Table 3.
Texture feature | Elastic net RMSE | Top predictor | Linear model coefficient | Linear model P-value | FDR P-value correction |
---|---|---|---|---|---|
0 GLNU | 1.96 × 103 | WBC | 6.74 × 101 | 0.047 | 0.083 |
90 GLNU | 1.92 × 103 | WBC | 8.15 × 101 | 0.022 | 0.049 |
0 RLN | 2.63 × 103 | AST | − 1.16 × 101 | 0.009 | 0.035 |
45 RLN | 3.75 × 103 | AST | − 1.65 × 101 | 0.006 | 0.029 |
90 RLN | 3.25 × 103 | AST | − 1.45 × 101 | 0.006 | 0.029 |
135 RLN | 3.82 × 103 | AST | − 1.49 × 101 | 0.019 | 0.049 |
135 cluster tendency | 6.76 × 10–1 | AST | − 3.02 × 10–3 | 0.003 | 0.020 |
Kurtosis | 5.47 | AST | 2.71 × 10–2 | 0.001 | 0.011 |
LBM 0 | 4.40 × 10–3 | WBC | 1.28 × 10–4 | 0.095 | 0.126 |
LBM 1 | 2.10 × 10–3 | AST | 5.60 × 10–6 | 0.083 | 0.120 |
LBM 2 | 1.50 × 10–3 | WBC | 3.67 × 10–5 | 0.147 | 0.161 |
LBM 13 | 2.00 × 10–4 | Albumin | − 1.14 × 10–4 | 0.012 | 0.040 |
LBM 18 | 1.00 × 10–4 | Platelet count | − 4.62 × 10–6 | 0.226 | 0.226 |
LBM 20 | 3.00 × 10–4 | Platelet count | − 1.48 × 10–5 | 0.102 | 0.126 |
LBM 21 | 6.00 × 10–4 | WBC | 3.52 × 10–5 | 0.110 | 0.126 |
LBM 22 | 1.30 × 10–3 | WBC | 1.28 × 10–5 | 0.215 | 0.225 |
LBM 23 | 2.10 × 10–3 | AST | 6.13 × 10–6 | 0.047 | 0.083 |
LBM 24 | 4.83 × 10–2 | WBC | − 1.24 × 10–3 | 0.105 | 0.126 |
LBM 25 | 3.14 × 10–2 | AST | 8.04 × 10–5 | 0.072 | 0.111 |
Mean deviation | 3.09 × 10–2 | WBC | 9.81 × 10–4 | 0.072 | 0.111 |
45 short run emphasis | 6.94 × 10–2 | AST | − 4.28 × 101 | < 0.001 | 0.049 |
Size zone variability | 3.95 × 102 | Blood urea nitrogen | 2.11 × 101 | 0.034 | 0.071 |
Inverse variance | 5.87 × 102 | Cirrhosis | 2.58 × 102 | 0.021 | 0.049 |
Texture features with corrected p-values meeting statistical significance are bolded.
RMSE root mean square error, FDR false discovery rate, GLNU gray level non-uniformity, RLN run length non-uniformity, LBM local binary pattern matrix, AST aspartate aminotransferase, ALT alanine aminotransferase, WBC white blood cell count.