biatrial

HD Epi HD_5 1

HD Epi HD_6 1

HD Epi HD_7 2

LD = Lower-Density catheter, HD = Higher-Density catheter, Epi = Epicardial, Endo = Endocardial, LRA = Lateral Right Atrium, NIOM = Near-
infrared optical mapping
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Table 2.

Number of spectra from different datasets and modalities.

Dataset with Atrial Fibrillation (AF) Lower-Density (LD) catheter Higher-Density (HD) catheter Combination

Number of MEM recordings 1600 (17%, 8%) 448 (27%, 9%) 2048 (20%, 7%)

Number of MEM spectra 17875 (19%, 0%) 8919 (33%, 0%) 26794 (23%, 0%)

Number of NIOM recordings 602 (32%, 6%) 448 (21%, 9%) 1050 (30%, 4%)

Number of NIOM spectra 6936 (34%, 0%) 8919 (32%, 0%) 15855 (33%, 0%)

The percentage of center plus periphery drivers and uninformative electrodes indicated in parentheses, respectively.
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Table 3.

Names of features from MEM feature set.

# Feature # Feature

1 #peaks_0.05 27 height ratio between peaks 2 and 3

2 #peaks_0.1 28 height ratio between peaks 2 and 4

3–7 frequency 1–5 29 height ratio between peaks 3 and 4

8–12 height 1–5 30 prominence ratio between peaks 1 and 2

13–17 width 1–5 31 prominence ratio between peaks 1 and 3

18–22 prominence 1–5 32 prominence ratio between peaks 1 and 4

23 PSDR 33 prominence ratio between peaks 2 and 3

24 height ratio between peaks 1 and 2 34 prominence ratio between peaks 2 and 4

25 height ratio between peaks 1 and 3 35 prominence ratio between peaks 3 and 4

26 height ratio between peaks 1 and 4

MEM = Multi-Electrode Mapping, PSDR - peak-to-standard deviation ratio.
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