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Texture features from computed 
tomography correlate 
with markers of severity in acute 
alcohol‑associated hepatitis
Michele M. Tana1,2,3,7*, David McCoy4,7, Briton Lee5, Roshan Patel1, Joseph Lin6 & 
Michael A. Ohliger3,4

The aim of this study was to use texture analysis to establish quantitative CT-based imaging features 
to predict clinical severity in patients with acute alcohol-associated hepatitis (AAH). A secondary aim 
was to compare the performance of texture analysis to deep learning. In this study, mathematical 
texture features were extracted from CT slices of the liver for 34 patients with a diagnosis of AAH and 
35 control patients. Recursive feature elimination using random forest (RFE-RF) was used to identify 
the best combination of features to distinguish AAH from controls. These features were subsequently 
used as predictors to determine associated clinical values. To compare machine learning with deep 
learning approaches, a 2D dense convolutional neural network (CNN) was implemented and trained 
for the classification task of AAH. RFE-RF identified 23 top features used to classify AAH images, and 
the subsequent model demonstrated an accuracy of 82.4% in the test set. The deep learning CNN 
demonstrated an accuracy of 70% in the test set. We show that texture features of the liver are unique 
in AAH and are candidate quantitative biomarkers that can be used in prospective studies to predict 
the severity and outcomes of patients with AAH.

Acute alcohol-associated hepatitis (AAH) is a major clinical challenge and is characterized by hepatic and sys-
temic inflammation in patients who drink excessive amounts of alcohol1. In severe AAH, 1-month mortality 
rates can be as high as 50%, caused in part by impaired liver regeneration and systemic inflammatory response 
syndrome (SIRS)2,3. The gold standard for diagnosis of AAH is liver biopsy4,5, where characteristic findings 
include presence of neutrophilic lobular inflammation and hepatocyte degeneration as marked by Mallory-Denk 
bodies6. However, because of its associated risks of infection, cost, and lack of availability in some communities, 
liver biopsy is rarely performed in the clinical care of suspected AAH. Currently, scores such as Maddrey’s Dis-
criminant Function and Model of End Stage Liver Disease (MELD) are used to help clinicians decide if medical 
therapy is warranted7,8. However, because clinical outcomes in severe AAH are poor and alcohol-related deaths 
are increasing in the United States, there is a great need to develop additional markers and tools to risk-stratify 
cases of AAH9,10. These developments could also contribute to earlier detection of less severe AAH as treatment 
options are limited and have questionable efficacy for very severe AAH11,12. In the few patients who are started 
on medical therapy for AAH, it is not until day 7 of corticosteroid therapy that treatment response is assessed 
to determine if the full month-long course should be completed13.

Imaging is not part of the standard workup of patients with known AAH, but imaging studies are frequently 
obtained when patients present to the emergency department with acute symptoms in order to exclude other 
processes, such as cholecystitis or pancreatitis. Imaging findings in AAH are generally regarded as nonspecific, 
contributing to neither diagnosis nor management. One study modeled radiologic features with clinical pres-
entation data to predict biopsy-confirmed AAH and found that greater leukocyte count at admission and liver 
surface nodularity were strong predictors of biopsy-confirmed AAH14. With these individual predictors, the 
logistic model in the validation set showed a specificity of 86% but a sensitivity of only 59%. Furthermore, the 
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image metrics (hepatomegaly, presence of ascites, and portal vein thrombosis) and biomarkers used in that study 
and other similar studies had limited diagnostic value15,16.

In this study, our goal is to determine whether liver texture features derived from CT images could provide 
improved, noninvasive, surrogate metrics that correlate with clinical data and prognosis in patients with AAH. 
Texture analysis is a quantitative method of assessing the relationship and distribution of pixel intensities on bio-
medical images17. This method has been applied to the diagnosis of spinal cord myelopathy18, the characterization 
of lung cancers19–22, and the identification of liver cirrhosis and malignancy23–25 but has not been studied in the 
context of AAH. Texture analysis utilizes high-dimensional data, for which standard parametric statistics are not 
suited. Therefore, in the current study, we use machine learning methods (such as random forest and elastic net 
regression) to develop a texture-based algorithm. The most relevant texture features that distinguished patients 
with AAH from controls are first determined and then used in a model to quantitatively predict laboratory and 
other clinical features of the patients. Additionally, we developed a deep learning two-dimensional convolutional 
neural network (2D CNN) to compare to the texture-based algorithm in distinguishing AAH.

We hypothesize that texture features extracted from CT data will be different in AAH patients compared 
to controls. We also hypothesize that these quantitative CT texture features will correlate with relevant clinical 
markers of liver disease severity, potentially providing a novel non-invasive radiomic biomarker to assist in 
diagnosis, prognosis and management. We also hypothesized that deep learning could be used to accurately and 
automatically detect AAH, with results comparable to a texture-based algorithm. While our long-term goal is to 
use quantitative texture features to non-invasively determine the severity of AAH for treatment guidance, this 
initial proof-of-principle study seeks to first determine whether texture features were related to clinically meas-
urable parameters. This study was approved by the University of California San Francisco Institutional Review 
Board (IRB, 14-13492). All methods were carried out in accordance with relevant guidelines and regulations.

Results
Participant characteristics.  Thirty-four AAH patients met the inclusion criteria over the 38-month study 
period. Twenty-nine AAH patients (85.3%) were men, mean age at diagnosis was 43.4 years, and mean Mad-
drey’s Discriminant Function score was 38. Twenty-two patients eventually received treatment for AAH, includ-
ing receiving corticosteroids only (n = 8), pentoxifylline only (n = 10), and a combination of corticosteroids and 
pentoxifylline (n = 4). The patients’ characteristics are summarized in Table 1. Thirty-five trauma patients served 
as controls. Twenty-five control patients (66.7%) were men, and mean age at presentation was 44.2 years. As 
measures of outcome, day 7 bilirubin was available for 28 AAH patients, and day 30 bilirubin was available for 
19 patients. Among those patients with available data, day 7 bilirubin was on average 0.3 mg/dL higher than 
baseline (SD 4.4 mg/dL). Day 30 bilirubin was on average 2.3 mg/dL lower than baseline (SD 9.1 mg/dL). Among 
patients who received treatment, the mean change in total bilirubin to day 7 was + 0.2 mg/dL; for patients who 
did not receive treatment, the mean change in total bilirubin to day 7 was + 0.5 mg/dL. Among patients who 
received treatment, the mean change in total bilirubin to day 30 was − 3.2 mg/dL; for patients who did not 
receive treatment, the mean change in total bilirubin to day 30 was + 1.1 mg/dL. Neither the change in bilirubin 
at day 7 nor at day 30 differed significantly between AAH patients who received treatment and did not receive 
treatment (p = 0.80, p = 0.40). Patients with AAH were followed for a median of 28.7 months, and 5 patients died 
during follow-up.

Table 1.   Demographic and laboratory characteristics of trauma control and acute alcohol-associated hepatitis 
(AAH) patients. AST aspartate aminotransferase, ALT alanine aminotransferase, INR international normalized 
ratio.

Control AAH

n = 35 n = 34

Gender (%) p < 0.01

Female 10 (33.3) 5 (14.7)

Male 25 (66.7) 29 (85.3)

Mean age (years) 44.2 43.4 p = 0.75

Race/ethnicity (%) p = 0.22

White 9 (25.7) 21 (26.5)

Black or African American 5 (14.3) 6 (8.8)

Latino or Hispanic 15 (42.9) 32 (58.8)

Asian Pacific Islander 4 (11.4) –

Other/unknown 2 (5.7) 2 (5.9)

Median lab values at presentation p < 0.01

AST (U/L) 32.5 153

ALT (U/L) 28 48

Total Bilirubin (mg/dL) 0.5 12.0

INR 1.0 1.7
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Results of RFE‑RF.  Of the 178 liver features extracted by texture analysis, the recursive feature elimination 
using random forest (RFE-RF) classification found that the model performed best in distinguishing AAH cases 
from controls with 23 specific features. Table 2 describes the top texture features. The combination of these fea-
tures in a texture-based algorithm yielded an accuracy of 85.4% in distinguishing AAH cases from controls in 
the training data (Fig. 1). The top texture features were gray level size zone variability, gray level non-uniformity 
(GLNU), run length non-uniformity (RLN), mean deviation, kurtosis, cluster tendency, short run emphasis, 
mean deviation, inverse variance and eleven metrics from the local binary pattern matrix (LBM) (Table  3). 
Applying the 23-feature model to make AAH predictions using data from the left-out test set resulted in an 
accuracy of 82.4% (14 of 17 patients), sensitivity of 100%, specificity of 75%, NPV of 100%, and PPV of 62.75%.

Results of elastic‑net regression.  The elastic net regressions using 13 clinical variables as predictors 
and each of the 23 texture features yielded a single best clinical variable associated with each CT texture feature. 
Figure 2 shows an example of three elastic models run with liver texture outcomes and top clinical predictors. 
This association between top clinical features and the texture features was tested in a simple linear regression 
model (Table 3). The elastic net determined that the best clinical predictors for the top 23 CT texture features 

Table 2.   Definition of top texture features.

Feature name Definition

Mean deviation Mean of the absolute deviation of the pixel intensity around the mean

Local binary pattern matrix (LBM) Bins of binary pattern distributions around a pixel from local binary pattern of matrix calculations

Run length non-uniformity (RLN) Measures the similarity of gray level runs in a determined degree direction. A gray level run is a set of 
consecutive, collinear pixels having the same gray level. The RLN is low if the run lengths are alike

Gray level non-uniformity (GLNU) Total non-uniformity of pixel intensities throughout the region of interest. It measures the similarity 
of gray level intensity values in the image. The GLNU is low if the intensity values are alike

Short run emphasis This metric increases when gray level short runs are predominant

Kurtosis Measure of peakedness of pixel distribution

Size zone variability Variability found in gray level size zone matrix generated from image

Cluster tendency Measure of tendency of data to form non-random clusters

Inverse variance Inverse of the measure of distribution around the mean

Figure 1.   Results from the Recursive Feature Elimination using Random Forest (RFE-RF) algorithm, used to 
identify key CT liver texture features to differentiate between AAH and control patients. A total of 178 texture 
features, and a combination of 23 of these features were associated with the best model performance (85.4% 
accuracy in distinguishing AAH from control patients). These 23 texture features are listed in Table 3. The 
23-feature model applied to the left-out test set is described in the bottom-right table and resulted in an accuracy 
of 82.4% (14 of 17 patients), sensitivity of 100%, specificity of 75%, NPV of 100%, and PPV of 62.75%.
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distinguishing AAH from controls were white blood cell count (WBC) (best clinical predictor for 8 of the top 
23 texture features), aspartate aminotransferase (AST) (10 of 23), cirrhosis (1 of 23), albumin (1 of 23), platelet 
count (2 of 23), and blood urea nitrogen (1 of 23).

Seven of the top RFE texture features to detect AAH were significantly associated with AST (significant after 
FDR correction). Measures of liver homogeneity, specifically the RLN (in 0, 45, 90, and 135 degree directions), 
kurtosis, cluster tendency and short run emphasis were most closely associated with AST. All RLN texture 
features were negatively associated with AST; on average a one-unit increase AST was associated with a 14.4 
reduction of RLN metrics.

Table 3.   Results of elastic-net regression and linear modeling of the top texture features and their most 
closely associated clinical predictor. Texture features with corrected p-values meeting statistical significance 
are bolded. RMSE root mean square error, FDR false discovery rate, GLNU gray level non-uniformity, RLN 
run length non-uniformity, LBM local binary pattern matrix, AST aspartate aminotransferase, ALT alanine 
aminotransferase, WBC white blood cell count.

Texture feature Elastic net RMSE Top predictor
Linear model 
coefficient Linear model P-value

FDR P-value 
correction

0 GLNU 1.96 × 103 WBC 6.74 × 101 0.047 0.083

90 GLNU 1.92 × 103 WBC 8.15 × 101 0.022 0.049

0 RLN 2.63 × 103 AST − 1.16 × 101 0.009 0.035

45 RLN 3.75 × 103 AST − 1.65 × 101 0.006 0.029

90 RLN 3.25 × 103 AST − 1.45 × 101 0.006 0.029

135 RLN 3.82 × 103 AST − 1.49 × 101 0.019 0.049

135 cluster tendency 6.76 × 10–1 AST − 3.02 × 10–3 0.003 0.020

Kurtosis 5.47 AST 2.71 × 10–2 0.001 0.011

LBM 0 4.40 × 10–3 WBC 1.28 × 10–4 0.095 0.126

LBM 1 2.10 × 10–3 AST 5.60 × 10–6 0.083 0.120

LBM 2 1.50 × 10–3 WBC 3.67 × 10–5 0.147 0.161

LBM 13 2.00 × 10–4 Albumin − 1.14 × 10–4 0.012 0.040

LBM 18 1.00 × 10–4 Platelet count − 4.62 × 10–6 0.226 0.226

LBM 20 3.00 × 10–4 Platelet count − 1.48 × 10–5 0.102 0.126

LBM 21 6.00 × 10–4 WBC 3.52 × 10–5 0.110 0.126

LBM 22 1.30 × 10–3 WBC 1.28 × 10–5 0.215 0.225

LBM 23 2.10 × 10–3 AST 6.13 × 10–6 0.047 0.083

LBM 24 4.83 × 10–2 WBC − 1.24 × 10–3 0.105 0.126

LBM 25 3.14 × 10–2 AST 8.04 × 10–5 0.072 0.111

Mean deviation 3.09 × 10–2 WBC 9.81 × 10–4 0.072 0.111

45 short run 
emphasis 6.94 × 10–2 AST − 4.28 × 101  < 0.001 0.049

Size zone variability 3.95 × 102 Blood urea nitrogen 2.11 × 101 0.034 0.071

Inverse variance 5.87 × 102 Cirrhosis 2.58 × 102 0.021 0.049

Figure 2.   Examples of elastic-net regression outputs for three texture features. For each texture feature, 13 
clinical variables were used as predictors. The top elastic-net clinical predictor for each texture feature was 
identified for testing in a simple linear regression model.
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Results of deep learning.  Results for deep learning CNN accuracy and loss over the 200 epochs are shown 
in Fig. 3. The best model based on validation accuracy was used to make predictions from the unused test set 
data (10 patients). The CNN model’s performance on the test-set was an overall accuracy of 70% with a loss of 
0.56; the validation set reached 100% accuracy (on all 10 patients) and the training set reached 95%. Additional 
measures of the model’s performance on the test set were precision (0.75), recall (0.60), and F1 score (0.66).

Discussion
In this retrospective single-center study, we have identified CT-based image texture features that distinguish 
patients with AAH from controls. We also demonstrated that those texture features are quantitatively associ-
ated with important clinical parameters, most notably AST. Many of the top texture features showed significant 
association with the AST, even after correcting for multiple comparisons. Importantly, run length measures of 
non-uniformity were negatively associated with AST. In particular, increases in AST were associated with overall 
reductions in run length measures of non-uniformity, suggesting that these CT texture features may reflect the 
severity of inflammation classically associated with AAH. As machine learning gains momentum in the field 
of radiology, our study represents a unique contribution showing the correlation of clinical data to liver texture 
features.

We attempted to distinguish AAH from control images using two methods: (1) machine learning to deter-
mine salient texture features, and (2) deep learning to automatically detect AAH. While both methods were 
comparable, surprisingly our primary texture-based algorithm was found to be more effective. Not only did the 
2D CNN underperform in distinguishing AAH from controls when compared to the texture-based algorithm, 
but like any deep learning method it was also unable to allow for feature extraction. However, our study provides 
proof that deep learning can identify AAH and offers a foundation to train and validate future deep learning 
algorithms. Further studies would build upon this CNN, and its accuracy should improve when trained with a 
larger set of images.

Our study is limited by its small sample size, influencing the training of the algorithms and overall accuracy. 
Additionally, the diagnosis of AAH was made based on clinical assessment rather than biopsy, as biopsy is rarely 
performed in the acute setting despite being the gold standard. Our study may also be limited by the fact that 
some patients received treatment at variable times relative to time of imaging; however, given the limited or 
uncertain benefit of treatment in AAH, imaging is likely to be unaffected in the short-term. We used laboratory 
values that were contemporaneous with the CT scans, so the correlation of laboratory values with the CT should 
relate to the clinical state at the time the image was acquired. Additionally, if treatment were beneficial, we would 
expect there to be fewer differences in imaging features. Using an imaging study to predict a common imaging 
test is, by itself, limited. Further studies will be required to determine whether these texture features are able to 
prospectively predict the amount of liver injury in patients and/or predict clinical outcomes such as short-term 
mortality or response to treatment. It should be noted that trauma patients represent an imperfect control group 
because trauma can be associated with alcohol use. However, we would expect any occult alcohol-associated 
injury in the control group to lead us to underestimate the significance of our results.

The current clinical standard for diagnosis of acute hepatitis by imaging is qualitative assessment by a radi-
ologist. Indeed, acute hepatitis does have many imaging characteristic features that may be detected on CT 
examinations. However, our goal in examining texture features was to generate a quantitative tool that could 
eventually be used to quantitatively grade severity and potentially follow patients over time.

The machine learning pipeline used in this work was entirely based on non-proprietary, publicly available 
software, which increases the potential applicability of the method. Furthermore, the unbiased region of interest 
analyzes an entire axial 2D slice which lends itself to automated analysis. Future directions include identification 

Figure 3.   Results for deep learning accuracy and loss over 200 epochs for both the training and validation 
datasets. The model accuracy in the training set reached 95% accuracy, with overall accuracy of 70%. The 
validation set reached 100% accuracy. Loss improved as expected over 200 epochs, with the lowest loss of the 
model’s performance on the test set of 0.56.
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of liver texture features associated with survival rates (which could be assessed with Poisson or Cox regression), 
comparison of additional control groups, distinguishing AAH from decompensated alcohol-associated cirrhosis, 
and evaluating three-dimensional (3D) CNN to make use of features in the z-dimension.

In summary, we have shown that CT texture features correlate with clinical parameters in AAH, suggesting 
that the application of this novel tool may assist in the diagnosis of AAH and guide treatment. This was a proof-
of-principle study, without sufficient follow-up data to correlate texture features with clinical outcomes. This 
pilot study demonstrates that CT texture analysis has promise as a prognostic tool in AAH and could potentially 
guide management by identifying clinical phenotypes.

Methods
Study population.  This was a single-center retrospective study based on review of medical records. The 
study population included patients admitted to an urban safety-net county hospital from September 2013 
through November 2016 who had received a diagnosis of AAH. At our institution, AAH is a diagnosis typically 
made based on clinical impression. Supporting data include a history of excessive alcohol consumption; clinical 
presentation (including abdominal pain, malaise); physical exam findings of fever, jaundice, tender hepatomeg-
aly, ascites, and hepatic encephalopathy; laboratory values such as leukocytosis and thrombocytosis, hyper-
bilirubinemia, and AST:ALT elevation in a ratio ≥ 2:1. Patients were included in the study if they were referred 
to the inpatient gastroenterology consultation service, received a clinical diagnosis of AAH, and underwent a 
contrast CT scan of the abdomen within a month of that diagnosis. For imaging controls, we considered those 
who had received a CT scan for suspected trauma but without abdominal injury. Trauma patients with signs of 
liver disease, such as fatty liver or cirrhosis were excluded from the control group. Figure 4 is a flowchart that 
demonstrates the selection of our cohorts by inclusion and exclusion criteria. Demographic information, clinical 
presentation, laboratory data, treatment information, and outcomes were reviewed for each patient. Pertinent 
laboratory values were chosen as close as possible from the time of the CT. This study was compliant with the 
health insurance portability and accountability act (HIPAA) and was approved by the local institutional review 
board for human research. Informed consent was waived. All clinical data were stored in a secure research elec-
tronic data capture program26.

CT acquisition parameters.  All CT images were acquired using a standard clinical protocol on a 64-slice 
CT scanner (Lightspeed, GE Healthcare) following administration of approximately 150 mL of iodinated con-
trast (Omnipaque-350) with a tube potential (kVp) of 120 keV and automatic tube current modulation. Contig-
uous axial images with a slice thickness of 1.25 mm were obtained in the portal venous phase of intravenous con-
trast enhancement and were reconstructed using filter back projection and a soft-tissue reconstruction kernel.

Image annotation.  For each of the 34 AAH patients and 35 control subjects, a single axial CT slice at the 
level of the right portal vein bifurcation was chosen for analysis. The image was manually segmented using 
imageJ software to include the entire axial liver slice27. The inferior vena cava and hilar vessels were excluded. 
Initial liver segmentation was performed by a radiology data scientist and validated by a fellowship trained 
abdominal radiologist. CT imaging data were divided into 52 training images and 17 testing images for machine 

Figure 4.   Flowchart demonstrating the inclusion and exclusion criteria used to create our cohorts of AAH and 
control patients.
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learning analysis. For 2D CNN analysis, image data were randomly split into training (49), validation (10), and 
testing (10) sets.

Texture analysis.  Grayscale values for the liver axial 2D image were analyzed using custom software written 
in Python and R. The scikit-image package28 in Python was used to calculate the local binary patterns imbedded 
in liver texture. These results and images were transferred and processed in R using the radiomics package29,30. 
Calculations were made for the (i) First-Order Statistics, (ii) Gray Level Co-occurrence Matrix, (iii) Gray Level 
Run Length Matrix, and (iv) Gray Level Size Zone Matrix for each direction (0, 45, 90, and 135 degrees). Before 
analysis, all images were discretized to values between zero and eight. This yielded 178 texture features from each 
image, with each feature summarized as a single digit. The overall texture analysis pipeline is illustrated in Fig. 5.

Machine learning.  Recursive feature elimination using RFE-RF from the Classification and Regression 
Training (caret) package31 in R was first used to identify the key CT liver texture features that delineate AAH 
from controls. We performed tenfold cross validation, which was repeated 10 times, during the training to pro-
vide robust and stable estimates32. Additionally, 20% of the data were left out of training and used as a left-out 
test set. Texture variables identified as the top features from the RFE-RF were used in subsequent analysis to 
identify the association between these liver texture features and clinical presentation data. The performance of 
the classifier in this stage of analysis was evaluated by overall accuracy, sensitivity, specificity, negative predictive 
value (NPV), and positive predictive value (PPV) from test set predictions.

In order to determine the association between the liver features identified by RFE-RF and clinical labora-
tory and demographic data, each of the most identified and important texture features was used as an outcome 
in a series of elastic net regressions. We used 13 laboratory and demographic parameters as predictors: age at 
diagnosis, race, sex, WBC, blood urea nitrogen, creatinine, total bilirubin, albumin, aspartate aminotransferase 
(AST), alanine aminotransferase (ALT), platelet count, MELD score, and cirrhosis. Elastic-net regression was 
used due to the high dimensionality of the predictor variables compared to the number of patients and the 
multicollinearity of the laboratory values. Furthermore, because elastic-net regression utilized both L1 and L2 
penalization, coefficients could be shrunk to zero, which allowed for key clinical variable selection that reduced 
the mean-squared-error (MSE) in the predicted texture feature. Finally, standard linear regression models were 
used to determine the magnitude and significance of the association between key clinical parameters and the top 
liver texture features. There have been a number of statistical studies aimed at determining the correct techniques 
for ascertaining p-values and unbiased estimates from models utilizing L1 and/or L2 norms33,34. Because we were 
interested in attaining p-values and association estimates without bias, and due to the low sample size, we chose 
a standard ‘debiasing’ approach after variable selection with lasso regression. The top predictor was included in a 
simple univariate linear regression model to determine the individual association the clinical indicator had with 
the texture feature. We applied the false discovery rate (FDR) correction for multiple comparisons.

Deep learning model.  A 2D CNN using the DenseNet architecture35 was created to test the ability of a 
deep learning algorithm to automatically detect AAH without feature engineering. The model architecture is 
illustrated in Fig. 6 and included successive layers of (i) 2D convolution, (ii) batch normalization36, (iii) recti-

Figure 5.   Example of the texture analysis pipeline, which is identical for both AAH (left) and control (right) 
patients. The chosen CT axial slice was selected to be at the level of the right portal vein bifurcation for each 
patient. The liver was manually segmented from the axial slice. Texture features were then extracted from liver 
segments. Maps of representative texture features (variance and homogeneity) are shown.
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fied linear unit (ReLU) activation function37 and (iv) 2D max pooling. The feature maps for each layer t were 
concatenated with those of layer t − 1. The last layer was fully connected with a ReLU activation function, 
followed by random dropout38 and prediction. Training was performed with an Adam Optimizer39. All com-
putations (parameters optimization, training, and testing) were performed on two NVIDIA 1080ti GPUs and 
implemented in Python 2.7 using Tensorflow and Keras frameworks. No additional hyper-parameter optimiza-
tions were conducted. Measures of the model’s performance on the test set were evaluated by overall accuracy, 
precision, recall, and F1 score.

Deep learning data augmentation.  Due to the limited image data (34 AAH images and 35 control 
images) data augmentation was used to avoid overfitting using the Keras framework. Images were augmented 
using random rotation (20 degrees), width and height shift (10% of image dimensions), random shearing (inten-
sity of 0.2), random zoom (20% of image dimensions), and random vertical/horizontal flipping. Additionally, 
dropout in the fully connected layer also provides a form of data augmentation.

Received: 11 April 2020; Accepted: 28 September 2020
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