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The Wiener-Granger causality test is used to predict future experimental results from past observations in a 
purely mathematical way. For instance, in many scientific papers this test has been used to study the causality 
relations in the case of neuronal activities. Albeit some papers reported repeatedly about problems or open 
questions related to the application of the Granger causality test on biological systems, these criticisms were 
always related to some kind of assumptions to be made before the test’s application. In our paper instead we 
investigate the Granger method itself, making use exclusively of fundamental mathematical tools like Fourier 
transformation and differential calculus. We find that the ARMA method reconstructs any time series from any 
time series, regardless of their properties, and that the quality of the reconstruction is given by the properties of 
the Fourier transform. In literature several definitions of “causality” have been proposed in order to maintain the 
idea that the Granger test might be able to predict future events and prove causality between time series. We find 
instead that not even the most fundamental requirement underlying any possible definition of causality is met 
by the Granger causality test. No matter of the details, any definition of causality should refer to the prediction 
of the future from the past; instead by inverting the time series we find that Granger also allows one to “predict” 
the past from the future.
1. Introduction

In 1969 Granger [1] (who was awarded the Nobel Memorial Prize 
in Economic Sciences in 2003) suggested to define a causality rela-

tion by means of a mathematical procedure between variables without 
any knowledge about their underlying mechanisms; in 1980 [2] he de-

veloped the first mathematical formulation of causality, applying this 
method for the first time in economics. Later on his formulation was 
abandoned in that field.

Nowadays, however, it is gaining increasing importance in other sec-

tors, for example in neuroscience [3] to investigate functional neural 
systems at scales of organization from the cellular level [4, 5, 6] to the 
whole-brain network activity [7]. Despite its popularity, several stud-

ies, even in neuroscience [8], have questioned its trustworthiness. Up 
to now these criticisms have only concentrated on establishing the right 
conditions in which the Granger test could be successfully applied, fo-

cusing for example on the need of constructing the right hypothesis tests 
[9] or even having a prior knowledge of the researched phenomenon 
[10] (due to the possible different interpretations when rejecting or 
accepting them [11, 12] and the fact that one could easily produce con-

flicting conclusions by employing a battery of causality tests on the 
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same data sets [13, 14]). Many papers, finally, investigated which kind 
of data can possibly be studied with this method [15]. In the present 
work, instead, the general validity of this approach is quested.

A time series 𝑥 is said to Granger-cause 𝑦 if it can be shown that those 𝑥
values provide statistically significant information about future values 
of 𝑦.

The definition of causality proposed by Granger says that “𝑥𝑛+1 will con-

sist of a part that can be explained by some proper information set, excluding 
𝑦𝑛−𝑗 (𝑗 ≥ 0), plus an unexplained part. If the 𝑦𝑛−𝑗 can be used to partly fore-

cast the unexplained part of 𝑥𝑛+1, than y is said to be a prime facie cause of 
x” [2].

In this paper we apply the Wiener-Granger test on time series which 
refer to the activation of two neurons of the C. elegans organism, that 
we are going to call A and B. It has already been demonstrated how 
the state of A determines the activity of B [16]. The application of the 
Wiener-Granger test on these signals has already been described in more 
details in [17]. In this paper we resume those results to start a discus-

sion on the Wiener-Granger method, since Granger causality could not 
be found [17] despite the known neurons relation. In the second part of 
the paper we perform a more general investigation of this method.
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2. Mathematical formulation of the Wiener-Granger causality

To apply the Wiener-Granger method one first has to calculate the 
precision of the prediction of a signal 𝑦 based only on its past values. 
Next, the precision of the prediction of 𝑦 which considers the past val-

ues of a second signal 𝑥 as well is calculated. For the causality effect 
of 𝑥 on 𝑦 to be verified this second value has to be smaller than the 
first one. According to Granger, this prediction can be tested with the 
Auto-Regressive (AR) and Auto-Regressive Moving Average (ARMA) al-

gorithms, as defined in the linear prediction theory and described in the 
following Section, used as test procedures.

2.1. Linear prediction model

When there is no theoretical model to describe a data set 𝑦, one can 
build a phenomenological model 𝑦′ as defined by the AR algorithm:

𝑦′
𝑘
=

𝑃∑
𝑗=1

𝑎𝑗𝑦𝑘−𝑗 , (1)

where 𝑃 is called order of the model 𝑦′, indicated even as AR(P).

A data set can also be reconstructed with the Moving Average (MA) 
model 𝑦′′, which predicts the value of a function 𝑦 based on the past 
values of a second one 𝑥, as defined in the equation:

𝑦′′
𝑘
=

𝑄∑
𝑗=1

𝑏𝑗𝑥𝑘−𝑗 , (2)

ARMA is another model, which is composed of an AR and a MA part: 
the reconstruction 𝑌 of the function 𝑦 is based on its past values and 
the past values of a function 𝑥, as defined by the ARMA algorithm:

𝑌𝑘 =
𝑃 ′∑
𝑗=1

𝑎′
𝑗
𝑦𝑘−𝑗 +

𝑄′∑
𝑗=0

𝑏𝑗𝑥𝑘−𝑗 , (3)

where 𝑃 ′ and 𝑄′ are the order respectively of the AR and MA models. 
To obtain the values of the 𝑎𝑗 , 𝑎′𝑗 and 𝑏𝑗 parameters the most common 
method is the least squares. For this study is important to notice that 
the best orders of any model are not known in advance.

2.2. Application

2.2.1. Autoregressive model

To verify that 𝑥 Granger-causes 𝑦, the first step is to evaluate with 
the Least squares method the best parameters 𝑎𝑗 , as defined by Equation 
(1), for different possible order of the AR model. The order 𝑃 chosen 
as the best one, is the model to which corresponds the residuals’ his-

togram that is better fitted by a Gaussian distribution. For this model 
we calculate the root mean square (RMS) as:

𝑅𝑀𝑆 =

√∑𝑁−𝑃

𝑖=1 (𝑦𝑖 − 𝑦′
𝑖
)2

𝑁 − 𝑝
(4)

where 𝑁 is the number of elements in the time series and 𝑁 − 𝑃 is the 
number of the model’s data. �̃� is the vector given by the subtraction of 
the first 𝑃 data from the vector containing all the original data and 𝑦′
the model.

2.2.2. Autoregressive-Moving average model

After that, the ARMA model is analyzed, one step at a time: we con-

sider different order of the AR component, each one smaller than the 
best one 𝑃 . For every order of the AR component the 𝑎′

𝑗
and 𝑏𝑗 param-

eters are again calculated with the least squares method for different 
values of the order of the MA component. For each step the RMS is 
calculated as defined by Equation (4).
2

Fig. 1. Above: A response to the olfactory stimulus given one time (in blue) and 
the same signal filtered (in red). Below: B response to the olfactory stimulus 
given one time (in blue) and the same signal filtered (in red).

2.3. Comparison

According to Granger, causality is found if an order of the MA part 
of the ARMA model (with the order of the AR part smaller than the one 
of the best AR model) exists, for which that ARMA model has an RMS 
equal or minor with respect to the one of the best AR model. This means 
that even using less information from the 𝑦 signal itself, it is possible 
to get the same information obtained by exploiting the full 𝑦 signal by 
adding the information coming from the second signal 𝑥.

In this study we will consider as 𝑦 and 𝑥 signals the fluorescence varia-

tions taken from two neurons of a simple organism, the C. elegans.

3. C. elegans and neural signals

The C. elegans nematode is one of the most simple organisms on 
which neurological studies can be done: its connectome (the matrix 
containing all the neurons and their synaptic connections) has already 
been completely mapped [18].

In this paper only two of its neurons have been considered: a sensorial 
neuron, which we are going to call A, and an interneuron that we are go-

ing to call B. B is directly connected by a chemical synapsis with A and 
their signals are in anti-phase. The purpose of the study presented here 
is to verify if the dependence of the B suppression or activation on the A 
activation or deactivation respectively, which has already been proved 
with biological studies, can be traced with the Wiener-Granger test. The 
activation is marked by variations of fluorescence in the neurons; these 
variations have been collected with the calcium imaging technique and 
studied as time series on which the Wiener-Granger method could be 
applied.

In Fig. 1 an example of two signals from A and B is shown. Overlapped 
to the original signals the same signals are shown after a low-pass fil-

tering with a 0.16 cutting frequency (normalized with respect to the 
sample frequency, so that 0.5 corresponds to the Nyquist frequency): all 
the signals are filtered to remove the noise that can’t give information 
about the real neural signals.

Several sets of data (time series) have been collected using different 
type of stimula to activate the neurons and to all of them the Wiener-

Granger method has been applied producing the same result, described 
in Section 4.
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Fig. 2. Signal from the B neuron (blue line) and from the AR(4) algorithm (red 
line).

Fig. 3. RMS of the ARMA(4,𝑄′) models as a function of 𝑄′ (blue line). The RMS 
of the AR(4) model is shown as a red line.

4. Study of neural signals

We start by applying the AR algorithm to the filtered neural signal 
B plotted in Fig. 1. The study described in the following was applied 
to all the collected neural signals, but for brevity in this paper just one 
case is reported with a single application of the odorant. Fig. 2 shows 
again the filtered B data from Fig. 1, together with the result of the 
AR(4) algorithm. The results of the AR(4) fits the data very well, with 
RMS = 6.9 ⋅ 10−3.

We next apply the ARMA(4,𝑄′) to reconstruct the B signal from it-
self and from the A data (Fig. 1). For this test we vary 𝑄′, the number of 
past bins of A that are used, from 0 to 50. Fig. 3 exhibits the RMS calcu-

lated from different ARMA(4,𝑄′) models as a function of 𝑄′. For 𝑄′ = 0
the RMS is 6.9 ⋅ 10−3 as for the AR(4). If in addition to the four past 
values of the B function also past values of A are considered, the pre-

diction improves with the increase of the number of these values. Next, 
only three values of B are considered. Fig. 4 shows the RMS of differ-

ent ARMA(3,𝑄′) for increasing values of 𝑄′. Also the RMS achieved by 
the ARMA(3,𝑄′) models decreases with 𝑄′. However it always remains 
higher than the RMS of AR(4).
3

Fig. 4. RMS of the ARMA(3,𝑄′) models as a function of 𝑄′ (blue line). The RMS 
of the AR(4) model is shown as a red line.

Fig. 5. Top: the original A signal obtained with a single repetition of the olfac-

tory stimulus which originated at the same time the B signal in Fig. 2. Bottom: 
the same A signal, but inverted.

One might argue that Figs. 3 and 4 show a Granger causality be-

tween the neurons A and B because considering past values of A leads 
to a better description of B.

However, one could also say that the quality of a fit always increases 
with the number of parameters and also add that the agreement be-

tween the AR(4) prediction and data shown in Fig. 2 is already so good 
that there is hardly any room for a physics driven improvement: there-

fore the observed improvement might be only numerical.

To decide which interpretation is correct the test described in the fol-

lowing Section is applied.

4.1. Inverted A signal

According to Granger “The past and present may cause the future, but 
the future cannot cause the past” [2]. Therefore, if the results of the ARMA 
method shown in Figs. 3 and 4 are evidence for Granger causality, they 
should not any more indicate Granger causality when applied to a time 
inverted A signal.
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Fig. 6. RMS of the AR(4) model (red line) and RMS of the ARMA(4,𝑄′) models 
as a function of 𝑄′ (blue line). The inverted A signal in considered.

Fig. 7. RMS of the AR(4) model (red line) and RMS of the ARMA(3,𝑄′) models 
as a function of 𝑄′ (blue line). The inverted A signal in considered.

Fig. 5 shows the time inverted A signal on the bottom compared with 
the original one, on top, as already plotted in Fig. 1 (on top).

The resulting ARMA(3,𝑄′) and ARMA(4,𝑄′) are shown in Figs. 6

and 7 and display a similar behaviour to the ones in Figs. 3 and 4.

This means that the degrees of the RMS values of Figs. 3 and 4

cannot be taken as an evidence of causality and that therefore the pro-

cedure proposed by Granger does not show any causality between A and 
B. However from past studies A is already known to be causal for B.

At this point a more fundamental study of the AR and ARMA algorithms 
is needed.

5. The differential calculus for the local reconstruction of the 
Fourier series

It is generally known that any function can be constructed from its 
Fourier components and that any point of a sine function can be calcu-

lated from two other points of the same function using the relation:

𝐶 sin(𝑥+𝜙) =𝑀 sin𝑥+𝑁 sin(𝑥+ 𝜃) (5)
4

where 𝐶 =
√

𝑀2 +𝑁2 + 2𝑀𝑁 cos𝜃 and 𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑏 sin𝜃, 𝑀 +𝑁 cos𝜃).
In a binned distribution it is possible to calculate the value of the 
sine function in a certain bin from the two previous bins by choos-

ing 𝜙 = −𝜃 = 𝑏𝑖𝑛 𝑤𝑖𝑑𝑡ℎ; for a given time interval Δ𝑡 the bin width of a 
sinusoidal function is related to its frequency.

This means that if one considers different sinusoidal functions with 
same Δ𝑡 but different frequency, for a given 𝜔𝑘, there will be corre-

sponding coefficients 𝑀𝑘 and 𝑁𝑘 (having fixed 𝐶𝑘 = 1).
As a consequence, if the Fourier transform of a certain function is 
known, the value of the function at a certain time can be expressed us-

ing its values in previous times; in this case the bin width corresponds 
to the time step Δ𝑡. In the context of our study it has to be noted that 
this is true for any function that can be expressed as a Fourier series, re-

gardless from the fact that this function has a physics meaning.

Alternatively for a differentiable function the value of the function in a 
certain bin can be calculated from the values in previous bins applying 
the differential calculus introduced by Newton: the value of a function 
𝑓 at a point 𝑥𝑛, 𝑓 (𝑥𝑛), can be approximated from its previous value 
𝑓 (𝑥𝑛−1) by:

𝑓 (𝑥𝑛) ≃ 𝑓 (𝑥𝑛−1) +
𝑑𝑓 (𝑥𝑛−1)

𝑑𝑥
𝑑𝑥 (6)

For a binned function this means:

𝑓 (𝑥𝑛) ≃ 𝑓 (𝑥𝑛−1) + [𝑓 (𝑥𝑛−1) − 𝑓 (𝑥𝑛−2)]

≃ 2𝑓 (𝑥𝑛−1) − 𝑓 (𝑥𝑛−2)

≃ 𝑎1𝑓 (𝑥𝑛−1) + 𝑎2𝑓 (𝑥𝑛−2)

(7)

with 𝑎1 = 2 and 𝑎2 = −1. This approximation becomes more precise as 
the bin width decreases.

Equation (7) takes into account the first derivative. The approximation 
under certain conditions will increase in precision if we consider higher 
derivatives.

Taking for example the second derivative we obtain:

𝑓 (𝑥𝑛) ≃ 𝑓 (𝑥𝑛−1) + [𝑓 (𝑥𝑛−1) − 𝑓 (𝑥𝑛−2)]+

+ ([𝑓 (𝑥𝑛−1) − 𝑓 (𝑥𝑛−2)] − [𝑓 (𝑥𝑛−2) − 𝑓 (𝑥𝑛−3)])

≃ 3𝑓 (𝑥𝑛−1) − 3𝑓 (𝑥𝑛−2) + 𝑓 (𝑥𝑛−3)

≃ 𝑎1𝑓 (𝑥𝑛−1) + 𝑎2𝑓 (𝑥𝑛−2) + 𝑎3𝑓 (𝑥𝑛−3)

(8)

with 𝑎1 = 3, 𝑎2 = −3 and 𝑎3 = 1.

While for the next order we have:

𝑓 (𝑥𝑛) ≃ 4𝑓 (𝑥𝑛−1) − 6𝑓 (𝑥𝑛−2) + 4𝑓 (𝑥𝑛−3) − 𝑓 (𝑥𝑛−4)

≃ 𝑎1𝑓 (𝑥𝑛−1) + 𝑎2𝑓 (𝑥𝑛−2) + 𝑎3𝑓 (𝑥𝑛−3) + 𝑎4(𝑥𝑛−4)
(9)

with 𝑎1 = 4, 𝑎2 = −6, 𝑎3 = 4 and 𝑎4 = −1.

The Newtonian interpolation will become more precise with a decreas-

ing bin width, while the parameters of Equation (5) are analytically 
precise.

This means, for instance, that for the reconstruction of a sinusoidal func-

tion the 𝑀 and 𝑁 parameters from Equation (5) will converge towards 
2 and −1 from Equation (7) with decreasing bin widths. It has to be re-

membered that the bin width depends on both time and frequency: if, 
for a given frequency 𝜔𝑘, this convergence has reached a certain pre-

cision, then for all the frequencies smaller than 𝜔𝑘 the agreement will 
further improve; therefore for frequencies smaller than 𝜔𝑘 the same co-

efficient can always be used in the Newton approximation. One would 
then expect that in a Fourier series, the lower the frequency of the ex-

amined component, the better the Newton approximation will result in 
a good prediction for the function. The high frequencies sinusoidal com-

ponents of the series should instead be better approximated with the AR 
method. We note that in most physics data high frequencies are asso-

ciated with noise, while the low frequencies components contain the 
physics feature of the system under observation. This is studied quanti-

tatively in the next Section.
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Table 1. Values of the AR(2) 𝑎1 and 𝑎2 coefficients for decreasing bin widths.

Bin width (in 𝑟𝑎𝑑) 𝑎1 𝑎2
𝜋

10
1.9021 −1.000

𝜋

30
1.9890 −1.000

𝜋

50
1.9961 −1.000

Table 2. RMS obtained with the use of an increasing number of previous values 
of the sine function multiplied by the Newton coefficients.

Number of past values Coefficients value RMS

2 2, −1 0.0699

3 3, −3, 1 0.0214

4 4, −6, 4, −1 0.0069

Table 3. Coefficients from the different AR models and RMS calculated with 
the AR and Newton methods for different number of preceding values. B signals 
without filtering, with cutting frequency at 0.16 and with cutting frequency at 
0.008 are considered.

Non filtered B signal

AR coefficients RMS𝐴𝑅 RMS𝑁𝑒𝑤𝑡𝑜𝑛

2 0.9438, 0.0485 0.0608 0.0828

3 0.9413, 0.0117, 
0.0393

0.0609 0.1384

4 0.9393, 0.0077, 
0.0858, −0.0398

0.0608 0.2522

B signal with cutting frequency at 0.16

AR coefficients RMS𝐴𝑅 RMS𝑁𝑒𝑤𝑡𝑜𝑛

2 1.6838, −0.6890 0.0212 0.0238

3 2.3226, −2.0298, 
0.7060

0.0122 0.0197

4 2.9904, −3.7965, 
2.5387, −0.7342

0.0069 0.0185

B signal with cutting frequency at 0.008

AR coefficients RMS𝐴𝑅 RMS𝑁𝑒𝑤𝑡𝑜𝑛

2 1.9668, −0.9679 0.0025 0.0026

3 2.9419, −2.9106, 
0.9687

3.9511 ⋅ 10−4 5.7784 ⋅ 10−4

4 3.8981, −5.7480, 
3.8001, −0.9502

9.7855 ⋅ 10−5 1.6561 ⋅ 10−4

5.1. AR method

In Equations (7) to (9) the 𝑎𝑗 parameters are obtained from a general 
geometric argument and for large bin width are not optimized. The AR 
algorithm instead will find the best possible values for these coefficients 
𝑎𝑗 from a numerical fit. Therefore the 𝑎𝑗 values obtained from the AR 
algorithm should converge towards the Newton values found above for 
small bin widths.

In a first step we apply the AR(2) algorithm to a binned sine function. 
That is, we calculate the expected value of the function in a bin from 
the values in the two preceding bins, using the AR(2) algorithm. Table 1

shows the 𝑎1 and 𝑎2 coefficients found with the AR(2) method for three 
different bin widths.

As expected, the fitted values for 𝑎1 and 𝑎2 converge towards the 
values 2 and -1 found in Equation (7) with a decreasing bin widths.

Table 2 shows the agreement of a sine function with its Newtonian 
extrapolation (from Equations (7), (8) and (9)) in terms of RMS (with 
binning 𝜋

10 𝑟𝑎𝑑).

In the next step the neural B function is studied (see Fig. 1).

Table 3 shows the coefficients obtained from the AR(2), AR(3) and 
AR(4) models and the RMS values of their fit, for different filter’s val-

ues. For comparison also the RMS is shown if the Newton coefficients 
of Table 2 are applied instead of the ones coming from the AR fit.

Table 3 shows in its third section (cutting frequency at 0.008) that 
for a function without noise, or with very little noise, the coefficients 
found with the AR method are very similar to those obtained with the 
Newton method listed in Table 2. The difference between them is of the 
order of 5%. This last section also shows that the RMS values obtained 
from the AR method are only slightly better than the ones obtained from 
5

the Newton method, for the B function with little noise. Increasing the 
amount of noise (as in the other sections of Table 3) increases the RMS 
values and the coefficients found from the AR method become very 
much different from the Newton ones. The first section, corresponding 
to the non filtered B signal, also shows that in the presence of a rel-

evant noise the AR model always gives a value close to one for the 𝑎1
coefficient, while the other coefficients turn out to be close to zero. This 
means that the reconstructed value in any point is essentially identical 
to the preceding value. In addition two coefficients are enough to make 
a prediction: adding more doesn’t improve the RMS.

All in all the Newton and AR methods lead to the same results in the 
case of a function with low level of noise. This means that the AR 
method essentially consists of the prediction of the function from its 
preceding value and the derivatives in preceding points, regardless of 
the physics meaning of the function; in other words the coefficients 
found by the AR mechanism should be always the same for all kind of 
physics experiment, in the absence of high frequencies in the Fourier 
spectrum.

In the presence of noise the coefficients obtained from the AR model 
become clearly more effective than the simple application of the New-

ton constant from Table 2: the AR algorithm has an higher capability to 
fit the noise.

The fact that the Newton method is able to reconstruct all kinds of dif-

ferentiable functions with the same coefficients means that it does not 
contain “information” about the physics content of the function.

When instead an AR algorithm is performed, the resulting decrease of 
the RMS values compared to the Newton ones is not due to the fact that 
the AR fit takes the physics signal into account better, but rather the 
noise.

With respect to the following discussion we note that for example the 
AR mechanism should reconstruct the time inverse of a function as well 
as the function itself.

5.2. ARMA method

The first graph showed by Fig. 8 depicts the RMS obtained from the 
AR(𝑃 ) algorithm as a function of 𝑃 for the same data used in Table 3: 
the B signal without filter, filtered with cutting frequency at 0.16 and 
with cutting frequency at 0.008 respectively. The second graph shows 
the RMS obtained from the AR(𝑃 ) algorithm as a function of 𝑃 for a 
simulated noise function with the same three filters.

We see that for 𝑃 = 150 the RMS reaches the 0 value. This is because 
𝑃 = 150 corresponds to only 150 bins left in the time series to be fitted: 
we then have a system with 150 unknowns and 150 equations. We see in 
Fig. 8 in more detail what we already showed with Table 3: when high 
frequencies are removed from a function, the differential mechanism 
allows one to effectively reconstruct the function with fewer points. In 
the presence of high frequencies the convergence of the optimization 
program is much slower. As showed by Fig. 8 these considerations are 
true for any kind of function.

We next apply the MA algorithm, from Equation (2), on the neural time 
series A in order to calculate B: that is we predict B from A without 
making use of the data in the series B as described by Equation (2). The 
result of this is depicted in the first graph of Fig. 9, where we show the 
RMS obtained from the MA(𝑄) algorithm as a function of 𝑄 for different 
filtering applied to reconstruct the B signal from the A one. The second 
graph shows the results of the same procedure applied after substituting 
the A signal with a simulated noise signal.

We see again that the RMS becomes 0 at 𝑄 = 150 for the same rea-

sons discussed before. Now for the reconstruction of the B Fourier series 
the knowledge of the Fourier series of the other signal is not useful; 
therefore filtering the function does not impact the reconstruction. The 
comparison between the two graphs in Fig. 9 shows that the same kind 
of behaviour is to be expected for all kind of functions regardless from 
their shape or physics meaning, and for all combination of functions.

One can as well reconstruct the B signal from the time inverted A sig-
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Fig. 8. Top: RMS values for increasing order 𝑃 of the AR method applied to the 
B function unfiltered and with a medium and a strong filter applied. Bottom: 
RMS values for the AR(𝑃 ) reconstruction of a simulated noise function as a 
function of the 𝑃 order, for different filtering.

nal: this confirms what already obtained in Section 4.1.

Instead of reconstructing B from itself (as done in the first graph of 
Fig. 8) or B from A (as done in the first graph of Fig. 9) we can also mix 
both the procedures: doing this, results in what is referred to as ARMA 
method. In the first graph of Fig. 10 we show the RMS obtained from 
the ARMA(4,𝑄′) algorithms applied to B and A with different filtering, 
as a function of 𝑄′. The second graph shows the RMS obtained from the 
ARMA(4,𝑄′) algorithms applied to B and a simulated noise function as 
a function of 𝑄′, with the same three different filters.

The comparison between these two graphs shows that the ARMA 
algorithm is not sensitive to the physics meaning of the “predicted” or 
“predicting” functions. However, the development of the RMS with 𝑄′

very much depends on the presence of high frequencies contributions.

6. Interpretations

Granger may have believed that Equation (3) is expressing causal-

ity because an event at a time interval 𝑘 is calculated from events in 
previous time intervals 𝑘 − 𝑗. One has to consider however that the 
coefficients are obtained from a fit from the entire data-set prior to ap-

plying this algorithm; therefore the algorithm does not express causality 
in the usual significance of the expression.

One might argue that Granger uses the term “causality” in a different 
6

Fig. 9. Top: RMS values for increasing order of the MA model applied to re-

construct B starting from A, for different filtering on both signals. Bottom: RMS 
values for increasing order of the MA model applied to reconstruct B starting 
from a simulated noise function, for different filtering on both signals.

way compared to the usual significance, and one might correspond-

ingly define “causality” as what is expressed by the Granger formalism 
and to “predict” as whatever is done by Equation (3). However, this as-

sumption leads to inconsistencies. First, we showed that with Granger 
Equation (3) any time series can be “predicted” from any other one. Dif-

ferences in the RMS distribution for different time series are due to the 
properties of the Fourier transform only. Secondly, we found that Equa-

tion (3) “predicts” a time series 𝐴 from a time series 𝐵 equally well 
when the time series 𝐵 is time inverted. Which means that Equation 
(3) predicts the past from the future as well as the future from the past. 
This constitutes an internal contradiction with the Granger’s statement 
already cited in Section 5: “the past and present may cause the future, but 
the future cannot cause the past’. The Wiener-Granger algorithm seems 
not to have the power to describe causality in a meaningful way.

7. Conclusion

The ARMA algorithm which was used by Granger to determine the 
causality between time series is not able to give any evidence of such 
a causality. In spite of this, many studies have been performed under 
the assumption that the ARMA algorithm which was used by Granger 
to determine the causality between time series is able to give evidence 
of such a causality.
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Fig. 10. Top: RMS values for increasing 𝑄′ of the ARMA(4,𝑄′) models for dif-

ferent filtering on the A and B signals. Bottom: RMS values for increasing 𝑄′ of 
the ARMA(4,𝑄′) models for different filtering on the simulated noise function 
and B signals.

The Granger algorithm concerns fundamental questions about infor-

mation, information processing and the meaning of messages, as can be 
seen in all the papers published on the Granger causality and in partic-

ular in Granger’s original paper, where he used the word “information” 
forty times. This suggests that a more profound investigation of these 
fundamental notations is needed from a physics point of view.
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