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Abstract

Background and Aims: Microsatellite instability (MSI) and mismatch-repair deficiency 

(dMMR) in colorectal tumors are used to select treatment for patients. Deep learning can detect 

MSI and dMMR in tumor samples on routine histology slides faster and cheaper than molecular 

assays. But clinical application of this technology requires high performance and multisite 

validation, which have not yet been performed.

Methods: We collected hematoxylin and eosin-stained slides, and findings from molecular 

analyses for MSI and dMMR, from 8836 colorectal tumors (of all stages) included in the 

MSIDETECT consortium study, from Germany, the Netherlands, the United Kingdom, and the 

United States. Specimens with dMMR were identified by immunohistochemistry analyses of 

tissue microarrays for loss of MLH1, MSH2, MSH6, and/or PMS2. Specimens with MSI were 

identified by genetic analyses. We trained a deep-learning detector to identify samples with MSI 

from these slides; performance was assessed by cross-validation (n=6406 specimens) and 

validated in an external cohort (n=771 specimens). Prespecified endpoints were area under the 

receiver operating characteristic (AUROC) curve and area under the precision-recall curve 

(AUPRC).

Results: The deep-learning detector identified specimens with dMMR or MSI with a mean 

AUROC curve of 0.92 (lower bound 0.91, upper bound 0.93) and an AUPRC of 0.63 (range, 0.59–

0.65), or 67% specificity and 95% sensitivity, in the cross-validation development cohort. In the 

validation cohort, the classifier identified samples with dMMR with an AUROC curve of 0.95 

(range, 0.92–0.96) without image-preprocessing and an AUROC curve of 0.96 (range, 0.93–0.98) 

after color normalization.

Conclusions: We developed a deep-learning system that detects colorectal cancer specimens 

with dMMR or MSI using hematoxylin and eosin-stained slides; it detected tissues with dMMR 

with an AUROC of 0.96 in a large, international validation cohort. This system might be used for 

high-throughput, low-cost evaluation of colorectal tissue specimens.

Graphical Abstract
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Lay summary

Many patients with bowel cancer are not tested for genetic changes. This study showed that and 

artificial intelligence system can complement existing histologic analyses of tissue specimens to 

detect colorectal cancer, increasing the speed and reduce the costs of testing.

Keywords

biomarker; cancer immunotherapy; Lynch syndrome; mutation

Introduction

Mismatch repair deficiency (dMMR) is observed in 10% to 20% of colorectal cancer (CRC) 

patients and indicates a biologically distinct type of CRC with broad prognostic, predictive 

and therapeutic relevance.1 In CRC and other cancer types, dMMR causes microsatellite 

instability (MSI), a specific DNA damage pattern. MSI and dMMR are associated with lack 

of chemotherapy response in intermediate stage CRC (pT3–4 N0–2), a reduced incidence of 

locoregional metastases and hence the opportunity of cure by local excision in early stage 

disease and a reduced requirement for adjuvant chemotherapy in stage II disease. In late-

stage disease, MSI and dMMR are predictive of response to immune checkpoint inhibition 

and is the only clinically approved pan-cancer biomarker for checkpoint inhibition in the 

United States.2 Furthermore, MSI and dMMR are the genetic mechanism driving 

carcinogenesis in Lynch Syndrome (LS), the most common hereditary condition leading to 

colorectal cancer.3 Because of this broad clinical importance, MSI or dMMR testing is 

recommended for all colorectal cancer patients by national and international guidelines such 

as the British National Institute for Health and Care Excellence (NICE) guideline4 and the 

European Society for Medical Oncology (ESMO) guidelines.5 However, in clinical practice, 

only a subset of CRC patients is investigated for presence of MSI or dMMR because of the 

high costs associated with universal testing. This lack of testing potentially leads to 

overtreatment with adjuvant chemotherapy, underdiagnosis of LS, reduced opportunities to 

consider local excision instead of extensive surgery with related risks and morbidity and 

failure to identify candidates for cancer immunotherapy.

Current laboratory assays for MSI and dMMR testing involve a multiplex PCR assay or a 

multiplex immunohistochemistry (IHC) panel. Specifically, MSI can be tested by the 

“Bethesda panel” PCR6 whereas a four-plex IHC can demonstrate absence of one of four 

mismatch-repair (MMR) enzymes (MLH1, MSH2, MSH6, and PMS2)7. However, both 

assays for MSI or dMMR incur cost8, require additional sections of tumor tissue in addition 

to routine hematoxylin and eosin (H&E) histology9 and yield imperfect results. Sensitivity 

and specificity of these tests have been evaluated in numerous population-based studies 

which are summarized in current clinical guidelines.10 In these reference studies, test 

performance of molecular assays is reported with a sensitivity of 100% and specificity of 

61.1%11 or a higher specificity of 92.5% with a lower sensitivity of 66.7%12 for MSI testing. 

Similarly, for IHC based tests, sensitivity is reported as 85.7% with a 91.9% specificity in a 

key study13 while other international guidelines estimate that IHC testing has a sensitivity of 

94% and a specificity of 88%5. This variable performance of clinical gold standard tests 
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indicates that there is need for improvement. In addition, all available tests incur a 

substantial cost and require specialized molecular pathology laboratories. This highlights the 

need for new robust, low-cost and ubiquitously applicable diagnostic assays for MSI or 

dMMR detection in CRC patients.

In routine hematoxylin and eosin (H&E) histological images, MSI and dMMR tumors are 

characterized by distinct morphological patterns such as tumor-infiltrating lymphocytes, 

mucinous differentiation, heterogeneous morphology and a poor differentiation.14 Although 

these patterns are well known to pathologists, manual quantification of these features by 

experts is not reliable enough for clinical diagnosis and therefore is not feasible in routine 

clinical practice.15 In contrast, computer-based image analysis by deep learning has enabled 

robust detection of MSI and dMMR status directly from routine H&E histology: we have 

recently presented16 and later refined17 such a deep learning assay, which was independently 

validated by two other groups18,19. However, all of these studies have used a few hundred 

CRC patients at most, while clinical implementation of a deep learning based diagnostic 

assay requires enhanced sensitivity and specificity to those previously reported and large-

scale validation across multiple populations in different countries.

To address this, we formed the MSIDETECT consortium: a group of multiple academic 

medical centers across and beyond Europe (http://www.msidetect.eu). In this not-for-profit 

consortium, we collected tumor samples from more than 8000 patients with molecular 

annotation. Pre-specified intent was to train and externally validate a deep learning system 

for MSI and dMMR detection in CRC. The primary endpoint was diagnostic accuracy 

measured by area under the receiver operating curve (AUROC), area under the precision-

recall curve (AUPRC) and, correspondingly, specificity at multiple sensitivity levels (99%, 

98%, 95%).

Materials and methods

Ethics statement and patient cohorts

We retrospectively collected anonymized H&E stained tissue slides of colorectal 

adenocarcinoma patients from multiple previous studies and population registers. For each 

patient, at least one histological slide was available and MSI status or MMR status was 

known. We included patients from the following four previous studies with the intent of 

retraining a previously described deep learning system.16,17 First, we used the publicly 

available Cancer Genome Atlas (TCGA, n=616 patients, Suppl. Figure 1), a multicenter 

study with Stage I to IV patients mainly from the United States of America.20 All images 

and data from the TCGA study are publicly available at https://portal.gdc.cancer.gov. 

Second, we used “Darmkrebs: Chancen der Verhütung durch Screening” (DACHS, n=2292, 

Suppl. Figure 2), a population-based study of CRC Stage I to IV patients from south western 

Germany21. Tissue samples from the DACHS study were provided by the Tissue Bank of the 

National Center for Tumor Diseases (NCT) Heidelberg, Germany in accordance with the 

regulations of the tissue bank and the approval of the ethics committee of Heidelberg 

University.21,22 Third, we used samples from the “Quick and Simple and Reliable” trial 

(QUASAR, n=2206, Suppl. Figure 3), which originally aimed to determine survival benefit 

from adjuvant chemotherapy in patients from the United Kingdom with mainly Stage II 
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tumors.23 Lastly, the Netherlands Cohort Study (NLCS, N=2197, Suppl. Figure 4)24,25 

collected tissue samples as part of the Rainbow-TMA consortium, and like DACHS, this 

study included patients with any tumor stage. All studies were cleared by the institutional 

ethics board of the respective institutions as described before (for QUASAR23, DACHS22 

and NLCS25).

With the intent of external validation of the deep learning system, we collected H&E slides 

from the population-based Yorkshire Cancer Research Bowel Cancer Improvement 

Programme (YCR-BCIP)26 cohort, where routine National Health Service diagnosis of 

dMMR was undertaken with further BRAF mutation and/or hMLH1 methylation screening 

to identify patients at high risk of having LS. The primary validation cohort from YCR-

BCIP contained n=771 patients with standard histology after surgical resection (YCR-BCIP-

RESECT, Suppl. Figure 5). For an additional exploratory analysis, we also acquired a non-

overlapping set of n=1531 patients from YCR-BCIP with endoscopic biopsy samples (YCR-

BCIP-BIOPSY, Suppl. Figure 6). A set of N=128 polypectomy samples from the YCR-BCIP 

study (YCRBCIP-BIOPSY) contained only N=4 MSI or MMRd patients and was not used 

for further analyses as AUROC and AUCPR values are not meaningful for such low 

prevalence features. For all patient samples in YCR-BCIP26, a fully anonymized single 

scanned image of a representative H&E slide for each patient was utilized as a service 

evaluation study with no access to tissue or patient data aside from mismatch repair status.

Available clinico-pathological characteristics of all cases in each cohort are summarized in 

Table S1. MSI status in the TCGA study was determined genetically as described before.20 

MSI status in the DACHS study was determined genetically with a three-plex panel as 

described before.27 In the QUASAR, NLCS and YCR-BCIP cohorts, mismatch-repair 

deficiency (dMMR) or proficiency (pMMR) was determined with a standard 

immunohistochemistry assays on tissue microarrays as described before (two-plex for 

MLH1 and MSH2 in NLCS and QUASAR, four-plex for MLH1, MSH2, MSH6 and PMS2 
for YCR-BCIP).23 This study complies with the “Transparent reporting of a multivariable 

prediction model for individual prognosis or diagnosis” (TRIPOD) statement as shown in 

Table S2.

Image preprocessing and deep learning

All slides were individually, manually reviewed by trained observers supervised by expert 

pathologists to ensure that tumor tissue was present on the slide and the slide had diagnostic 

quality. Observers and supervisors were blinded regarding MSI status and any other clinical 

information. Tumor tissue was manually outlined in each slide. A small number of cases 

were excluded due to insufficient quality, technical issues, absence of tumor tissue on the 

observed slide or lack of molecular information (Suppl. Figure 1–6). Tumor regions were 

tessellated into square tiles of 256 μm edge length and saved at a resolution of 0.5 μm per 

pixel using QuPath v0.1.228. Initially, the method pipeline was kept as simple as possible 

and color normalization was not used to preprocess the images. In a slight variation of the 

initial experiments, all image tiles were color-normalized with the Macenko method29 as 

described previously30. A modified shufflenet deep learning system with a 512×512x input 

layer was trained on these image tiles in Matlab R2019a (Mathworks, Natick, MA, USA) 
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with the hyperparameters listed in Table S3, as described before17. Tile-level predictions 

were averaged on a patient level with the proportion of predicted MSI or dMMR tiles 

(positive threshold) being the free parameter for the Receiver Operating Characteristic 

(ROC) analysis. All confidence intervals were obtained by 10-fold bootstrapping. No image 

tiles, or slides from the same patient were ever part of the training set and test set. All trained 

deep learning classifiers were assigned a unique identifier as listed in Table S4. All 

classifiers can be downloaded at https://dx.doi.org/10.5281/zenodo.3627523. Source codes 

are publicly available at https://github.com/jnkather/DeepHistology.

Experimental design

All deep learning experiments (training and test runs) were pre-specified and are listed in 

Table S5. All patients from TCGA, DACHS, QUASAR and NLCS were combined and 

served as the training set (“international cohort”). To assess the magnitude of batch effects, 

we trained a deep learning system on each sub-cohort in this international training cohort, 

assessing inter-cohort and intra-cohort performance, the latter being estimated by three-fold 

cross-validation (experiment #1). In addition, we performed a three-fold cross-validation on 

the full international cohort without (experiment #2) and with color normalization 

(experiment #2N), which was used for a detailed subgroup analysis according to predefined 

clinic-pathological and molecular subgroups. To identify the optimal number of patients 

needed for training, we used the international cohort, randomly set aside n=906 patients for 

testing, and trained on increasing proportions of the remaining n=5500 patients (experiment 

#3). To evaluate the deep learning system in an independent, external, population-based 

cohort, we trained on the international cohort and tested on YCR-BCIP-RESECT 

(experiment #4, this was the primary objective of our study). This experiment was repeated 

with color-normalized image tiles (experiment #4N). YCR-BCIP-RESECT was regarded as 

the “holy” test set and was not used for any other purpose than to evaluate the final classifier. 

Exploratively, we also evaluated the final classifier on YCR-BCIP-BIOPSY (experiment #5). 

Furthermore, to investigate the performance “train-on-biopsy, test-on-biopsy”, we 

exploratively trained a three-fold cross-validated classifier on YCR-BCIP-BIOPSY 

(experiment #6).

Results

Deep learning consistently predicts MSI in multiple patient cohorts

In the MSIDETECT consortium, a deep learning system was trained to predict MSI or 

dMMR status from digitized routine H&E whole slide images alone, with ground truth 

labels according to local standard procedures (PCR testing for MSI or IHC testing for 

dMMR). First, we investigated deep learning classifier performance in patients of the 

TCGA, DACHS, QUASAR and NLCS cohorts alone. We found that training the deep 

learning system on individual cohorts yielded an intra-cohort AUROC of 0.74 [0.66, 0.80] in 

the TCGA cohort (n=426), 0.89 [0.86, 0.91] in the QUASAR cohort (n=1770), 0.92 [0.91, 

0.94] in the DACHS cohort (n=2013) and 0.89 [0.88, 0.92] in the NLCS cohort (n=2197 

patients) (Table S6). This high intra-cohort performance dropped in some inter-cohort 

experiments (Table 1, experiment #1 in Table S5). Together, these data show that deep 
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learning systems attain high diagnostic accuracy in single-center cohorts but do not 

necessarily generalize to other patient cohorts.

Increasing patient number compensates for batch effects and improves performance

In the intra-cohort experiments (Table 1), training on larger cohorts generally yielded higher 

performance, corroborating the theoretical assumption that training on larger data sets yields 

more robust classifiers. To quantify this effect, we merged all patients from TCGA, DACHS, 

QUASAR and NLCS in a large “international cohort” (n=6406 patients) (Figure 1a). From 

these digitized whole slide histology images, we created a library of image tiles for training 

deep learning classifiers (Figure 1b). Thus, we increased the patient number as well as the 

data heterogeneity due to different pre-analytic pipelines in the respective medical centers. 

We set aside a randomly chosen proportion of n=906 of these patients and re-trained deep 

learning classifiers on 500, 1000, 1500 up to 5500 patients of the international cohort. In this 

experiment, we found that AUROC (Figure 1c) and AUPRC (Suppl. Figure 7) on the test set 

initially increased as the number of patients in the training set increased. However, each 

increase in patient number yielded diminishing performance returns and AUROC and 

AUPRC plateaued at approximately 5000 patients (Figure 1d). The top performance was 

achieved by training on 5500 patients and testing on the fixed test set of n=906 patients, with 

an AUROC of 0.92 [0.90, 0.93] (compared to a baseline of 0.5 by a random model, Figure 

1c), an AUPRC of 0.59 [0.49, 0.63] (compared to a baseline of 0.12 in a random model, 

Suppl. Figure 7, experiment #3 in Table S5), translating to a specificity of 52% at a 

sensitivity of 98%. To ensure that this performance was not due to the random selection of 

the internal test set, we performed a patient-level three-fold cross-validation on the full 

international cohort (n=6406), reaching a similar mean AUROC of 0.92 [0.91, 0.93] (Figure 

1d, experiment #2 in Table S5). Together, these data show that approximately 5000 patients 

are necessary and sufficient to train a high-quality deep learning detector of MSI and 

dMMR.

Clinical-grade performance in an external test cohort

Deep learning systems are prone to overfit to the dataset they were trained on and thus, must 

be validated in external test sets. Correspondingly, the pre-specified primary endpoint of this 

study was the test performance in a completely independent set of patients. This set of 

patients was intended to be population-based, i.e. to mirror the clinico-pathological 

characteristics of a real-world screening population. It was used for no other purpose than to 

validate the final classifier, which was previously trained on the international cohort. The 

test set comprised routine H&E slides from the population-based YCR-BCIP study (YCR-

BCIPRESECT, n=771 patients, one slide per patient). In this population, we found a high 

classification performance with a mean AUROC of 0.95 and [0.92, 0.96] lower and upper 

bootstrapped confidence bounds, respectively (Figure 1e, Table S6, experiment #4). Because 

the target feature MSI and dMMR are unbalanced in real-world populations such as YCR-

BCIP-RESECT, we also assessed the precision-recall-characteristics of this test, 

demonstrating a very high AUPRC of 0.79 [0.74, 0.86], compared to the baseline AUPRC of 

0.14 of the null model in this cohort. These data show that a deep learning system trained on 

a large and heterogeneous international training cohort generalizes well beyond the training 

set, and thus constitutes a tool of potential clinical applicability.
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Prediction performance is robust in clinico-pathological and molecular subgroups

Colorectal cancer comprises a number of anatomically and biologically distinct molecular 

sub-groups, including right- and left-sided colon cancer, rectal cancer, BRAF-driven and 

RAS-driven tumors, among others. This is especially relevant these features are partially 

dependent on each other, e.g. BRAF mutations and right-sidedness are associated with MSI 

status31,32. To assess if image-based MSI prediction is robust across these heterogeneous 

subgroups, we used the cross-validated deep learning system (experiment #2 in Table S5) 

and compared AUROC and AUPRC across subgroups. (Figure 2 and 9). We found some 

variation in classifier performance regarding anatomical location: the AUROC was 0.89 for 

right-sided cancer (n=2371 patients), 0.88 for left-sided cancer (n=3846), 0.91 for colon 

cancer overall (n=4408) and 0.83 for rectal cancer (n=1938). Little variation was observed in 

classifier performance according to molecular features: AUROC was 0.86 in BRAF mutants 

(N=298) and 0.91 in BRAF wild type (N=3226); also, AUROC was 0.90 in KRAS mutants 

(N=1263) and 0.93 in KRAS wild type tumors (N=2248). Finally, we analyzed the 

robustness of MSI predictions for different “Union for International Cancer Control” (UICC) 

stages, showing stable performance with an AUROC of 0.93 in Stage I (N=871), 0.92 in 

Stage II (N=3261) and 0.91 in Stage III (N=1554) tumors and a minor reduction of 

performance in Stage IV patients (N=636) reaching an AUROC of 0.83. In addition, 

histological grading (Suppl. Figure 8) did not influence classification performance. Next, we 

asked if this robust performance across subgroups was maintained in the external test cohort 

(YCR-BCIPRESECT, N=771 patients). Again, in this cohort, we did not find any relevant 

loss in performance with regard to the following subgroups: tumor stage, organ, anatomical 

location and sex (Suppl. Figure 10 and 11). In summary, this analysis demonstrates and 

quantifies variations in performance according to CRC subgroups, but demonstrates that 

overall, MSI and dMMR detection performance is robust.

Application of the deep learning system to biopsy samples

As additional exploratory endpoints, we tested if a deep learning system trained on 

histological images from surgical resections can predict MSI and dMMR status of images 

from endoscopic biopsy tissue. Biopsy samples include technical artifacts (fragmented tissue 

and small tissue area, Suppl. Figure 12a) as well as biological artifacts (they are sampled 

from luminal portions of the tumor only). We acquired endoscopic biopsy samples from 

n=1557 patients in the YCR-BCIP-BIOPSY study and tested the resection-trained classifier 

(experiment #5 in Table S6). We found that AUROC was reduced to 0.78 [0.75, 0.81] 

(Suppl. Figure 12b) in this experiment. In a three-fold cross-validated experiment on all 

n=1531 patients in the YCR-BCIP-BIOPSY cohort, MSI and dMMR detection performance 

was restored to an AUROC of 0.89 [0.88, 0.91] (experiment #6 in Table S5). These data 

suggest that MSI and dMMR testing on biopsies requires a classifier trained on biopsies.

Color normalization improves external test performance

As previous studies have pointed to a benefit of color-normalizing histology images before 

quantitative analysis29, the main experiments in this study were repeated on color-

normalized image tiles. Native (non-normalized) image tiles (Figure 4A) were subjectively 

more diverse in terms of staining hue and intensity than normalized tiles (Figure 4B). 
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Repeating MSI and dMMR prediction by three-fold cross-validation on the full international 

cohort with color-normalized tiles (experiment #2N in Table S5), we found that color 

normalization modestly improves specificity at pre-defined sensitivity levels: Specificity was 

57% at 99% sensitivity in experiment #2N, as opposed to specificity of 38% at 99% 

sensitivity in the corresponding non-normalized experiment (#2). However, this increase in 

specificity did not result in a higher AUROC overall (Table S5). To test if color 

normalization improves external test performance of MSI and dMMR predictors, we 

repeated experiment #4 (train on full international cohort, external test on YCR-BCIP-

RESECT) after color normalization (experiment #4N). In this case, AUROC did improve (no 

normalization in #4: AUROC 0.95 [0.92, 0.96], color normalization in #4N: AUROC 0.96 

[0.93, 0.98]). This slight increase in AUROC translated into a higher specificity at 

predefined sensitivity levels, reaching 58% specificity at 99% sensitivity (Table S5). These 

data show that color normalization can further improve classifier performance and improves 

generalizability of deep learning-based inference of MSI and dMMR status.

Discussion

A clinical-grade deep learning-based molecular biomarker in cancer

Analysing more than 8000 CRC patients in an international consortium, we demonstrate that 

deep learning can reliably detect MSI and dMMR tumors based on routine H&E histology 

alone. In an external validation cohort, the deep learning MSI and dMMR detector 

performed with similar characteristics to gold standard tests12, reaching clinical-grade 

performance. As shown in previous studies16 it can be assumed that this deep learning-based 

method can be cheaper and faster than routine laboratory assays and therefore has the 

potential to improve clinical diagnostic workflows. Our data show that classifier 

performance in surgical specimens remains robust even when the classifier is applied to 

external cohorts, but performance is lower in biopsy samples where tissue areas are much 

smaller than those of surgically resected specimens. This highlights the need to perform 

thorough large-scale evaluation of deep learning-based biomarkers in each intended use 

case. Deep learning histology biomarkers such as the MSI and dMMR detection system can 

be made understandable by visualization of prediction maps (Figure 3a–i) or by visualizing 

highly scoring image tiles (Suppl. Figure 13a–b). Together, these approaches show that the 

deep learning system yielded plausible predictions. For example, high MSI or dMMR scores 

were assigned to poorly differentiated tumor tissue (Suppl. Figure 13a) while high MSS or 

pMMR scores were assigned to well-differentiated areas. Interestingly, the spatial patterns of 

tile-level predictions showed varying degrees of heterogeneity: In all analyzed true positive 

MSI and dMMR cases in the YCR-BCIP-RESECT validation cohort, we found a 

homogeneously strong prediction of MSI and dMMR as shown in Figure 3a and d. In 

contrast, predictions in true MSS and pMMR cases were more heterogeneous. Necrotic, 

poorly differentiated or immune-infiltrated areas tended to be falsely predicted to be MSI or 

dMMR (Figure 3c and f). However, as patient-level predictions reflected overall scores in 

the full tumor area, most true MSS and pMMR patients were correctly predicted after 

pooling tile-level predictions, despite some degree of tile-level heterogeneity.

Echle et al. Page 9

Gastroenterology. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Clinical application: pre-screening or definitive testing

In this study, diagnostic performance was stable across multiple clinically relevant 

subgroups, except for lower-than-average performance in rectal cancer patients, possibly due 

to neoadjuvant pre-treatment of some of these patients. In summary, this study defines a 

thoroughly validated deep learning system for genotyping CRC based on histology images 

alone, which could be used in clinical settings after regulatory approval. By varying the 

operating threshold, sensitivity and specificity of this test can be changed according to the 

clinical workflow this test is embedded in: High-sensitivity deep learning assays could be 

used to pre-screen patients and could trigger additional genetic testing in case of positive 

predictions. Even with imperfect specificity, such classifiers could speed up the diagnostic 

workflow and provide immediate cost-savings, especially in the context of universal MSI 

and dMMR testing as recommended by clinical guidelines. Recent discussions and 

calculations on cost-effectiveness of systematic MSI or dMMR testing in CRC patients33 

should incorporate deep-learning-based assays among the other strategies in the future. 

Alternatively, deep learning biomarkers such as the method presented in this study could be 

used for definitive testing in the clinic, especially in healthcare settings in which limited 

resources are currently prohibitive for universal molecular biology tests. Further studies are 

needed to determine optimal operating thresholds for specific patient populations and 

clinical settings. In addition, clinical deployment will require prospective validation and 

regulatory approval. Ultimately, this method should rapidly identify MSS and pMMR cases 

with high certainty and identify high risk MSI, dMMR and possible LS cases for 

confirmation by other tests. This could substantially reduce molecular testing load in clinical 

workflows and enable direct, universal low-cost MSI and dMMR testing from ubiquitously 

available routine material. Technical improvements could conceivably further improve 

performance and open up new clinical applications. In this study, we explored color 

normalization as a way of reducing heterogeneity in staining intensity and hue between 

patient cohorts. This intervention (experiment #4N in Table S5) modestly improved 

performance, increasing specificity from 51% to 58% at 99% sensitivity in an external 

validation cohort. The deep learning system and the source codes used in this study have 

been publicly released, enabling other researchers to independently validate and, potentially, 

further improve its performance.

Limitations

A limitation to our experimental workflow is that the ground truth labels used to train the 

deep learning system are imperfect. In the MSIDETECT group, clinical routine assays were 

used to assess MSI or dMMR status and these assays have a non-zero error rate. 

Correspondingly, classifier performance could suffer from noisy labels in the training data. 

On the other hand, test cases flagged as “false positive” could be true MSI or dMMR cases 

that were missed by the clinical gold standard test. Ultimately, it is conceivable that deep 

learning assays can outperform classical genetic or molecular tests in terms of predictive and 

prognostic performance, but testing this hypothesis would require large cohorts with clinical 

end point data and/or deep genetic characterization. In particular, the deep learning classifier 

could potentially detect rare genetic aberrations with MSI-like morphology, but again, lack 

of large training cohorts for these rare features currently precludes deeper investigation of 

this aspect. Another potential limitation of this study is the performance in patient groups of 
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potential clinical interest that were not analyzed in the subgroup analysis, such as hereditary 

versus sporadic MSI and dMMR cases or different ethnic backgrounds. This is due to the 

lack of available clinical data in the utilized patient cohorts and future studies are needed to 

investigate the stability of deep learning-based prediction in these and further sub-

populations.

Interestingly, when we analyzed the per-patient predictions of MSI status in the external test 

set (YCR-BCIP-RESECT), we found an outlier among the “false negative” predictions: 

patient #441999 had a very low “predicted MSI probability” of less than 15%, while all 

other “true MSI” patients had MSI probability scores more than 40%. We went back to the 

original histology slide of patient #441999 and noticed that a technical artifact had resulted 

in a blurred image, which was only visible at high magnification and had thus gone 

undetected in the manual quality check. This shows that an improved quality control at 

multiple magnification levels could increase sensitivity of the deep learning assay 

maintaining a high specificity.

Finally, a possible practical challenge in further validation and future integration of the DL 

methods in a clinical workflow is the current lack of regular installation of slide scanners in 

hospitals. However, in the United Kingdom and other countries, large academic consortia are 

currently implementing nation-wide digital pathology workflows. This trend can be expected 

to further accelerate and will be supported by clinically useful applications of deep learning 

technology, especially after regulatory approval of such tools34. Still, initially it is probably 

more realistic to establish central testing facilities that are equipped with slide scanners and 

further hardware needed for deep learning applications. In this setting smaller hospitals and 

medical centers would not be confronted with high fixed costs but only with expenses and 

work that come with the distribution of H&E glass slides to central testing facilities.

Context: multicenter validation of deep learning biomarkers

Recent years have seen a surge of deep learning methods in digital pathology, but previous 

large-scale studies are limited to simple image analysis tasks such as tumor detection35 and 

do not extend to scenarios of molecular biomarker detection. Smaller proof-of-concept 

studies have shown that deep learning can detect a range of molecular biomarkers directly 

from routine histology, including multiple clinically relevant oncogenes17–19. However, 

these classifiers were not validated in large multicenter cohorts and cannot be readily 

generalized beyond the training set. The present study is the first international collaborative 

effort to validate such a deep learning-based molecular biomarker. It identifies the need for 

very large series, training on a variety of sample types e.g. resection and biopsy and different 

populations. The high performance in this particular use case yields a tool of immediate 

clinical applicability and provides a blueprint for the emerging class of deep-learning-based 

molecular tests in oncology, with the potential to broadly improve workflows in precision 

oncology worldwide.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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What you need to know

Background and context:

Microsatellite instability (MSI) and mismatch-repair deficiency (dMMR) in colorectal 

tumors are used to select treatment for patients. Deep learning can detect MSI and 

dMMR in tumor samples on routine histology slides faster and cheaper than molecular 

assays.

New findings:

We developed a deep-learning system that detects colorectal tumor specimens with MSI 

using hematoxylin and eosin-stained slides; it detected tissues with MSI with an area 

under the receiver operating characteristic curve of 0.95 in a large, international 

validation cohort.

Limitations:

This system requires further validation before it can be used routinely in the clinic.

Impact:

This system might be used for high-throughput, low-cost evaluation of colorectal tissue 

specimens.
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Figure 1: Deep learning workflow and learning curves.
(A) Histological routine images were collected from four large patient cohorts. All slides 

were manually quality-checked to ensure presence of tumor tissue (circled in black). (B) 

Tumor regions were automatically tessellated and a library of millions of non-normalized 

(native) image tiles was created. (C) The deep learning system was trained on increasing 

numbers of patients and evaluated on a random subset (n=906 patients). Performance 

initially increased by adding more patients to the training set, but reached a plateau at 

approximately 5000 patients. (D) Cross-validated experiment on the full international cohort 

(comprising TCGA, DACHS, QUASAR and NLCS). Receiver operating characteristic 

(ROC) with true positive rate (TPR) shown against false positive rate (FPR), area under the 

ROC curve (AUROC) is shown on top. (E) ROC curve (left) and precision-recall-curve 

(right) of the same classifier applied to a large external dataset. High test performance was 

maintained in this dataset and thus, the classifier generalized well beyond the training 

cohorts. Black line = average performance, shaded area = bootstrapped confidence interval, 

red line = random model (no skill).
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Figure 2: Cross-validated subgroup analysis for detection of MSI and dMMR in the 
international cohort (n=6406 patients).
AUC = area under the receiver operating curve as shown in the image, TPR = true positive 

rate, FPR = false positive rate, WT = wild type, MUT = mutated.
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Figure 3: Prediction map in the external test cohort YCR-BCIP-RESECT.
(A-C) Representative images from the YCR-BCIP-RESECT test cohort labeled with 

immunohistochemically defined mismatch repair (MMR) status. (D-F) Corresponding deep 

learning prediction maps. The edge length of each prediction tile is 256 μm. (G-I) Higher 

magnification of regions highlighted in a-e. True MSI or dMMR patients were strongly and 

homogeneously predicted to be MSI or dMMR (such as the patient shown in A). True MSS 

or pMMR patients were overall predicted to be MSS or pMMR (such as the patients in B 

and C), but a pronounced heterogeneity was observed in necrotic areas, poorly differentiated 

areas and immune-infiltrated tumor areas at the invasive edge.
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Figure 4: Effect of color normalization on classifier performance.
(A) A representative set of tiles from the MSIDETECT study. (B) The same tiles after color 

normalization. (C) Classifier performance on an external test set (YCR-BCIP-RESECT, 

n=771 patients) improves after color-normalizing training and test sets. Experiment #4N is 

with color normalization, experiment #4 is without color normalization. AUROC: area under 

the receiver operating curve, TPR: true positive rate, FPR: false positive rate.
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Table 1:

Estimating batch effects by analyzing intra-cohort and inter-cohort performance in all sub-cohorts in the 

international cohort.

train on TCGA n=426 
15% MSI

train on QUASAR n=1770 
14% dMMR

train on DACHS n=2013 
14% MSI

train on NLCS n=2197 
10% dMMR

test on TCGA (US) 0.74 [0.66, 0.80] 0.76 [0.70, 0.79] 0.77 [0.73, 0.79] 0.72 [0.71, 0.78]

test on QUASAR (UK) 0.67 [0.64, 0.68] 0.89 [0.86, 0.91] 0.71 [0.68, 0.75] \ 0.76 [0.73, 0.78]

test on DACHS (DE) 0.81 [0.79, 0.83] 0.68 [0.65, 0.72] 0.92 [0.91, 0.94] 0.80 [0.78, 0.82]

test on NLCS (NL) 0.77 [0.74, 0.79] 0.80 [0.78, 0.81] 0.82 [0.79, 0.83] 0.90 [0.89, 0.91]

Main performance measure was area under the receiver operating curve, shown as mean with lower and upper bounds in a 10-fold bootstrapped 
experiment. Intra-cohort-performance was estimated by three-fold cross-validation. US = United States, UK = United Kingdom, DE = Germany, 
NL = Netherlands, MSI = microsatellite instability, dMMR = mismatch repair deficiency.
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