Figure 1.
Results from the Recursive Feature Elimination using Random Forest (RFE-RF) algorithm, used to identify key CT liver texture features to differentiate between AAH and control patients. A total of 178 texture features, and a combination of 23 of these features were associated with the best model performance (85.4% accuracy in distinguishing AAH from control patients). These 23 texture features are listed in Table 3. The 23-feature model applied to the left-out test set is described in the bottom-right table and resulted in an accuracy of 82.4% (14 of 17 patients), sensitivity of 100%, specificity of 75%, NPV of 100%, and PPV of 62.75%.