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Background. With an enormous amount of research concerning kidney cancer being conducted, various treatments have been
applied to its cure. However, high recurrence and metastasis rates continue to pose a threat to the survival of patients with
kidney renal clear cell carcinoma (KIRC). Methods. Data from The Cancer Genome Atlas were downloaded, and a series of
analyses were performed, including differential analysis, Cox analysis, weighted gene coexpression network analysis, least
absolute shrinkage and selection operator analysis, multivariate Cox analysis, survival analysis, and receiver operating
characteristic curve and functional enrichment analysis. Results. A total of 5,777 differentially expressed genes were identified
from the differential analysis. The Cox analysis showed 1,853 significant genes (P < 0.01). Weighted gene coexpression network
analysis revealed that 226 genes in the module were related to clinical parameters, including Tumor-Node-Metastasis (TNM)
staging. Least absolute shrinkage and selection operator and multivariate Cox analyses suggested that four genes (CDKL2,
LRFN1, STAT2, and SOWAHB) had a potential function in predicting the survival time of patients with KIRC. Survival analysis
uncovered that a high risk of these four genes was associated with an unfavorable prognosis. Receiver operating characteristic
curve analysis further confirmed the accuracy of the risk score model. The analysis of clinicopathological parameters of the four
identified genes revealed that they were associated with the progression of KIRC. Conclusion. The gene expression model
consisting of CDKL2, LRFN1, STAT2, and SOWAHSB is a promising tool for predicting the prognosis of patients with KIRC.
The results of this study may provide insights into the diagnosis and treatment of KIRC.

1. Introduction

Kidney cancer is one of the most prevalent types of cancer
worldwide [1, 2]. Belonging to kidney cancer, kidney renal
clear cell carcinoma (KIRC) is characterized by high recur-
rence and metastasis rates, challenging the health and quality
of life of patients [3, 4]. According to statistics, following sur-

gery, the recurrence rate of KIRC may reach 40% [5, 6]. In
KIRC, cancer cells often metastasize to other organs [7-9].
In addition, diagnosis of KIRC in the early stage of disease
is difficult due to its insidious symptoms. These reasons con-
tribute to the difficulty in treating KIRC.

Bioinformatics analysis has been increasingly important
in cancer research for predicting the prognosis of patients
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and exploring novel therapy targets. Weighted gene coex-
pression network analysis (WGCNA), least absolute shrink-
age and selection operator (LASSO) analysis, and functional
enrichment analysis are three of the most popular bioinfor-
matics tools. For example, a recent study identified key path-
ways and genes in the dynamic progression of hepatocellular
carcinoma based on WGCNA [10]. WGCNA may also be
applied to construct competing endogenous RNA networks,
which are involved in regulating cancer progression [11,
12]. LASSO analysis is often employed to screen the most
crucial genes and reduce the number of genes in some models
[13]. For instance, a recent study used LASSO analysis to
identify prognostic long noncoding RNA signatures in blad-
der cancer [14]. Functional enrichment analysis is widely uti-
lized in studies to find crucial pathways [15-17].

In this study, mainly using the aforementioned tools, we
aimed to establish a model for improving the prediction of
survival of patients with KIRC. With data from The Cancer
Genome Atlas (TCGA), after obtaining differentially
expressed genes (DEGs), Cox analysis was performed to pre-
liminarily detect prognosis-related genes. Subsequently,
WGCNA was used to set up a gene coexpression network,
and LASSO analysis was employed to delete highly correlated
genes, and multivariate Cox analysis was utilized to construct
a survival prediction model. We found that a panel of four
genes, including cyclin-dependent kinase like 2 (CDKL2),
leucine-rich repeat and fibronectin type III domain-
containing 1 (LRFN1), signal transducer and activator of
transcription 2 (STAT2), and sosondowah ankyrin repeat
domain family member B (SOWAHB), was a promising
module for predicting the survival of patients with KIRC.
Subsequently, functional enrichment analysis was performed
to analyze the biological events regulated by this module.

2. Materials and Methods

2.1. Data Acquisition and Processing. RNA sequencing data
of KIRC samples (72 normal samples and 538 tumor sam-
ples) and relevant clinical information of patients with KIRC
were downloaded from TCGA (https://portal.gdc.cancer
.gov/). Survival information of 530 samples was available,
and the details of the patients are presented in Table 1. Data
regarding disease-free survival were downloaded from cBio-
Portal (http://www.cbioportal.org/). In the process of con-
structing a risk model, 530 samples were divided into two
groups using the R package caret (265 in the training and
testing groups, respectively) (Table S1).

2.2. Identification of DEGs. The function package edgeR was
utilized to conduct a differential analysis. We selected |Log-
fold change | >1 and false discovery rate < 0.05 as significant
cutoff values based on the Benjamini-Hochberg method. A
heat map was generated to show the expression levels of
genes in normal and tumor samples.

2.3. WGCNA. WGCNA was performed to combine signifi-
cant prognostic DEGs with clinical traits [18]. The function
hclust was used to cluster samples and delete outliers. The
soft-thresholding power was chosen based on the criterion
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TasLE 1: Clinicopathological features.

Clinicopathological parameters Frequency Percentage
Gender

Male 346 64.43%

Female 191 35.57%
Pathologic stage

I-1I 326 60.71%

I-1IV 208 38.73%

Unknown 3 0.56%
T stage

T1-T2 344 64.06%

T3-T4 193 35.94%
N stage

NoO 240 44.69%

N1 17 3.17%

NX 280 52.14%
M stage

MO 446 83.05%

M1 81 15.08%

MX 10 1.86%
Age

<60 247 46.00%

>60 290 54.00%

of approximate scale-free topology after the function pick-
SoftThreshold was performed. According to the soft-
thresholding power f3, a weighted gene network with a rela-
tively large minimum module size of 30 was constructed.
The parameter mergeCutHeight was the threshold to merge
of modules. Next, the modules that were significantly associ-
ated with the clinical traits were identified. Subsequently, the
correlation between modules and clinical traits was deter-
mined. The associations of individual genes with clinical
traits were quantified by defining gene significance (GS) as
the correlation between genes and clinical traits. For each
module, the quantitative measure of module membership
(MM) was treated as the correlation of the module eigengene
and the gene expression profile. GS and MM were highly cor-
related, illustrating that genes significantly associated with a
trait were often also the most important (central) elements
of modules related to the trait. Based on this, genes highly
significantly associated with clinical traits could be identified.

2.4. Construction of a Cox Model. LASSO analysis and multi-
variate Cox regression analysis were conducted to construct a
risk model. The 226 significant prognosis genes (blue mod-
ule) identified through these analyses were ranked according
to their P values. The top 30 significant prognostic genes were
calculated by LASSO analysis. After deleting high correlation
genes, a multivariate Cox analysis was performed. P values <
0.05 indicated statistical significance. The hazard ratio and
95% confidence interval for each variable were calculated.

2.5. Functional Enrichment Analysis. Functional enrichment
analysis included Gene Ontology (GO) analysis and Kyoto
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F1GURrk 1: Flowchart of this work and expression of DEGs in TCGA data. (a) KIRC: kidney renal clear cell carcinoma; GO: Gene Ontology;
KEGG: Kyoto Encyclopedia of Genes and Genomes; WGCNA: weighted gene coexpression network analysis; LASSO: least absolute shrinkage
and selection operator; ROC: receiver operating characteristic curve. (b) Heat map of DEGs. From green to black to red, the expression of gene
increased. The blue panels represented normal samples; the red panels represented tumor samples. DEGs: differentially expressed genes.
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F1GURE 2: The results of weighted gene coexpression network analysis. (a) Sample clustering was employed to detect outliers. (b) Analysis of
network topology for various soft-thresholding powers. The left panel showed that the scale-free fit index (y-axis) served as a function of the
soft-thresholding power (x-axis). The right panel displayed that the mean connectivity (degree, y-axis) worked as a function of the soft-
thresholding power (x-axis). (c) Clustering dendrogram of genes with dissimilarity was based on topological overlap and assigned module
colors. (d) Associations between module and trait. Each small square contained the corresponding correlation coefficient and P value. (e)
Gene coexpression network of the genes in the blue module.
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TaBLE 2: Univariate Cox regression analysis of the top 30 genes in the blue module.

Gene HR HR, 95 CI (low) HR, 95 CI (high) P value

CHFR 1.000833824 1.000626465 1.001041226 3.18E-15
STAT2 1.000139807 1.000104508 1.000175106 8.28E-15
RELT 1.00168529 1.00123172 1.002139065 3.17E-13
LRFN1 1.003620135 1.002620544 1.004620723 1.18E-12
REEP4 1.000911177 1.000655593 1.001166827 2.75E-12
VAMP1 1.00096664 1.000690669 1.001242688 6.53E—12
TCIRG1 1.000176371 1.000125551 1.000227193 1.03E-11
SOWAHB 0.998170856 0.997638284 0.998703712 1.77E - 11
Cl7orf62 1.000290856 1.000205244 1.000376475 2.75E-11
IGFLR1 1.002196092 1.001540895 1.002851717 4.88E-11
STAC3 1.002374184 1.001648701 1.003100193 1.37E-10
FKBP11 1.000228649 1.000158225 1.000299078 1.97E - 10
HAPLN3 1.000541992 1.000373872 1.000710141 2.62E - 10
MICAL1 1.000230074 1.000158663 1.000301489 2.70E - 10
SH3BGRL3 1.000044229 1.000030246 1.000058211 5.66E - 10
CASP4 1.000282876 1.000188726 1.000377036 3.88E-09
CDKL2 0.997021707 0.99601962 0.998024803 6.12E - 09
IFI30 1.001967645 1.001302802 1.002632928 6.46E — 09
NOD2 1.001225892 1.00081042 1.001641536 7.23E-09
TMEM245 0.999832818 0.999775898 0.99988974 8.61E—-09
MPP5 0.999453585 0.999267007 0.999640198 9.59E - 09
IL15RA 1.000470293 1.000309107 1.000631504 1.07E - 08
FCGR1B 1.004084857 1.002680825 1.005490855 1.13E-08
ARHGEF1 1.000150458 1.000098375 1.000202543 1.49E - 08
RNF166 1.000630491 1.00041224 1.000848789 1.49E - 08
ACADSB 0.99962285 0.999491681 0.999754037 1.76E - 08
UNCI13D 1.000234229 1.000152484 1.00031598 1.95E - 08
PPP1R18 1.000179058 1.000116469 1.00024165 2.05E - 08
MYO6 0.999791047 0.99971764 0.999864459 2.43E-08
RHBDEF2 1.000227139 1.000147305 1.00030698 2.45E-08

Abbreviations: HR: hazard ratio; CI: confidence interval.

Encyclopedia of Genes and Genomes (KEGG) analysis. GO
and KEGG analyses were carried out using the R package
clusterProfiler. GO analysis contained biological process, cel-
lular component, and molecular function. P < 0.05 indicated
statistical significance.

2.6. Correlation between Clinical Traits and CDKL2, LRFN1,
STAT2, and SOWAHB. Correlation between the four genes
and clinical parameters (Tumor-Node-Metastasis (TNM)
stage, pathological stage, and grade) was analyzed to further
confirm the importance of the identified genes. P < 0.05 indi-
cated statistical significance.

2.7. Survival Analysis. Online survival analysis and relapse-
free survival (RFS) analysis were performed through Gene
Expression Profiling Interactive Analysis (GEPIA; http://

gepia.cancer-pku.cn/index.html) to recognize significant
prognostic biomarkers. P < 0.05 indicated statistical signifi-
cance. Moreover, survival analysis of the risk model was per-
formed using R package survival, and receiver operating
characteristic (ROC) curve was constructed based on the R
package survival ROC.

3. Results

3.1. DEGs in KIRC Samples. The workflow is shown in
Figure 1(a). RNA sequencing data of KIRC samples were
processed by edgeR, and 5,777 DEGs (3,913 upregulation
and 1,863 downregulation) were obtained. The heat map of
the top 100 DEGs represents the expression level of DEGs
in normal tissues and tumor tissues (Figure 1(b)). From the
heat map, a significant difference in the expression levels of
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F1GURE 3: Construction of the gene risk-score system. (a, b) Selection of relative coeflicients of the gene risk-score system. (c, d) Survival of the
gene risk-score system. (e, f) ROC curve of the gene risk-score system. (g—j) Survival time and status of high-/low-risk groups. (k, 1)
Expression of four genes (STAT2, LRFN1, CDKL2, and SOWAHB) in high-/low-risk groups. From green to black to red, the expression
of gene increased. The red color of the type represented the low-risk group, and blue color of the type represented the high-risk group.

genes between normal tissues and tumor tissues was
observed. Subsequently, univariate Cox analysis was per-
formed, and 1,853 genes significantly related to the prognosis
of patients were identified (data not shown).

3.2. Results of WGCNA. After performing hclust, two sam-
ples (TCGA-B0-4696-01 and TCGA-BP-4770-01) were
deleted (Figure 2(a)). According to scale independence
and mean connectivity, the soft-thresholding power =6
was considered to be the fittest value, which was responsi-
ble for high correlation and high connectivity between
genes (Figure 2(b)). Consistent with the thresholding
power, these DEGs were divided into eight effective gene
modules, and the grey module was considered an ineffec-
tive module for preserving nonmodular  genes
(Figure 2(c)). Through the correlation between GS and
MM, we noted the blue module, in which genes were
related to TNM staging and tumor grade. As shown in
Figure 2(d), blue module genes were highly connected
with clinical traits. Correlation between the blue module
and T was 0.31, P=7e— 13; correlation between the blue
module and N was 0.34, P =2e— 15; correlation between
the blue module and M was 0.24, P =2e — 08; correlation
between the blue module and clinical stage was 0.29, P =
9¢—12; and correlation between the blue module and
tumor grade was 0.33, P=3e— 15. In addition, Cytoscape
(https://cytoscape.org/download.html) was used to con-
struct a gene coexpression network based on blue module
genes (Figure 2(e)). From the gene coexpression network,
we observed that most genes exhibited a strong
correlation.

3.3. Construction of the Gene Risk-Score System. To construct
a risk-score system, we selected the top 30 genes from the
blue module which were deemed to be the most significant
genes according to their P value (Table 2). Through
LASSO analysis and multivariate Cox regression analysis,
a gene risk-score system was obtained using relative
coeflicients (Figures 3(a) and 3(b)). Subsequently, RELT
TNF receptor (RELT), transmembrane protein 245

(TMEM245), receptor accessory protein 4 (REEP4),
leucine-rich repeat and fibronectin type III domain-
containing 1 (LREN1), and vesicle-associated membrane
protein 1 (VAMP1) were excluded, and the final risk score
formula was as follows: PI=(—0.23946 x expression level
of CDKL2) + (0.58372 x expression level of STAT2) + (—
0.12572 x expression level of SOWAHB) + (0.25274 x
expression level of LRFN1). Among these genes, CDKL2
and SOWAHB had negative coeflicients in the univariate
and multivariate Cox regression analyses, suggesting that
upregulating their expression levels would improve the
survival time of patients with KIRC. According to the risk
score, we divided patients into high- and low-risk groups.
In both the training and testing groups, the 5-year survival
rate in the high- and low-risk groups was 40% and 80%,
respectively (Figures 3(c) and 3(d)). The ROC curve anal-
ysis further confirmed the accuracy of the risk-score
model, and the area under the curve was 0.78 and 0.753
in the training and testing groups, respectively. After
dividing 530 patients into the high-/low-risk groups in
the training and testing groups, the risk scores of the
patients were negatively associated with the patients’” sur-
vival time (Figures 3(g)-3(j)). The heat map suggested that
STAT2 and LRFNI were high-risk genes, whereas CDKL2
and SOWAHB were low-risk genes (Figures 3(k) and 3(1)).
These results suggested that STAT2, LREN1, CDKL2, and
SOWAHB were prognosis-related genes, and the afore-
mentioned formula could be used to assess the risk of
death in patients.

3.4. Correlations between the Four Genes and Clinical Traits.
The associations between genes and clinical traits (T stage,
N stage, M status, clinical stage, tumor grade, etc.) were
analyzed to further clarify the clinical importance of the
four identified genes. The results showed that CDKL2
and SOWAHB had lower expression levels, while LREN1
and STAT2 had higher expression levels in T3/4 tumors
versus T1/2 tumors (Figure 4(a)), tumors with lymphatic
metastasis (Figure 4(b)), tumors with distant metastasis
(Figure 4(c)), and stage III/IV tumors versus stage I/II
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Correlation between risk model and clinical traits.

tumors (Figure 4(d)). In addition, we found that the risk
model was also related to TNM, staging, and survival sta-
tus (Figure 4(e)). To verify these results, we performed
correlation analysis using an online website (https://
mexpress.be/index.html). The findings showed that these
four genes were related to numerous clinical traits
(Figure S1). These results suggested that STAT2, LRFNI,
CDKL2, and SOWAHB may have an impact on the

progression, invasion, and metastasis of KIRC.
Additionally, online overall survival (OS) and RFS
analyses were performed to further confirm the

prognostic value of these genes. The results indicated
that high expression levels of STAT2 and LRFNI1 were
associated with poor prognosis of patients with KIRC; in
contrast, high expression levels of CDKL2 and SOWAHB
indicated favorable prognosis among patients with KIRC
(Figures 5(a)-5(i)). Additionally, the risk model showed
that RFS of patients with high risk was shorter compared
with that in the low-risk group, in both the training and
testing groups (Figures 5(m) and 5(n)).

3.5. GO and KEGG Pathway Analysis. We performed func-
tional enrichment analysis with the R package clusterPro-
filer to investigate the function and pathway potentially
regulated by the genes in the blue module. These genes
were mainly enriched in the following: biological process
(including T cell activation, regulation of T cell activation,
regulation of lymphocyte activation, response to virus, and
regulation of cell-cell adhesion (Figure 6(a)); cellular com-
ponent (including actin cytoskeleton, endocytic vesicle,
secretory granule membrane, phagocytic vesicle, and
ficolin-1-rich granule membrane (Figure 6(b)); and molec-
ular function, (including actin binding, GTPase regulator
activity, nucleoside-triphosphatase  regulator activity,
GTPase activator activity, and G protein-coupled receptor

binding (Figure 6(c))). The pathways potentially regulated
by these genes were related to the NOD-like receptor sig-
naling pathway, cytokine-cytokine receptor interaction,
osteoclast differentiation, viral protein interaction with
cytokine and cytokine receptor, JAK-STAT signaling path-
way, T helper 17 cell differentiation, etc. (Figure 6(d)).
These results suggested that genes in the blue module were
involved in regulating the progression of KIRC via these
pathways.

4. Discussion

Comprehensive analysis of the gene expression signature
in cancer tissues is of great significance in cancer research.
It benefits the diagnosis of cancer and provides novel ther-
apeutic targets for its treatment. In the field of KIRC
research, depending on the open source gene expression
profile data, several pilot studies apply bioinformatics anal-
ysis to construct prognosis prediction models or screen
hub genes in cancer progression. For instance, using
WGCNA and a protein-protein interaction network, a
recent study analyzed the gene expression pattern of 26
pairs of tumor tissues/adjacent tissues and identified four
hub genes involved in the progression of KIRC, including
AGXT, PTGER3, SLC12A3, and ALOX5 [19]. Another
study used LASSO and best subset regression to detect
prognostic genes in KIRC from TCGA data, including
PADI1, ATP6VOD2, DPP6, C90rf135, and PLG [20]. Fur-
thermore, through TCGA data, another research group
screened key splicing factors regulating the alternative
splicing events during the tumorigenesis of KIRC, which
helps elucidate the mechanism of KIRC progression [21].
High-throughput technologies, such as gene expression
chip and RNA sequencing, provide a considerable amount
of data to researchers. Optimization of the workflow and
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FIGURE 5: Survival analysis of four genes (STAT2, LREN1, CDKL2, and SOWAHB). (a, b) OS and RFS plot of SOWAHB by GEPIA. (c) OS
plot of SOWAHSB in the training group. (d, e) OS and RES plot of CDKL2 by GEPIA. (f) OS plot of CDKL2 in the training group. (g, h) OS
and RFS plot of STAT2 by GEPIA. (i) OS plot of STAT?2 in the training group. (j, k) OS and RES plot of LRFN1 by GEPIA. (1) OS plot of
LRENT1 in the training group. (m, n) RES of risk model in the training group and the testing group. OS: overall survival; RFS: disease-free

survival.

combination of multiple analysis methods will provide
novel clues. This study presented a novel model for pre-
dicting the prognosis of patients with KIRC. Functional
enrichment analysis suggested that the genes involved in
this model were crucial modulators in the progression of
KIRC. Additionally, this model only consisted of four
genes, concise and precise, showing a preferable applica-
tion perspective.

Prognosis factors are important indicators of disease
treatment [22, 23]. Cox regression analysis is an effective
tool to find out prognosis factors [24]. Cox regression
analysis includes univariate Cox analysis and multivariate
Cox analysis [25]. Moreover, univariate Cox analysis is
usually used to screen potential prognosis factors, and
multivariate Cox analysis is frequently applied to construct
prognosis models [22, 26-30]. In our study, a risk model
was constructed based on Cox regression analysis, which
benefits the prognostic evaluation and personalized medi-
cine for patients with KIRC. In our risk model, among
the four identified genes, CDKL2 and SOWAHB were pro-
tective factors for patients with KIRC, whereas LREN1 and
STAT2 were risk factors for these patients. Belonging to
the STAT family, STAT2 is a well-characterized oncogene
and a crucial component of the interferon- (IFN-) a/f/y
signaling pathway. Together with STAT1 and IRF9,
STAT2 forms the IFN-stimulated gene factor 3 (ISGF3)
complex and translocates into the nuclei to trigger the
transcription of target genes after activation [31]. More-
over, STAT2 is highly expressed or abnormally activated
in multiple types of cancer and promotes malignant bio-
logical behaviors, including the proliferation, migration,
invasion, and epithelial-to-mesenchymal transition of can-
cer cells [31-33]. However, the expression characteristics,
biological function, and underlying mechanism of STAT2
in KIRC have not been systemically investigated. Interest-
ingly, a recent study reported that the IFN-y signaling

pathway is significantly activated in renal cancer patients
with metastatic disease [34]. The results of that study sug-
gested that STAT2 may participate in the progression of
KIRC, which is consistent with our finding in the present
study. It is worth investigating the role of STAT2 and
STAT2-related pathways in the progression of KIRC in
future studies.

The function of CDKL2 in different types of cancer is
distinct. It functions as an oncogene in breast cancer to
facilitate the process of epithelial-to-mesenchymal transi-
tion, inducing the expression of zinc finger E-box-
binding homeobox 1 (ZEB1) and promoting the conver-
sion of CD24"#" cells to CD44"#" cancer cells [35]. How-
ever, in gliomas, hepatocellular carcinoma, and gastric
cancer, its underexpression or hypermethylation of its pro-
moter indicates poor prognosis of patients; additionally,
overexpression of CDKL2 in gastric cancer cells suppresses
the growth and invasion of cancer cells [36-38]. These
results suggest that CDKL2 is a tumor suppressor in these
types of cancer. Previously, there was no report on the
role of CDKL2 in KIRC. Herein, our data implied that
downregulation of CDKL2 in KIRC tissues indicated poor
prognosis of patients. It is possible that CDKL2 functions
as a tumor suppressor in KIRC; however, this hypothesis
requires further investigation through in wvitro and
in vivo studies.

Importantly, the model utilized in the present study
identified two rarely investigated genes, namely, LRFN1
and SOWAHB. A genome-wide association study sug-
gested that SOWAHB was associated with the susceptibil-
ity of chronic obstructive pulmonary disease [39]. The
biological function of SOWAHB in cancer biology remains
obscure. A previous study showed that LREN1 belongs to
the SALM/LREN family and is a neuronal component in
the developing of mature vertebrate nervous system [40,
41]. Our data suggest that LRFN1 and SOWAHB are
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potential regulators in KIRC progression. Therefore, it is
desirable to investigate their biological functions in the fol-
lowing studies.

5. Conclusion

In summary, we utilized a comprehensive analysis to con-
struct a novel risk-score model for KIRC, by which we can

predict the prognosis of patients. Our results provide
potential biomarkers and therapeutic targets, which may
be beneficial for the diagnosis and treatment of KIRC.
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