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SUMMARY

Although the major events in prokaryotic cell cycle progression are likely to be coordinated with 

transcriptional and metabolic changes, these processes remain poorly characterized. Unlike many 

rapidly growing bacteria, DNA replication and cell division are temporally resolved in 

mycobacteria, making these slow-growing organisms a potentially useful system to investigate the 

prokaryotic cell cycle. To determine whether cell-cycle-dependent gene regulation occurs in 

mycobacteria, we characterized the temporal changes in the transcriptome of synchronously 

replicating populations of Mycobacterium tuberculosis (Mtb). By enriching for genes that display 

a sinusoidal expression pattern, we discover 485 genes that oscillate with a period consistent with 

the cell cycle. During cytokinesis, the timing of gene induction could be used to predict the timing 

of gene function, as mRNA abundance was found to correlate with the order in which proteins 

were recruited to the developing septum. Similarly, the expression pattern of primary metabolic 

genes could be used to predict the relative importance of these pathways for different cell cycle 

processes. Pyrimidine synthetic genes peaked during DNA replication, and their depletion caused 

a filamentation phenotype that phenocopied defects in this process. In contrast, the inosine 

monophasphate dehydrogenase dedicated to guanosine synthesis, GuaB2, displayed the opposite 

expression pattern and its depletion perturbed septation. Together, these data imply obligate 

coordination between primary metabolism and cell division and identify periodically regulated 

genes that can be related to specific cell biological functions.
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Bandekar et al. find that mycobacterial cell cycle progression is associated with transcriptional 

remodeling, which predicts the timing of gene function. This property can be used to order the 

assembly of multi-protein complexes and to associate primary metabolic pathways with major 

cellular events, such as DNA replication and cytokinesis.

INTRODUCTION

Much of prokaryotic cell biology has been elucidated under rapid growth conditions in 

which chromosomal replication takes longer than the doubling time of the cell [1, 2]. Under 

these conditions, the production of complete chromosomes for daughter cells is ensured via 

the simultaneous initiation of multiple rounds of DNA replication, and it is not possible for 

cells to segregate DNA replication from cytokinesis. However, this paradigm might not 

apply to many bacteria in the environment. For example, Caulobacter crescentus exploits a 

developmental program that produces distinct sessile and motile cells, which is associated 

with a strict cell cycle that segregates DNA replication from cytokinesis. More generally, 

most bacteria in their natural, nutrient-poor environments persist in slow-growing states [3]. 

When these conditions are modeled in nutrient-restricted Escherichia coli, major cellular 

events become restricted into distinct cell cycle periods B, C, and D, which are analogous to 

G1, S, and G2 in eukaryotic organisms [4, 5].

The prokaryotic cell cycle has been most thoroughly studied in C. crescentus, largely 

because it is possible to produce cultures in which cells are replicating synchronously with 

respect to the cell cycle. In this organism, cell cycle progression is controlled by a regulatory 

cascade [6, 7] that is conserved across the alphaproteobacteria [8] and is associated with the 

periodic expression of almost 20% of the genome. In addition to genes that directly control 

this process, a variety of metabolic pathways are also regulated in a cell-cycle-dependent 

manner. This apparent link between metabolism and cell cycle is supported by the 

oscillation of metabolites, such as nicotinamide adenine dinucleotide phosphate [NAD(P)H] 

[9] and adenosine triphosphate (ATP), [10] during the cell cycle in E. coli and the ability of 

uridine diphosphate glucose (UDP-glucose) levels to influence cell division timing in B. 
subtilis [11] and E. coli [12]. Although these data suggest that cell cycle progression is likely 

coupled to metabolism, it remains unclear how these processes interact and whether insights 

from transcriptional profiling in C. crescentus are generalizable to more diverse bacteria.

We sought to extend these paradigms to mycobacteria, a diverse genus that contains both 

saprophytic species and important human pathogens, such as Mycobacterium tuberculosis 
(Mtb). Time-lapse microscopy studies show that these organisms constitutively employ a 

segregated cell cycle where DNA replication occurs only once per cycle in the majority of 

cells [13–17]. The average duration of the G1, S, and G2 periods in Mtb range from 6 to 8 h, 

9 to 12 h, and 6 to 9 h, respectively [18]. These observations are supported by metabolic 

labeling studies in synchronously replicating cultures of Mtb, which can be generated by 

using a mutant strain that harbors a cold-sensitive (cos) allele of the DNA replication 

initiator DnaA [19]. This Mtbcos strain is unable to initiate DNA replication at 30°C. Upon 

release into the permissive temperature (37°C), cultures synchronously incorporate 

radiolabeled nucleotides into DNA for 11 h, consistent with the S period observed in single 
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cells. The ability to produce synchronously replicating cultures that recapitulate the behavior 

of single cells makes mycobacteria an attractive system to investigate the cell cycle.

Using the Mtbcos strain, we determined the transcriptional profile of synchronously 

replicating Mtb across the cell cycle and report that 485 genes are periodically expressed. 

Only a small fraction of the cell-cycle-regulated gene sets of Mtb and C. crescentus overlap, 

suggesting species-specific transcriptional programs. We demonstrate that mRNA 

expression patterns in Mtb reflect the time at which the encoded proteins are incorporated 

into the developing septum, suggesting that functional information can be inferred from the 

kinetics of gene expression. Using this framework, we discover that disruption of different 

nucleotide anabolic pathways primarily affects distinct cellular processes. These 

observations show that DNA replication and cytokinesis are coordinated with different 

primary metabolic pathways, expanding the processes that are required for these essential 

cellular events.

RESULTS

DNA Replication and Cytokinesis Are Segregated in Synchronously Growing Mtb

We generated synchronously replicating cultures of Mtb by using the temperature-sensitive 

Mtbcos strain [19]. Chromosomal replication was inhibited by incubating this strain at 30°C 

for 36 h. Upon shift to the permissive temperature (37°C), the optical density 

(Absorbance600) of a parallel unsynchronized culture of strain H37Rv (MtbRv) increased at 

a constant rate over a 54-h time course, demonstrating that nutrients did not become 

limiting. Mtbcos showed a reproducible multiphasic growth pattern, an initial indication that 

cellular metabolism might be linked to cell cycle events (Figure 1A).

In order to estimate the efficiency of the synchronization and to delineate cell cycle periods, 

we monitored chromosomal replication and cytokinesis over time. The phosphothreonine-

binding protein, FhaA, marks sites of division [20], and we used a fluorescent allele of this 

protein to calculate a “septation index” that corresponded to the fraction of cells with FhaA 

at midcell. Although the septation index of an asynchronous MtbRv culture was constant 

throughout the time course, this metric varied in a periodic manner in Mtbcos. The majority 

of cells arrested at the non-permissive temperature had an FhaA focus at midcell, which is 

likely an artifact of the DnaA inactivation. The septation index of Mtbcos quickly decreased 

upon shift to the permissive temperature, falling below that of unsynchronized cultures by 12 

h. Septation reached a peak in Mtbcos between 27 and 33 h post-release (HPR), marking 

cytokinesis (Figure 1B).

To monitor chromosomal replication, we quantified the relative abundance of DNA at the 

origin (ori) and terminus (ter) of replication. Upon initiation of replication, the ori:ter ratio is 

2:1, and this ratio is maintained until the terminus is duplicated (ori:ter = 1:1). As we 

observed for septation index, ori:ter ratio remained constant in unsynchronized cultures. In 

contrast, the ori:ter ratio peaked twice in synchronized cultures (Figure 1C). The first peak 

lasted for approximately 12 h (between 15 and 27 HPR) and second one lasted between 48 

HPR and the end of the study. On the basis of these data, we estimate that our time course 

captured ~1.5 cell cycles. Both the septation index and ori:ter varied by approximately 50% 

Bandekar et al. Page 3

Curr Biol. Author manuscript; available in PMC 2021 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of the range expected of fully synchronized cells, indicating that the synchrony of our 

cultures was incomplete.

In order to characterize cell cycle dynamics in the synchronized cultures, we created a 

computational model that incorporated cell growth, division, and each of the measured 

values (optical density [OD], septation index, and ori:ter). Using a systematic search over 

parameter combinations, we identified an optimal set of values for a model that correlated 

with the experimental data (Figure 1D). Incomplete synchronization resulted from deriving 

parameters via random sampling of Gaussian distributions. This produced variation in cell 

cycle initiation, S phase duration, and cell cycle length. Our model produced dispersion in 

the predicted ori:ter (~8–20 HPR) and septation index (~25–35 HPR) peaks, which 

resembled experimental observations. This modeling confirmed that DNA replication is 

temporally separated from cytokinesis, and the cultures were sufficiently synchronized to 

perform transcriptional profiling.

Periodic Gene Expression Correlates with Cell Cycle Progression

To investigate whether gene expression changes are associated with major cellular events 

like DNA replication and cytokinesis, we profiled mRNA abundance in synchronized 

cultures every 3 h across a 54-h time course. Cells were collected and processed for RNA 

extraction within 5–7 min, which is less than the 9.5-min average mRNA half-life in Mtb 
[21]. We first assessed correlation patterns in the dataset. The initial time point after 

temperature shift to 37°C (0 h) was uncorrelated with the rest of the dataset, presumably due 

to the temperature shift, and was omitted. To minimize the effects of minor changes in 

culture conditions over time, we first removed 50 genes that had highly correlated (>0.9) 

expression patterns in synchronized Mtbcos and a parallel unsynchronized culture of 

MtbRv. Additionally, we removed 182 genes whose expression changed substantially in 

MtbRv over the time course (Data S2). These transcriptional trends included an increase in 

expression of the redox-sensitive dosR regulon [22] and nitrate reductase (narG and narX) 

and a decrease in several functions associated with growth (e.g., ATP synthase, cytochrome 

components qcrB and cydA, and mycolate synthesis). For the remaining data, we found the 

highest degree of correlation between adjacent time points, as expected for a time-resolved 

dataset (Figure 2A). Although the transcriptional profiles of the unsynchronized cultures 

remained relatively consistent over time, the correlation matrix from the Mtbcos cultures 

suggested the presence of transcriptionally distinct phases that could not be explained by 

changes in culture conditions. This structure is even more apparent upon hierarchical 

clustering, which revealed an ordered progression of gene expression throughout the time 

course (Figure S1A).

To take advantage of both replicate measurements and the relatedness of adjacent time 

points, we used Gaussian process (GP) smoothing to estimate the relative expression level of 

each gene across the time course (Figure S1B). The expression of genes with cell-cycle-

related functions was found to peak during the appropriate period. For example, genes 

important for cell division, such as the regulator, mtrA [23], or the septal components, sepF 
[24] and sepIVA [25], peaked during cytokinesis. Similarly, genes important for DNA 

replication, such as those encoding DNA primase (dnaG) and the replicative polymerase 
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(polA) displayed peaks corresponding to DNA replication (Figure 2B). In addition, we 

found that the expression pattern of several primary metabolic pathways mirrored these cell-

cycle-related genes. For example, genes necessary for arginine biosynthesis were co-

regulated and had opposing expression patterns to genes involved in arginine catabolism 

(Figure 2B).

In order to formally define genes with expression patterns consistent with cell cycle 

progression, we fit the expression profile of each gene to a sinusoidal function with the 

expected period of the Mtb cell cycle, optimizing the parameters for trend, amplitude, 

period, and phase. Genes with a period outside the range of reasonable expectations based 

on the Mtb cell cycle were omitted (27.5 h < period < 55 h), along with poorly expressed 

genes (mean expression < 0.25). A goodness-of-fit criterion based on curve-fitting residuals 

was applied, which maximized the difference in genes discovered in synchronized versus 

unsynchronized cultures. These criteria produced a false discovery rate of 0.35% by using a 

permuted dataset and 2.6-fold enrichment for genes in the synchronized cultures. 485 genes 

were categorized as periodically expressed (Figure 2C; Data S3), which represented all 

major functional categories (Figure 2D).

Hierarchical clustering this set of periodically regulated genes further highlighted the 

association between gene function and cell cycle. Genes were distributed into 8 clusters on 

the basis of Mtbcos expression profiles (Figure S2), producing groups of coordinately 

regulated genes with peak expression values ranging across the time course. Three clusters 

(Figure 2E) containing 158 genes peaked in expression during DNA replication. Of the 20 

periodically expressed genes annotated to be involved in DNA or nucleotide metabolism, 13 

were found in these three clusters. The enrichment of DNA- and nucleotide-associated genes 

in these clusters (p = 0.002) served as an initial indication that mRNA abundance could be 

associated with gene function.

The periodically regulated gene set of Mtb represents 12% of the genome, whereas between 

9.5% and 19% of the chromosomal genes of the α-proteobacteria Sinorhizobium meliloti 
[26] and C. crescentus [6, 27] were found to be cell cycle regulated. We compared our set of 

Mtb periodic genes with orthologs from the most analogous previous analysis. Out of the 

880 mutual orthologs identified as reciprocal best BLAST matches, 182 genes were defined 

as cell cycle regulated in C. crescentus [27] and 142 were periodically expressed in Mtb, and 

there was an overlap of 15 genes (Figure 2F; Table S1). This overlap contains genes with 

possible cell-cycle-associated functions, such as the DNA replication initiator, dnaA; the 

nucleoid-associated protein, hupB/ihfA; the regulator of ribonucleotide reductase, nrdR; and 

a regulator of cell wall homeostasis, htrA [28]. Although this similarity was statistically 

significant (p < 4.56e–04), the modest degree of overlap suggests that these two 

phylogenetically distinct organisms possess different transcriptional networks. This 

observation is consistent with the modest overlap of only 28% between cell-cycle-regulated 

gene sets defined even in the much more phylogenetically similar species, C. crescentus and 

S. meliloti [26].

Periodic gene expression studies in C. crescentus led to the elucidation of a conserved 

cascade of transcription factors (TFs) that control cell cycle progression [7, 29]. Similarly, 
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we found that 39 of the 206 TFs of Mtb [30] were periodically expressed (Table S2). These 

included mtrA, a component of the septally localized MtrAB regulator that contributes to 

cell division [23]; parD1, a homolog of parD that is necessary for chromosome partitioning 

in E. coli [31]; and argR, the repressor of the arginine synthetic operon that is cell cycle 

regulated (Figure 2B). In addition, transcripts encoding the nucleoid-associated proteins, 

Hns and HupB, were found, suggesting cell-cycle-associated changes in chromosomal 

structure. Although these observations implicate several DNA-binding proteins in cell cycle 

control, the high degree of correlation in our time series data precluded the association of 

specific TFs with downstream regulons.

mRNA Abundance Predicts the Order of Divisome Assembly

The order in which large multicomponent structures, such as the flagellum, are assembled in 

bacteria can be predicted based on the expression of the corresponding transcripts [32]. 

Consistent with this “just in time” transcription model [33], the large complex of proteins 

necessary for cell division, the “divisome,” assembles in an ordered fashion in C. crescentus 
[34]. We hypothesized that divisome assembly in mycobacteria might follow the same 

principles and provide a system to determine whether mRNA abundance could be used to 

predict the timing of gene function. To test this model, we assessed the temporal coincidence 

between mRNA abundance and protein localization at the developing septum.

We identified genes that peak in expression only once between 22 and 38 HPR, consistent 

with a role in cytokinesis (Data S3). We then clustered these genes on the basis of similar 

expression patterns (Figure 3A). Within these clusters, we found a number of genes known 

to be involved in cytokinesis (Figure 3A). To avoid selection biases, we compiled a list of 22 

known septation-associated genes [24, 25, 35–37] and found that 13 of these passed our 

filters for expression level and were found in one of these clusters (Figures 3A and S3). The 

expression patterns of characteristic genes are shown in Figure 3A. The first to be induced 

was ftsZ, the tubulin-like nucleator of the septum. This peak was followed sequentially by 

mRNAs encoding the septally localized Ser/Thr kinase, PknD; the divisome-associated 

FtsW, SepIVA, and LamA proteins; and the new pole landmark protein, DivIVA. To 

determine whether the timing of expression predicts the order of assembly, we chose three 

genes with different expression peaks within the cytokinesis window—pknD (early), ftsW 
(middle), and divIVA (late). Pairs of these proteins were fused with fluorescent tags and 

expressed from constitutive promoters so that the order of assembly at the septum could be 

observed independently of transcriptional regulation. The cellular location of these protein 

fusions was then determined in M. smegmatis, a related mycobacterial species that expresses 

orthologs of these proteins and is an experimentally tractable model of mycobacterial 

division [13, 16, 38]. Time-lapse imaging revealed that PknD, FtsW, and DivIVA appear at 

the developing septum in the order predicted by mRNA abundance (Figures 3B–3D), 

indicating that transcript level could be used to predict the timing of gene function at the 

developing septum.

Guanosine Synthesis Influences Cytokinesis

Having demonstrated that gene expression can predict the timing of gene function, we 

investigated whether coordination exists between cellular events, such as DNA replication 
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and cytokinesis, and upstream pathways that produce the precursors for these processes. In 

particular, we focused on nucleotide metabolism by analyzing the expression patterns of 

enzymes that produce the nucleobase rings. In order to focus specifically on nucleotide 

anabolism, we did not consider reactions that require amino acid donors, because we could 

not rule out roles for those enzymes in amino acid metabolism. Pyrimidine biogenesis, from 

the early stages of the carAB-encoded reactions to the later pyrBCDEF-encoded reactions, 

was most highly expressed during S phase (Figure 4A), consistent with previous reports of 

increased de novo synthesis during DNA replication in E. coli [39, 40]. Unexpectedly, 

expression of guaB2, encoding the IMP dehydrogenase that catalyzes the first reaction 

dedicated to guanosine synthesis, peaked during cytokinesis (Figure 4A). Genes dedicated to 

synthesizing adenosine from IMP, purB and amk, did not appear to be cell cycle regulated.

The reciprocal expression patterns of pyrimidine and guanosine synthetic genes suggested 

that the requirement for these metabolites was associated with distinct cellular events.

To investigate this hypothesis, we generated mutant Mtb strains in which synthesis of 

pyrimidines or guanosine was inhibited via the inducible depletion of PyrE or GuaB2. Each 

gene was fused to a C-terminal DAS+4 tag (DAS) that facilitated Clp protease-mediated 

degradation upon removal of anhydrotetracycline (aTc) [41]. In both cases, protein depletion 

inhibited bacterial growth (Figure 4B), consistent with the essentiality of these pathways 

[42]. As Mtb expresses three GuaB paralogs, we verified that GuaB2 is essential for 

guanosine synthesis by metabolite supplementation. Consistent with previous studies [43], 

guanine partially rescued the growth defect of the guaB2-DAS strain, whereas guanosine led 

to complete rescue (Figure 4C).

The inverse expression patterns of pyr genes and guaB2 implied that increased de novo 
synthesis of pyrimidine nucleotides and guanosine was preferentially required for DNA 

synthesis or cytokinesis, respectively. We used morphological criteria to infer which cellular 

process was primarily impacted by the inhibition of these pathways. PyrE depletion resulted 

in cell elongation prior to growth arrest (Figure 4D). A similar phenotype was observed 

upon DNA gyrase GyrB depletion and in cells treated with the gyrase-inhibiting 

fluoroquinolone, moxifloxacin (Figure 4D), which disrupts DNA replication and causes cell 

filamentation in E. coli [44]. Thus, pyrimidine depletion causes cell elongation upon 

inhibition of DNA replication, a phenotype consistent with previous observations in B. 
subtilis [45] and mycobacteria [46, 47].

In contrast, GuaB2-depleted cells were the same length as wild type, but many of these 

growth-arrested cells had bulges at midcell or one pole, suggesting that GuaB2 depletion 

might influence cell division (Figure 4D). This morphological phenotype did not occur in 

guanine- or guanosine-supplemented growth conditions, verifying that it was due to 

metabolite depletion (Figure 4C). To determine whether the polar bulges were derived from 

misshapen septa, we performed time-lapse microscopy in M. smegmatis cells treated with a 

chemical inhibitor of GuaB2 (VCC234718). Chemical inhibition of GuaB2 also inhibited 

growth and produced bulges at midcell or one pole (Figure 4E). Time-lapse microscopy 

revealed that VCC234718-treated cells began to bulge at midcell by the completion of 1 to 2 

cell cycles, and misshapen poles were derived from these bulges. These observations imply 
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that the cellular requirement for guanosine increases during cytokinesis and that this 

requirement is reflected in the aberrant septation of guanosine-depleted cells.

FtsZ is an abundant protein that binds and hydrolyzes guanosine triphosphate (GTP) [48] as 

it undergoes the cycles of polymerization and depolymerization necessary for septation [49]. 

This GTP requirement suggested a mechanism connecting guanosine nucleotide levels and 

septation. To investigate whether the effect of guanosine depletion on septation could be 

attributed to altered FtsZ dynamics, we inhibited both processes simultaneously using the 

GuaB2 inhibitor (VCC234718) and C109, an inhibitor of FtsZ GTPase activity and 

polymerization [50]. Consistent with the hypothesized mechanistic link, we observed 

significant interaction between these compounds (Fractional Inhibitory Concentration Index 

[FICI] = 3.16). Even at concentrations of VCC234718 that alone had no effect on growth 

(0.5–4 μM), this compound consistently increased the half maximal inhibitory concentration 

(IC50) of C109 (Figure 4F). In contrast, we found no interaction between VCC234718 and 

spectinomycin, an inhibitor of another major GTP-consuming pathway, translation (FICI = 

1.55).

The specific effect of GTP depletion on FtsZ dynamics can be inferred from the observed 

antagonistic interaction between C109 and VCC234718. C109 acts additively with 

PCI90723 [51], a compound that stabilizes the FtsZ filament. The converse antagonistic 

interaction we observed between C109 and VCC234718 implies that guanosine depletion 

inhibits polymerization, consistent with the known GTP requirement for FtsZ 

polymerization [48, 52]. Together, these data are consistent with a model in which 

transcriptional induction of guaB2 during cytokinesis coincides with the increased 

consumption of GTP by FtsZ, and the septal defects observed on guanosine depletion are 

related to defects in FtsZ dynamics.

DISCUSSION

This study represents the first global analysis of cell-cycle-associated gene expression in 

mycobacteria. Comparisons between our Mtb studies and C. crescentus are limited by a 

number of technical differences, including the method and degree of synchronization and the 

timing of cell collection and processing. Biological differences, like the possible unequal 

effects of mRNA degradation rates on transcript abundance due to vast differences in 

interdivision time, further limit comparisons. Regardless, we found that a similar fraction of 

the genome is differentially expressed across the cell cycle in both systems, and a small 

fraction of orthologous genes are regulated periodically in both. Despite these similarities, 

the majority of cell-cycle-associated transcriptional changes were unique to each organism, 

indicating that cell cycle progression is associated with distinct transcriptional networks in 

phylogenetically divergent organisms.

In a number of cases, we found that increases in mRNA abundance could be used to 

associate genes with temporally resolved cell cycle events, such as septation. The sequential 

expression [6] and an ordered assembly [34] of divisome components have independently 

been observed in C. crescentus. Here, we provide a link between gene expression and 

function by demonstrating that the timing of gene induction correlates with the recruitment 
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of the encoded proteins. Based on transcriptional data, we inferred the following order of 

assembly: FtsZ > PknD > FtsW > LamA > SepIVA > DivIVA. The recruitment of these 

proteins spans sequential processes of divisome assembly, septation, and new pole 

biogenesis. FtsZ initially marks the division site [53], facilitating the recruitment of 

divisome components FtsW [54] and SepIVA [25]. The arrival of LamA at the later stages of 

assembly is consistent with its role in delaying septation to promote asymmetric cell division 

[35]. DivIVA is recruited to the negative curvature of the new pole after septation [55–57] 

and the segregation of daughter cell cytoplasm [13]. Additional cell wall synthetic genes 

(e.g., glfT2 and pks13) were found to peak after DivIVA, which could reflect the delayed 

elongation of the new pole [58]. These observations indicate that gene expression can be 

used to predict the order of complex assembly. However, transcriptional regulation is 

unlikely to be the primary determinant of assembly order, as only a subset of currently 

known septal components were found to be periodically expressed. Instead, this type of 

hierarchical gene expression has been proposed as a mechanism to maximize efficiency by 

restricting protein expression to the period when it is needed [32, 33]. Regulation of 

divisome assembly and function likely involves additional posttranslational mechanisms, as 

the Ser/Thr phosphatase, PstP, contributes to cell division [59, 60], and we found that the 

Ser/Thr kinase, PknD, is recruited relatively early in septal development. Although it 

remains possible that transcriptional regulation controls some aspects of septation, our data 

primarily demonstrate that expression pattern can predict the timing of gene function.

The importance of coordinating cell cycle events with the upstream metabolic pathways that 

provide precursors is supported by our finding that pyrimidine and guanosine synthetic 

genes are distinct in their expression patterns and in the functional consequences of their 

depletion. The association we infer between pyrimidine depletion, DNA synthesis inhibition, 

and cell elongation is supported by a recent study [47] describing similar morphological 

alterations in M. smegmatis mutants lacking a variety of DNA replication and pyrimidine 

nucleotide biosynthetic functions. However, the distinct cytokinesis defect observed upon 

GuaB2 depletion was unanticipated. We speculate that the septation defect we observe upon 

GuaB2 depletion is related to the relatively low affiniity of FtsZ for GTP. FtsZ has ~500-fold 

lower affinity for GTP than the DnaE1 replicative DNA polymerase (Km FtsZGTP =1 mM 

[61]; KmDnaE1GTP =2 μM [62]). As the reported intracellular concentration of GTP [63] 

would support only one-half of the Vmax of FtsZ [61], GTP levels could control FtsZ 

dynamics. We speculate that the septal bulging observed upon GuaB2 depletion is due to 

aberrant FtsZ activity and not a complete loss of function, because genetic depletion of FtsZ 

causes filamentation [41]. Indeed, altered FtsZ dynamics influences peptidoglycan structure 

[49], and the aberrant activity of divisome components, including FtsZ, alters septal 

morphology in other bacterial systems [64–67]. In addition to transcriptional regulation, 

guaB2 might also be regulated by its substrate, IMP, which increases in abundance during C. 
crescentus cell cycle progression [68]. Although it is impossible to rule out an indirect effect 

of guanosine levels on the expression or regulation of additional cell-division-associated 

proteins, our observations suggest that the septal defects we observe upon guanosine 

depletion reflect alterations in FtsZ filament length or dynamics.

Both DNA replication and cell division are essential processes that have been targeted for 

antimicrobial discovery [69, 70]. In most cases, these efforts focus on inhibiting a limited 
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number of physical components of the bacterial replisome or divisome. Our transcriptional 

data identified a variety of genes that are coordinately expressed with these complexes and 

therefore might be required for their activity. Although we have only investigated these 

functional dependencies in the context of nucleotide synthesis, our data suggest that similar 

dependencies exist and can be predicted from transcriptional profiles. If so, these data could 

be used to identify new strategies for inhibiting these essential cellular processes.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for reagents may be directed to and will 

be fulfilled by the Lead Contact, Christopher M. Sassetti 

(christopher.sassetti@umassmed.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code availability—The RNASeq data generated in this study has been 

deposited in GEO (Accession Number GSE147345). The code generated during this study is 

available at https://github.com/ioerger/synchronized_cells. The data that support the findings 

of this study are available from the Lead Contact upon request. The authors declare that all 

data reported in this study are available within the paper, its supplementary information files 

and in the datasets uploaded to GEO.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All mycobacterial strains were grown at 37°C using Middlebrook 7H9 media supplemented 

with 0.05% Tween-80 and OADC (Becton Dickinson) enrichment and 0.2% glycerol for the 

bulk culture experiments. For live cell microscopy, M. smegmatis cells were grown on Luria 

Bertani agar pads. Strains expressing fluorescent markers were grown in growth media 

supplemented with either 50 μg/ml hygromycin (for strains containing MEH or MCtH 

plasmids) or 25 μg/ml kanamycin (for strains containing MEK plasmid).

METHOD DETAILS

Strains—The Mtbcos strain was obtained from [19]. MtbRv is the H37Rv strain used as an 

unsynchronized control. Mtbcos and MtbRv expressing FhaA m-venus were transformed 

with pKP887 (mycobacterial replicating plasmid MEH expressing MSMEG FhaA-Venus 

expressed from the MSMEG fhaA native promoter (from K.P. Sundaram). M smegmatis 
expressing FtsW-mVenus and DivIVA-RFP was transformed with ptb21-ftsW-mVenus-MEK 

and tb21-divIVA-RFP-MCtH [57]. M smegmatis expressing PknD-mVenus and DivIVA-

RFP was transformed with p16-pknD-mVenus-MEK [72] and tb21-DivIVA-RFP-MCtH. 

Mtb hypomorphs used in this study were generated as part of an earlier study [71] using a 

controlled protein degradation system described previously [75]. Three strains were used in 

this study: Mtb guaB2-DAS-HygR+Giles-TetON1-sspB-strR; Mtb gyrB-DAS-HygR+Giles-

TetON6-sspB-strR; Mtb pyrE-DAS-HygR+Giles-TetON1-sspB-strR. M smegmatis 
expressing green fluorescence contains the plasmid CT161 (m-Venus pMV261 HygR) 

obtained from the Eric Rubin Lab.
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Mtbcos synchronization—Biological duplicate cultures of MtbdnaAcos115 generated in 

a previous study [19], MtbH37Rv, MtbdnaAcos115-FhaA-Venus and MtbH37Rv-fhaA-

Venus were grown in standard culture media at 37°C under shaking conditions till OD600 

0.4. The cells were shifted to 30°C for 36 hours. The cultures were then shifted to 37°C and 

the cultures were processed for either DNA isolation, RNA isolation or fluorescent 

microscopy at the following times: 0h, 3h, 6.5h, 9h, 12h, 18.5h, 21h, 27h, 31h, 33h, 36h, 

39.5h, 42h, 45.5h, 52h and 55h.

Chromosomal DNA isolation—Chromosomal DNA was isolated from the cell pellet of 

5ml culture from each time point. Briefly, 0.5 mL of chloroform:methanol (2:1) was added 

and the mixture was vortexed 5X 1min. 0.5ml of phenol:chloroform was added and the 

mixture was vortexed for 30 s. Finally, 0.5ml of TE buffer was added. This was centrifuged 

at 12,000 g at 4°C for 5 minutes. The upper phase was mixed with 1 volume of chloroform 

and vortexed. After centrifugation, the upper phase was added to a new tube and 1/10 

volume of 3M sodium acetate and 1 volume of isopropanol was added. Precipitated DNA 

was spun out of solution and resuspended in 20 μL of TE buffer.

Origin:terminus assay—Multiple primer sets (designed using the Primer3 design tool) 

amplifying 150bp at each location (Origin-0MB region surrounding Rv0001; Terminus 

−2.2MB region surrounding Rv1949c) of the MtbH37Rv genome were tested for 

amplification efficiency. Efficiency was calculated from the negative slope of the standard 

curve of CT v/s template concentration. The primer sets with the highest and most similar 

efficiencies for both loci were selected (95% for the origin and 93% for the terminus). 

Quantitative PCR was done using SYBR green (Biorad iQ SYBR Green Supermix) with 2ng 

of gDNA template per reaction. Delta Ct values were calculated as dCt = Ctori-Ctter. 2^-dCt 

values were then calculated for each time point. These values were then divided by the mean 

2^-dCt across all time points to generate a relative ori:ter ratio for each time point.

Static microscopy—At each time point post release into 37°C (Figure 1B) or time point 

post genetic depletion of GyrB, GuaB2 and PyrE (Figure 4D), 1ml of Mtb culture was 

briefly centrifuged and cells were resuspended in a phosphate buffered saline solution 

containing 0.05% Tween80 and 4% paraformaldehyde. These fixed cells were then placed 

onto an agarose pad and DIC (Figure 4D) or wide field fluorescence imaging (Figure 1B) 

was performed with a DeltaVision Personal DV microscope (GE Healthcare) using a 60X oil 

immersion objective (AP). For each datapoint, an average of 82 cells were scored. Cell 

lengths in Figure 4D were determined using CellProfiler™ [73] which calculates a MFD 

(Maximum Feret Diameter) which is a measurement of the largest number of pixels between 

the two ends of the cell obtained while rotating a caliper along all possible angles. The 

approximate conversion factor of MFD to microns is 0.11. Calculating an MFD is especially 

useful for measuring mycobacteria since all cells are not strict rods (cells undergo V-

snapping prior to resolution of cytokinesis and daughter cell separation). The cell debris 

observed during GyrB depletion in Figure 4D was excluded from cell length quantification 

by training CellProfiler using CP Analyst™.
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Live cell microscopy—10 μL of cells in logarithmic phase (OD600 0.2–0.5) were spotted 

on a glass bottom 24-well plate (MatTek Corporation). 500 μL of molten Luria Bertani 

medium (40–50°C) was spread over the cells and allowed to solidify. For experiments with 

VCC234718, molten LB containing 2 μM final concentration of VCC234718 was prepared 

before layering over the cells. Time-resolved imaging was performed with a DeltaVision 

Personal DV wide field fluorescence microscope equipped with Ultimate Focus™ 

capabilities and an environmental chamber warmed to 37°C (Applied Precision). Images 

were taken at 5 or 10 minute intervals.

Simulation of cell cycle progression—Cells were simulated as a discrete population, 

starting with N = 10,000 cells. The population was evolved in discrete time steps over 55 

hours, with each step representing 1 hour. Each cell had its own variables such as cell size 

(ranging between 1.0 and 2.0), chromosome copy number representing ori/ter ratio for each 

cell (either 2 or 1), the FhaA level for each cell (0%–100%) and a count (an integer, initially 

1 for each cell). The cycle-time and growth rate for each cell was chosen from a normal 

distribution where the mean and standard deviation were parameters to be optimized. During 

the simulation, if size is < 2.0 for a cell, it increases by a constant rate after a delay after 

division (as a fraction of the cell cycle). Once each cell reaches a maximum size of 2.0, it 

stops growing. FhaA appears at the septum (increasing from 0 to 1 discretely for each cell) 

toward the end of the cell cycle (as a fraction of the cell cycle) and then decreases by a 

constant rate after the cells divide. The gradual increase in the curve for the FhaA levels 

comes from the dispersion of states for individual cells relative to their cycle times. 

Chromosome duplication window is chosen randomly from a normal distribution. This 

random duration for replication, creates additional dispersion in the ori/ter curve. At 

initiation, the value is switched to 2 (i.e., 2 copies of Ori but 1 Ter), and at termination it 

switches back to 1 (2 copies of each, ori/ter = 1). When each cell reaches 100% of its cell 

cycle time, the cell divides, doubling the count and resetting size to 1.0. Hence the 

population size increases, but there is no net change in biomass. Initially, the cells are 

assumed to be check-pointed at some point in the cell cycle due to the non-permissive 

temperature. (T0 in the experiment does not necessarily correspond to the beginning of the 

cell cycle (i.e., 0%), but rather, some point in the middle, shortly before initiation of 

chromosome replication.) This is represented by a “shift” parameter, to be optimized. After 

shifting to the permissive temperature, cells begin growing, and FhaA levels autonomously 

begin to decay (from initially high levels, indicated by empirical data).

In the first cell cycle, chromosome replication is delayed by an additional “recovery time” 

parameter which is unique for each cell and drawn randomly from a Normal distribution.

To optimize the parameters in the model, the simulation was run with different combinations 

of parameters, and the correlation with the empirical data (Figures 1A–1C) was evaluated. In 

the end, the final parameter values that maximized correlations with the empirical data were:

Cell Cycle time: mean = 35hr, sd = 1hr; Shift = 10hr (cells assumed to start 10hr into cell 

cycle after shift to permissive temperature); Recovery time = 6hr (after shift to permissive 

temperature); FhaA_start = 80% (fraction of cell cycle); S phase initiation = 20hr (into the 
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cell cycle, i.e., after division); S phase window: mean = 12hr, SD = 7hr (duration of 

chromosome replication); Growth rate = 0.07; Growth_delay = 30% (fraction of cell cycle).

The predicted curves from the simulation using these optimized parameter values are shown 

in Figure 1D. The correlations with the empirical data are: cc(OD) = 0.9189, cc(ori/ter) = 

0.9561, cc(fhaA) = 0.9614.

RNA isolation and sequencing—To minimize transcriptional changes during RNA 

isolation, samples were processed as rapidly as possible. At each time point, the 45ml 

culture was pelleted for 3 minutes at 4000 g at 37°C. The pellet was immediately 

resuspended in 1ml of TRIzol (Invitrogen) and snap-frozen in liquid nitrogen. The average 

processing time of each sample was ~5–7 minutes. Samples from time point for the 

synchronized and unsynchronized cultures were handled in parallel to minimize any batch 

effects. The RNA isolation strategy was also designed to minimize batch effects. One entire 

biological replicate each from the synchronized and unsynchronized cultures (16 time points 

× 2 replicates = 32 samples) were processed for RNA isolation in parallel, as follows. Cells 

in TRIzol were first transferred to lysing matrix tubes (MP Biomedicals: Lysing Matrix B). 

Cells were lysed in a MP Biomedicals Fast Prep-24 homogenizer (maximum power-6.5, 4 × 

30 s cycles, rest on ice for 5 minutes in between cycles to minimize RNA degradation). RNA 

was purified according to the manufacturer’s directions. RNA cleanup was performed with 

QIAGEN RNeasy Mini kit (74104) omitting the DNase step. Instead, after elution, in-tube 

DNase treatment was performed using Ambion DNase Turbo. RNeasy cleanup was repeated 

again with double volumes of RLT and ethanol. RNA was subjected to rRNA removal with 

Ribozero Bacteria kit (Illumina-MRZB12424). Deep sequencing library was prepared using 

KAPA Stranded RNASeq kit (KK8401). The RNaseq libraries were sequenced on an 

Illumina HiSeq 4000 instrument in paired-end mode, using a read-length of 150+150bp. The 

mean number of reads per sample was 8.9M (range 4.2–16.5M). The reads were mapped to 

the H37Rv genome using Burroughs Wheeler Alignment [76] with default parameter 

settings. Reads mapping to each ORF were totaled (sense strand only). Because certain loci 

were over-represented (e.g., rrs, rnpB, ssr, Rv3661, which had counts ~0.5–1M), counts 

were truncated to a maximum coverage of 10,000 (reads/nt).

Data Filtering and Normalization—The global expression profiles of Mtbcos samples 

showed a gradual increase in expression of a few genes that dominate expression at latter 

time-points. Consequently, a compensatory decrease was observed in expression of other 

genes, making normalization by traditional reads per kilobase per million (RPKM) mis-

representative. To correct for the bias induced by these outliers, the normalization method 

implemented in DESeq2 [74] was used, which first normalizes counts by the geometric 

mean for each gene across samples, and then scales each dataset to have a common median 

(which is less sensitive to outliers). This was applied to all 64 datasets (2 strains × 2 

replicates × 16 time-points) in parallel. As a result, the expression patterns were well-

calibrated between time-points, with the medians matched. To identify a subset of genes 

with meaningful expression, the average expression over all time-points was calculated for 

each gene and divided by gene length (in nucleotides). 1070 genes out of 4018 with 

coverage < 0.25 were dropped because expression patterns for genes with low expression are 
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inherently noisy, leaving 2948 genes with coverage > 0.25. (Data S3). Additionally, we 

removed 50 genes out of 2948 genes whose expression was > 90% correlated between 

Mtbcos and MtbRv from subsequent analysis, as their expression patterns were assumed to 

be determined more by time than by difference in the strains. To center the expression 

values, the counts were divided by the mean for that gene across all the time points. This 

was done independently for Mtbcos and MtbRv. Initial analysis of correlations among time 

points based on patterns of expression showed a biphasic behavior for the unsynchronized 

cells, where time points in the first and second half of the experiment were strongly 

correlated within each half but poorly correlated between halves, giving rise to a “two-block 

structure.” We hypothesized that a small set of genes could be responsible for driving this 

correlation pattern in MtbRv likely due to subtle changes in media conditions and/or 

aeration over the long time course. In order to identify such genes, we computed a matrix of 

differences between selected pairs of time points for each gene, and clustered this difference 

matrix, which yielded a cluster of genes that have low differences within each block but high 

differences between blocks. The logs of the values were taken, and then the genes were 

clustered using hclust() in R (with the “ward.D2” distance metric). The resulting 

dendrogram exhibited a deep branch, which, when displayed as a heatmap, consisted of a 

distinct cluster of genes exhibiting low differences between pairs of time points in either 

block, but high differences between blocks. Using cutree(k = 4), 182 genes were identified 

as belonging to this cluster. Upon excluding these genes and re-calculating the correlation 

matrix of expression in MtbRv for all time points, the two-block structure was largely 

eliminated, and the resulting correlations decreased smoothly as a function of distance 

between time points (with highest correlation between adjacent time points), as expected.

Gaussian Process Smoothing—In order to meaningfully integrate the data from the 

two replicates and to smooth out profiles over time, we used a Gaussian Process (GP) to fit 

the raw data (septation index and ori:ter – Figure 1, gene expression- Figures 2, 3, and 4).

A GP model is a Bayesian model that estimates the probability distribution over functions 

using Gaussian distributions for likelihood functions. The advantage of a GP is that it is 

unbiased and therefore does not require assumptions of form of function. Instead, it only 

assumes that adjacent time points are better coupled than distant time points and that this 

correlation is based on Gaussian distributions.

A Gaussian Process is specified by a mean function and a covariance function

f(x) ∼ GP m(x), k x, x′

A prior mean m(x) = 0 and a covariance function, squared exponential is given as:

k x, x′ = σ2exp − 1
2 ∑

i = 1

d xi − xi′

Ii2

where I2 = lengthscale, σ2 = variance, d = input dimension
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We normalized the expression value e(g,t) (with addition of pseudocounts of 10) of each 

gene g at each time point t by dividing the mean across all time points, and then taking log 

base e transformation so that the normalized value e’(g,t) fluctuates with a mean of 0. The 

formula is given as:

e′(g, t) = loge
e(g, t)

∑t
T e(g, t)

Gaussian estimation of the expression levels for a gene at different time points, subject to 

noise is given as:

y = f(x) + ε where : ε ∼ N μ, σn2

The predictive distribution for 15 test time points (~3 hour intervals, 3-55 hours), {x1; x2;.:; 

x*} is specified as:

p f* ∣ x*, x, y = N m x* , k x*

where:

m x* = k x*, x T k(x, x) + σ2I −1y

k x* = k x*, x* − k x*, x T k(x, x) + σ2I −1k x*, x + σ2

We utilized the GPy Python package to fit the relative expression data (value for Mtbcos 

replicate 1 and replicate 2 simultaneously normalized by the mean expression level across all 

60 time points for each gene using the following hyperparameters: variance = 1.0, noise 

variance = 0.1 and lengthscale (range 1 ~50) optimized to Maximum Likelihood Estimate 

(MLE) using a grid search method. After fitting the model, the predicted value (i.e., 

posterior mean) for each time point can be extracted. Figure S1B shows the GP regression 

obtained for polA (Rv 1629: DNA polymerase). Not only do the fitted values from the GP 

model generally interpolate be- tween the observed data at each time point, they also present 

a smoother profile by averaging between adjacent time points to reduce noise. The error 

bands show the uncertainty in the model (95% confidence interval which can be denoted as 

± 1.96*σ, where σ is the estimated standard deviation at each X-coordinate (time point) 

from the Gaussian Process model based on variance of the training data and surrounding 

points).

Sinusoidal Periodicity Analysis—Traditional signal analysis methods like Fourier 

analysis, Fisher’s g-test, etc. as suggested by Wichert et. al. [77] performed poorly on our 

dataset because our experiment captured only about one-and-a-half cell-cycles. Thus, to 

identify periodic genes, we took an approach of sinusoidal curve-fitting, reminiscent of the 
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non-linear curve fitting method described by Straume et.al. (COSIN2NL in COSOPT) [78]. 

We fi the expression profi es for each gene to a sin curve with free parameters (including 

frequency, phase, and trend), and selected genes with frequencies and amplitudes in a 

reasonable range (Red lines in Data S1). Goodness-of-fit was measured using residual sum-

of-squares (RSS). Importantly, it is difficult to draw an absolute cutoff for significance based 

on RSS, since any data can be fit to a sin in some way, and RSS incorporates intrinsic noise 

in the data (E.g. between replicate observations). Hence, we took a comparative approach by 

also fitting the data to a quadratic curve (Gray lines in Data S1), which captures the general 

trend of the expression profiles. We then compared the RSS of the sin fi to the RSS of the 

quadratic fit (which must also pay a similar price for noise in the same data). Periodic genes 

are defined as those that exhibit oscillatory behavior above and beyond the trend that can be 

represented by a quadratic. The curve fitting for each gene was applied to the DESeq-

normalized read counts (15 time-points, 2 replicates each). The sinusoidal function 

implemented is written as:

ysin(t) = Asin(ωt + Φ) + B + Ct

where: A = Amplitude; ω = Frequency; B = Mean offset; Φ = phase shift; Ct = a linear term 

to capture a net increasing or decreasing trend in the expression. The parameters in this 

function were optimized using the curve_fit() function in SciPy using non-linear least- 

squares. We then selected genes based on period length (27.5 hours < period < 55 hours) and 

amplitude (≥0.7). We also removed genes with a correlation coefficient of > 0.9 between 

expression profiles in Cos versus Rv. The residual sum-of-squares (goodness-of-fit) was 

calculated as follows:

RSSsin = ∑
t = 1..15, r = 1, 2

yt, r − ysin(t) 2

where ysin are the sin function estimates for each time point.

A similar curve-fitting approach was used to fit the data to a quadratic curve:

yquad(t) = D t2 + E t + F

using curve_fit() to optimize the parameters D, E, and F for each gene, and the residual was 

calculated as:

RSSquad = ∑
t = 1..15,

∑
r = 1, 2

yt, r − yquad(t) 2

Finally, a score was calculated for each gene based on the ratio of residuals. To meaningfully 

enrich periodic genes in Mtbcos, we used a Receiver Operating Characteristic (ROC) curve 

to determine the RSSsin/RSSquad range where we optimally enrich for periodic genes in 

Mtbcos. The RSSsin/RSSquad range was determined to be 0.35–0.45. A threshold of 0.45 was 

chosen based on examining plots (Data S1) that visually exhibit clear oscillatory behavior 
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(beyond the general trend). Thus, genes with a ratio of less than 0.45 were identified as 

periodic:

RSSsin
RSSquad

< 0.45

which means that the sinusoidal fit reduces the residual error by more than two-fold over a 

quadratic curve and hence fits the data better.

Using this comparative curve-fitting approach, 485 genes were identified as periodic in 

Mtbcos (Data S3), and only 183 genes in MtbRv, a ~2.6 fold enrichment. To estimate the 

number of false positives in the set of 485 genes, we randomized the data (by shuffling the 

genes and time points) and subjected the randomized dataset to the same analysis as 

described above. This permutation analysis yielded only 14 periodic genes under the null 

hypothesis. Thus, we estimate the false discovery rate (FDR) at approximately 14/4019 = 

0.35%.

Clustering—Genes were clustered based on their expression profiles using hierarchical 

clustering (hclust() in R), using the complete linkage clustering based on the Euclidean 

distance between the vectors of expression values averaged between replicates over the 15 

time points, which were standard-normalized for each gene (subtract mean and divide by 

standard deviation) to make the mean expression level equal to zero for each. The optimal 

number of clusters was determined based on the Bayesian Information Criterion (BIC) using 

mclustBIC() in the mclust R package [79], which showed that the optimal number of 

clusters among the 485 Mtbcos periodic genes was 8 (using the ‘VEE’ model). The 

dendogram was then divided into 8 disjoint clusters using cutree().

Peak Assignment—Using the GP fit data, we applied the following criteria to assign a 

peak to a gene’s expression profile. The time series T with n observations for each gene with 

smoothed expression values at different time points was defined as:

First, to screen out the increasing or decreasing trend at the beginning and end of the time 

series, and to focus on the cytokinesis phase in the middle of the time course, we excluded 

the first and last two time points from the peak assignment. Second, to identify well-spaced 

major peaks across time points, we defined a point as a peak if it has a greater magnitude 

than its two nearest neighbors on both sides. This is defined as:

Furthermore, to filter out the genes with lower fluctuations, the difference between the 

magnitude of the highest peak and the global minimum was restricted to be greater than 0.5. 

Additionally, in the case of more than one peak in the time series, all the peaks were 

constrained to have at least a half magnitude of the highest peak in the expression profile. 

Finally, a set of peaks P for a time series was identified as:

Among the significantly expressed genes (Data S3), the peak assignment identified 1620 

genes with a single peak and 71 genes with two peaks in the Mtbcos strain compared to 903 
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genes with a single peak and 8 genes with two peaks in MtbRv. Similarly, 1222 genes in the 

Mtbcos strain and 2344 genes in the wild-type did not have any major peak.

FICI Score Calculation—Fractional Inhibitory Concentration Index (FICI) to determine 

the interaction between VCC234718 and C109 was performed as previously described [80]. 

The FICImax along the isoeffectiveness curve i.e., the combination of drug concentrations 

which causes a 50% reduction in fluorescence, occurred at C109 6 μg/ml and VCC234718 4 

μM. FICC109 = 2.274 and FICVCC234718 = 0.88. FICImax was thus determined to be 3.16, 

which supports an antagonistic interaction according to previous studies [81, 82]. A similar 

analysis of the interaction between VCC234718 and spectinomycin yielded a FICI score of 

1.55 indicating no interaction or indifference.

QUANTIFICATION AND STATISTICAL ANALYSIS

A hypergeometric test was used to calculate significance of overlap between periodic genes 

in C. crescentus and M. tuberculosis in Figure 2. An unpaired t test was used to determine 

significant difference in arrival times of PknD and FtsW and the Chi-square test was used to 

determine significant difference in arrival times of FtsW and DivIVA in Figure 3. The Mann-

Whitney test was used to determine significant differences in cell lengths of GyrB, GuaB2 

and PyrE depletion strains from wild-type in Figure 4. An extrasum-of-squares F-test was 

used to determine differences between cross titration curves of VCC234718, C109 and 

spectinomycin in Figure 4. For all these tests, values of “α,” “χ2” or “p” can be found in the 

figure legends. 95% confidence intervals were used in describing profiles of ori:ter, septation 

index in Figure 1. The 95% confidence interval is denoted as ± 1.96*σ, where σ is the 

estimated standard deviation at each X-coordinate (time point) from the Gaussian Process 

model based on variance of the training data and surrounding points. In all experiments, 

center and dispersion are defined as mean and standard deviation respectively, unless 

otherwise specified. Values of n indicate number of cells measured and can be found in the 

figure legends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• DNA replication and cytokinesis are temporally segregated in M. tuberculosis

• Periodic gene expression occurs during M. tuberculosis cell cycle progression

• Transcript abundance predicts function of genes at the developing septum

• Cytokinesis is influenced by transcriptional regulation of guanosine synthesis
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Figure 1. DNA Replication and Cytokinesis Are Segregated in Synchronously Growing 
Populations of Mycobacterium tuberculosis
(A) Growth of Mtbcos (top) and MtbRv (bottom) after release into permissive temperature, 

37° C. × axis, hours at 37° C. y axis, Absorbance600. Data are represented as mean ± SD of 

two biological replicates.

(B) FhaA septation index assay to determine cytokinesis phase. Percentage of Mtbcos (top) 

and MtbRv (bottom) populations containing an FhaA-venus focus at midcell after release 

into permissive temperature is shown. Data points indicate two biological replicates (average 

number of cells analyzed at each time point = 82). Blue line is obtained via Gaussian process 

smoothing. The blue band indicates 95% confidence interval. Significant difference between 

Mtbcos and MtbRv curves was determined by using a likelihood ratio test, which determines 

whether the data are fit best by a combined model (null hypothesis) or separate strain-

specific models (alternate hypothesis). ΔLog_likelihood (combined-separate) = −38.489; p 

(χ2 distribution; df = 3) = 1.1e–16.

(C) Origin/terminus assay to determine the DNA replication phase. Relative ori/ter ratio of 

Mtbcos (top) and MtbRv (bottom) populations after release in permissive temperature is 

shown. Data points indicate two biological replicates and are representative of three 

independent studies. ΔLog_likelihood (combined-separate) = −12.412; p (χ2 distribution; df 

= 3) = 1.679e–05.
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(D) Discrete time simulation of the cell cycle in Mtbcos. The curves were generated from 

mean cell attributes created by sampling cell cycle parameters for each cell from Gaussian 

distributions, using parameters that maximized correlation with empirical data. Correlation 

coefficients were as follows: OD = 0.9189; ori/ter = 0.9561; fhaA = 0.9614. The lighter 

portion of the S2 bracket indicates assumed completion of the second S phase.
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Figure 2. Periodic Gene Expression Correlates with Cell Cycle Progression
(A) Correlation matrix of DESeq2 normalized counts for single replicates of Mtbcos (top) 

and MtbRv (bottom) for all 16 time points (blue, Pearson’s correlation coefficient = 1; 

white, Pearson’s correlation coefficient = 0).

(B) Relative expression (GP smoothed, DESeq2 normalized read count for each time point 

divided by the mean value for that gene across time) of genes involved in DNA replication 

and cell division (top panel); arginine catabolism and anabolism (bottom panel).
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(C) Relative expression (standard normalized DESeq2 counts—each value is subtracted by 

the mean for that gene across time and then divided by the standard deviation) of 485 

periodically expressed genes in Mtbcos (rows) sorted by peak expression time (columns).

(D) Fraction of periodically expressed genes present in different Gene Ontology categories.

(E) Clusters containing periodic genes with expression patterns consistent with a role in 

DNA replication. Known DNA replication and/or nucleotide biogenesis genes found in these 

clusters are listed.

(F) Overlap between periodically expressed Mtbcos and C. crescentus mutual orthologs. p 

value indicates significant overlap between the two gene sets determined by using a 

hypergeometric test.

See also Figures S1 and S2, Tables S1 and S2, and Data S1, S2, and S3.
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Figure 3. mRNA Abundance Predicts the Order of Assembly of Mycobacterial Divisome 
Components and Regulators
(A) (Left) Clusters of Mtbcos genes with expression patterns that peak during the 

cytokinesis period. (Right) Scaled relative expression of known cytokinesis genes from these 

clusters is shown.

(B) (Left) Scaled relative expression of PknD and DivIVA. (Right) Time-lapse imaging of 

M. smegmatis expressing PknD-Venus (green) and DivIVA-RFP (red) is shown. Time 

(minutes) before the arrival of DivIVA at midcell is indicated.

(C) (Left) Scaled relative expression of FtsW and DivIVA. (Right) Time-lapse imaging of 

M. smegmatis expressing FtsW-Venus (green) and DivIVA-RFP (red) is shown.

(D) Time (minutes) between initial arrival of PknD (n = 10), FtsW (n = 7), and DivIVA at 

midcell. Error bars indicate mean ± SD. Statistically significant difference between pknD 

and ftsW determined by using an unpaired t test is shown (α = 0.05; p = 0.0023). 

Statistically significant difference between ftsW and divIVA determined by using a chi-

square test is shown (α = 0.05; χ2 = 7; df = 1; p < 0.01).

See also Figure S3 and Data S3.
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Figure 4. Guanosine Synthesis Influences Cytokinesis in Mycobacteria
(A) Relative expression of IMP dehydrogenase guaB2 compared with that of pyrimidine 

biosynthesis genes carA, carB, pyrB, pyrC, pyrD, and pyrF.

(B) Cumulative growth (Absorbance600) of M. tuberculosis guaB2-DAS (top), gyrB-DAS 

(center), and pyrE-DAS (bottom) without depletion (solid line) and with depletion (dotted 

line). Arrows indicate the time during the pre-depletion period when cultures were diluted 

into fresh growth medium. Data are represented as mean ± SD of two biological replicates.
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(C) Growth (Absorbance600) and morphology of M. tuberculosis guaB2-DAS ± depletion in 

the presence of either 200 μM guanine or guanosine. Absorbance data are represented as 

mean ± SD of two biological replicates.

(D) M. tuberculosis cellular phenotypes upon genetic depletion of GuaB2, PyrE, and GyrB. 

Images were obtained after the cessation of growth in depleted cells. In the case of GuaB2, 

septal bulges (arrowheads) and polar bulges (arrows) are indicated. Histograms indicate the 

cell length distribution of cells in which the target was either not depleted (gray) or depleted 

(black). Mtb was treated with 0.2 μM moxifloxacin for 24 h and imaged. Histograms 

indicate the cell length distribution of cells in untreated (gray) or treated cells (black). MFD, 

Maximum Feret Diameter (1 μm; ~0.11 MFD). Statistically significant/non-significant 

difference between the cell length distributions was determined by using the Mann-Whitney 

test (pguaB2 = 0.214; ppyrE < 0.001; pgyrB < 0.001; pmoxifloxacin < 0.001).

(E) Time-lapse imaging at 20-min intervals of GFP-expressing M. smegmatis treated with 2 

μM VCC234718.

(F) Susceptibility of M. smegmatis to VCC234718. Data are represented as mean ± SD 

(left). Cross titration assay on GFP-expressing M. smegmatis with the indicated 

concentrations of VCC234718 alone (left), with C109 (center), or with spectinomycin (right) 

is shown. Statistically significant difference between the curves was determined by using an 

extra-sum-of-squares F-test (α = 0.05). VCC alone curve was significantly different from 

each of the VCC+C109 curves, p(VCC 0.5 μm) = 0.0215; p(VCC 1 μM) = 0.0284; p(VCC2 μM) = 

0.0001; p(VCC4 μM) = 0.0019.

VCC alone and VCC+spectinomycin curves were not significantly different, p(VCC0.5 μM) = 

0.9989; p(VCC1 μM) = 0.9999; p(VCC2 μM) = ambiguous; p(VCC4 μM) = 0.9978.

See also Data S3.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Mycobacterium tuberculosis containing cos allele of dnaA (Mtbcos) [19] N/A

Mycobacterium tuberculosis H37Rv (MtbRv) C. Sassetti N/A

Mtbcos containing fhaA-mVenus This paper N/A

MtbRv containing fhaA-mVenus This paper N/A

Mycobacterium smegmatis MC2155 (Msm) C. Sassetti N/A

Msm containing ftsW mVenus and divIVA-RFP This paper N/A

Msm smegmatis containing pknD-mVenus and divIVA-RFP This paper N/A

Mtb guaB2-DAS-HygR+Giles-TetON1-sspB-strR [71] N/A

Mtb gyrB-DAS-HygR+Giles-TetON6-sspB-strR [71] N/A

Mtb pyrE-DAS-HygR+Giles-TetON1-sspB-strR [71] N/A

Msm containing m-Venus pMV261-HygR Eric Rubin Lab N/A

Chemicals, Peptides, and Recombinant Proteins

VCC234718 [43] N/A

C109 [50] N/A

Guanine-98% Millipore-Sigma G11950

Guanosine > = 98% Millipore-Sigma G6264

Spectinomycin dihydrochloride pentahydrate Millipore-Sigma S4014

Critical Commercial Assays

KAPA Stranded RNA-Seq Kit Roche KK8401

Ribo-Zero Bacteria Kit (discontinued) Illumina MRZB12424

iQ SYBR Green Supermix Bio-Rad 1708880

Deposited Data

RNASeq count data This paper GEO: GSE147345

Oligonucleotides

Forward Primer for amplifying ori- 5’-GGTTCAGGCTTCACCACAGT-3’ This paper N/A

Reverse Primer for amplifying ori- 5’-GGAGCGCTGAGATTAGCATC-3’ This paper N/A

Forward Primer for amplifying ter- 5’-ACAACGAGAAACCGCAAATC-3’ This paper N/A

Reverse primer for amplifying ter- 5’-TACGGCTGTCATGTCTTTCG-3’ This paper N/A

Recombinant DNA

fhaA-mVenus in plasmid MEH [20] N/A

divIVA-RFP in plasmid MCtH [57] N/A

pknD-mVenus in plasmid MEK [72] N/A

Software and Algorithms

CellProfiler™ [73] N/A

DESeq2 [74] R package

Source code for GP smoothing, curve fitting and cell cycle modelling https://github.com/ioerger/
synchronized_cells

Python and R scripts
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