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Alterations of the Human Gut Microbiome in Chronic
Kidney Disease

Zhigang Ren, Yajuan Fan, Ang Li, Quanquan Shen, Jian Wu, Lingyan Ren, Haifeng Lu,
Suying Ding, Hongyan Ren, Chao Liu, Wenli Liu, Dan Gao, Zhongwen Wu, Shiyuan Guo,
Ge Wu,* Zhangsuo Liu,* Zujiang Yu,* and Lanjuan Li*

Gut microbiota make up the largest microecosystem in the human body and
are closely related to chronic metabolic diseases. Herein, 520 fecal samples
are collected from different regions of China, the gut microbiome in chronic
kidney disease (CKD) is characterized, and CKD classifiers based on microbial
markers are constructed. Compared with healthy controls (HC, n = 210), gut
microbial diversity is significantly decreased in CKD (n = 110), and the
microbial community is remarkably distinguished from HC. Genera Klebsiella
and Enterobacteriaceae are enriched, while Blautia and Roseburia are reduced
in CKD. Fifty predicted microbial functions including tryptophan and
phenylalanine metabolisms increase, while 36 functions including arginine
and proline metabolisms decrease in CKD. Notably, five optimal microbial
markers are identified using the random forest model. The area under the
curve (AUC) reaches 0.9887 in the discovery cohort and 0.9512 in the
validation cohort (49 CKD vs 63 HC). Importantly, the AUC reaches 0.8986 in
the extra diagnosis cohort from Hangzhou. Moreover, Thalassospira and
Akkermansia are increased with CKD progression. Thirteen operational
taxonomy units are correlated with six clinical indicators of CKD. In
conclusion, this study comprehensively characterizes gut microbiome in
non-dialysis CKD and demonstrates the potential of microbial markers as
non-invasive diagnostic tools for CKD in different regions of China.
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1. Introduction

Chronic kidney disease (CKD) is a general
term for heterogeneous disorders affecting
the structure and function of the kidneys[1]

and is associated with significant rates of
morbidity, mortality, and healthcare costs.[2]

The mean global prevalence of CKD has
been estimated at 13.4%.[3] CKD progres-
sion to end-stage renal disease (ESRD) often
requires an expensive renal replacement
therapy, such as hemodialysis, peritoneal
dialysis, or kidney transplantation. The an-
nual mortality rate of dialysis patients is
as high as 10–20%.[4] Owing to the lack of
visible clinical manifestations in the early
stages, most patients with CKD advance to
the stage of renal failure at the time of treat-
ment, with a poor prognosis. Therefore, to
improve the prognosis of CKD patients, it
is essential to search for novel diagnostic
markers and therapeutic targets for CKD.

Gut microecosystem is the biggest mi-
croecosystem in the human body and plays
an important role in human health and
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diseases.[5] In recent years, increasing attention has been paid to
the role of the gut microbiome in CKD. The gut-derived uremic
toxins, such as P-cresyl sulfate (PCS), indoxyl sulfate (IS), and
trimethylamine N-oxide (TMAO), have been implicated in the
progression of CKD and an increased cardiovascular risk.[6] The
decline of renal function has been linked to the increase in the
concentration of PCS and IS.[7] Thus, gut microbiome is closely
related to CKD. In 2012, Viziri et al.[8] found that uremia pro-
foundly alters the composition of the gut microbiome, and there
was a significant difference in the abundance of 190 bacterial op-
erational taxonomic units (OTUs) between the ESRD and con-
trol groups. Nevertheless, the characteristics of gut microbiome
in patients with non-dialysis CKD have been rarely reported.

The diagnostic potential of gut microbiome for type 2
diabetes,[9] autoimmune hepatitis,[10] and early hepatocellular
carcinoma[11] has been confirmed by compelling studies. But, the
diagnosis potential of the gut microbiome for CKD needs to be
further evaluated. In this study, we prospectively collected 520 fe-
cal samples from different parts of China, of which 503 samples
were subjected to Miseq sequencing, and 489 samples were in-
cluded for analysis. In the discovery cohort, we characterized the
gut microbiome in the 210 healthy controls and 110 CKD from
Zhengzhou and constructed a CKD classifier. Then, we verified
the diagnostic efficacy of the CKD classifier in both the valida-
tion cohort and the independent diagnosis cohort. Furthermore,
we characterized the gut microbiome in different clinical stages
of CKD.

2. Results

A total of 520 fecal samples from different parts of China were
collected prospectively. After rigorous diagnosis and exclusion
procedures, 489 fecal samples were included for analysis, in-
cluding 159 CKD and 273 healthy controls from Zhengzhou,
and 57 CKD from Hangzhou. The samples from Zhengzhou
were randomly divided into a discovery cohort and a validation
cohort (Figure 1). Within the discovery cohort, we characterized
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the gut microbiome in 210 healthy controls and 110 patients
with CKD, identified the key microbial markers, and constructed
a CKD classifier using a random forest model. Within the
validation cohort, the diagnosis efficacy of the CKD classifier
was verified in 49 patients with CKD and 63 healthy controls.
Finally, the independent diagnosis efficacy of the CKD classifier
was verified in 57 patients with CKD from Hangzhou. The 110
samples of CKD patients in the discovery cohort were divided
into three groups according to the clinical stages of CKD. We
characterized the gut microbiome of patients in these three
groups.

2.1. Clinical Information of the Participants

In the discovery cohort and the validation cohort, the gender,
age, and body mass index (BMI) of CKD patients and healthy
controls were matched (Table 1). Compared with the healthy
controls, serum levels of white blood cells, creatinine (SCr),
blood urea nitrogen (BUN), uric acid, and the total cholesterol
were significantly increased in CKD patients, and the estimated
glomerular filtration rate (eGFR), serum levels of red blood
cells, and albumin (ALB) levels were significantly decreased
in CKD patients (Table 1). The details are listed in the online
supplementary data S1.

2.2. Gut Microbial Diversity of CKD Was Decreased

In the discovery cohort, a rarefaction analysis showed that the
number of OTUs richness nearly approached saturation in both
groups as the number of samples increased, and it was signif-
icantly decreased in CKD (n = 110) compared with that in the
healthy controls (n = 210) (Figure 2a). The quality of the data has
been shown in Figure S1a–c, Supporting Information. As esti-
mated by the Shannon index (Figure 2b), the Chao index (Fig-
ure 2c), and the Ace index (Figure 2d), the gut microbial diversity
was significantly reduced in CKD compared to the healthy con-
trols (p < 0.01, p < 0.001, and p < 0.001, respectively, online sup-
plementary data S2). And compared with healthy controls, the
observed OTUs in CKD were also significantly decreased (p <

0.001, Figure S1d, Supporting Information).
In addition, the non-metric multidimensional scaling (NMDS)

analysis, the principal coordinate analysis (PCoA), and the princi-
pal component analysis (PCA) based on distribution of the OTUs
were conducted to illustrate the microbiome space of different
samples. The gut microbiome composition was significantly dif-
ferent between CKD and healthy controls (Figure 2e,f and Fig-
ures S2–S4, Supporting Information). As shown in a Venn dia-
gram showing the overlaps between groups, the total abundance
of OTUs was 3970, and 2290 OTUs were shared in both groups
(Figure 2g). Noteworthy, 63 OTUs were unique to CKD. The key
47 OTUs between the two groups were selected, and their relative
abundance and distribution were presented in a heatmap (Figure
S5, Supporting Information, online supplementary data S3). As
shown in the heatmap, 6 OTUs were significantly enriched in
CKD, while 41 OTUs were significantly enriched in the healthy
controls.
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Figure 1. Study design and flow diagram. A total of 520 fecal samples from different parts of China were collected prospectively. After a rigorous diagnosis
and exclusion procedures, 159 CKD and 273 HC samples from Zhengzhou, China, and 57 CKD samples from Hangzhou, China, were included. All
samples from Zhengzhou were randomly divided into the discovery cohort and the validation cohort. In the discovery cohort, we characterized gut
microbiome between 110 CKD and 210 HC and identified the microbial markers and constructed a CKD classifier by a random forest classifier model
between CKD and HC. In the validation cohort, we validated the diagnosis efficacy of CKD classifier in 49 CKD and 63 HC. Finally, 57 CKD from Hangzhou
served as an independent diagnostic cohort to verify the diagnostic efficacy of CKD classifier. CKD, chronic kidney disease; HC, healthy controls; RFC,
random forest classifier model.

2.3. Phylogenetic Profiles of the Gut Microbiome in CKD

In the discovery cohort, we further analyzed taxonomic composi-
tion and alterations of the gut microbiome in CKD. The compo-
sition and abundance of the bacterial community in each sample
at the phylum and the genus levels have been shown in Figures
S6 and S7, Supporting Information, respectively (online supple-
mentary data S4 & S6). Average compositions and relative abun-
dance of the bacterial community in both groups at the phylum
and the genus levels have been shown in Figure 3a and Figure
S8, Supporting Information, respectively. Five phyla including
Proteobacteria, Actinobacteria, and Fusobacteria were significantly
enriched, while four phyla including Firmicutes, Verrucomicrobia,
and Bacteria unclassified were significantly reduced in CKD ver-
sus healthy controls (all p < 0.05, Figure 3b, online supplemen-
tary data S5). Thirty-six genera including Klebsiella, Desulfovibrio,
and Veillonella were significantly enriched, whereas 16 genera in-

cluding Blautia, Roseburia, and Lachnospira were significantly re-
duced in CKD compared with those in the healthy controls (all
p < 0.05, Figure 3c, online supplementary data S7).

Furthermore, we compared the gut microbial composition
between CKD and healthy controls at the class, the order,
and the family levels. The abundance and composition of
the bacterial community in each sample at the three lev-
els are shown in Figures S9, S12, and S15, Supporting In-
formation, respectively. The average composition and relative
abundance of the bacterial community in both groups at the
three levels are shown in Figures S10, S13, and S16, Support-
ing Information. At the class level, eight bacterial populations
including Actinobacteria, Bacilli, and Fusobacteria were signif-
icantly enriched, whereas five bacterial populations including
Clostridia, Verrucomicrobia, and Cyanobacteria were significantly
reduced in CKD versus those in the healthy controls (all p < 0.05,
Figure S11, Supporting Information). At the order level, nine
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Table 1. Clinical characteristics of participants in the discovery and validation cohort. Continuous variables were expressed as means ± standard devia-
tions or median (interquartile ranges). Categorical variables were expressed as percentages. Continuous variables were compared using Student s t-test
or Wilcoxon rank-sum test, and categorical variables were compared using Chi-square test or Fisher’s exact test.

Clinical indices Discovery (n = 320) p-value Validation (n = 112) p-value

Control (n = 210) CKD (n = 110) Control (n = 63) CKD (n = 49)

Age (year) 50.02 ± 4.56 51.75 ± 14.60 0.229 46.24 ± 7.66 50.20 ± 16.09 0.116

Gender(Female/Male) 105/105 50/60 0.440 30/33 20/29 0.472

BMI 13.47 ± 2.22 13.35 ± 1.37 0.547 23.18 ± 2.13 23.13 ± 1.68 0.894

WBC [× 109 per L] 5.63 ± 1.20 7.32 ± 6.21 <0.01 5.93 ± 1.24 6.71 ± 2.11 <0.05

RBC [× 1012 per L] 4.64 ± 0.42 3.76 ± 1.35 <0.001 4.71 ± 0.41 3.83 ± 0.80 <0.001

Hemoglobin [g L−1] ND 115.08 ± 33.63 – ND 116.61 ± 26.95 –

Platelet [× 109 per L] 220.37 ± 41.77 209.02 ± 74.70 0.142 219.97 ± 37.03 219.45 ± 83.96 0.968

24h UTP(g) ND 3.16 ± 3.56 – ND 3.83 ± 4.55 –

ALB[g L−1] 48.00 ± 2.63 37.50 ± 8.10 <0.001 47.59 ± 2.77 37.51 ± 9.11 <0.001

BUN [mmol L−1] 4.58 ± 1.02 16.78 ± 10.24 <0.001 4.68 ± 1.04 13.24 ± 9.37 <0.001

SCr [umol L−1] 67.62 ± 12.93 316.98 ± 239.64 <0.001 67.95 ± 13.65 277.74 ± 294.28 <0.001

Uric acid [umol L−1] 284.32 ± 76.44 408.70 ± 123.94 <0.001 292.24 ± 67.95 362.90 ± 126.34 <0.001

eGFR 104.29 ± 9.78 37.18 ± 35.94 <0.001 103.38 ± 10.75 57.83 ± 63.85 <0.001

T-chol [mmol L−1] 3.45 ± 1.77 5.10 ± 1.84 <0.001 3.69 ± 1.63 5.11 ± 1.60 <0.001

TG [mmol L−1] 1.71 ± 0.87 1.98 ± 1.71 0.141 1.61 ± 1.01 1.89 ± 1.03 0.167

Phosphate [mmol L−1] ND 2.95 ± 16.27 – ND 1.34 ± 0.43 –

Hypertension NO 76 (69.09%) – NO 29 (59.18%) –

CKD clinical stage Stages 1–2 NO 26 (23.64%) – NO 16 (32.65%) –

Stages 3–4 NO 36 (32.73%) – NO 18 (36.73%) –

Stage 5 NO 48 (43.64%) – NO 15 (30.61%) –

Abbreviations: CKD, chronic kidney disease; BMI, body mass index; WBC, white blood cells; RBC, red blood cells; 24h UTP, 24h urine protein quantitation; ALB, albumin;
BUN, blood Urea nitrogen; SCr, serum creatinine; eGFR, estimated glomerular filtration rate; T-chol, total cholesterol; TG, triglyceride; ND, no detection.

bacterial populations including Lactobacillales, Coriobacteriales,
and Victivallales were significantly enriched, whereas five bacte-
rial populations including Clostridiales, Burkholderiales, and Ver-
rucomicrobiales were significantly reduced in CKD versus those
in the healthy controls (all p < 0.05, Figure S14, Supporting In-
formation). At the family level, 16 bacterial populations includ-
ing Coriobacteriaceae, vadinBB60, and Victivallaceae were signif-
icantly enriched, while 8 bacterial populations including Lach-
nospiraceae, Alcaligenaceae, and Moraxellaceae were significantly
reduced in CKD versus those in the healthy controls (all p < 0.05,
Figure S17, Supporting Information).

2.4. Crucial Bacteria and Microbial Functions Related to CKD

Linear discriminant analysis effect size (LEfSe) was used to show
the maximum difference of the microbial structures in healthy
controls versus those in CKD, to determine the specific bacterial
taxa and predominant bacteria related to CKD. The phylogenetic
profile of the specific bacterial taxa and the major bacteria
associated with CKD has been shown in Figure S18, Supporting
Information. Based on the linear discriminant analysis (LDA)
selection, 24 genera including Granulicatella, Christensenella,
and Holdemania were significantly enriched, while 9 genera
including Faecalibacterium, Incertae Sedis, and Blautia were

significantly reduced in CKD compared with those in the healthy
controls (p < 0.01, Figure 4, online supplementary data S8).

The KEGG orthology (KO) and the KEGG pathway/module
profile were constructed using the PICRUSt version 1.0.0
pipeline[12] and human version 0.99,[13] and the 16S rRNA
marker gene sequences were used to predict the microbial com-
munity function profiles. The gut microbial community func-
tion profiles and the predominant microbial functions within
CKD and the healthy controls have been shown by a cladogram
(Figure S19, supporting Information). Based on the LDA selec-
tion, 50 predicted microbial functions including ascorbate and
aldarate metabolism, tryptophan metabolism, and phenylalanine
metabolism were remarkably increased, while 36 functions in-
cluding arginine and proline metabolism, starch and sucrose
metabolism, and lysine biosynthesis were remarkably decreased
in CKD compared with those in the healthy controls (all p < 0.05,
Figure 5, online supplementary data S9).

2.5. Diagnostic Potential of CKD Based on the Gut Microbial
Markers

In the discovery cohort, a random forest classifier model between
110 CKD and 210 healthy controls was constructed to assess the
potential of gut microbial markers as a non-invasive diagnostic
tool for CKD. Five OTUs were selected as the optimal marker set
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Figure 2. Gut microbial diversity of patients with non-dialysis CKD was decreased. a) The rarefaction analysis between the number of samples and the
number of OTUs. As the number of samples increased, the number of OTUs approached saturation in CKD (n = 110) and HC (n = 210). Compared with
the HC, the number of OTUs in CKD was decreased significantly. As estimated by b) the Shannon index, c) the Chao index, and d) the Ace index, gut
microbial diversity was significantly decreased in CKD (n = 110) compared with that in the HC (n = 210) (p < 0.01, p < 0.001, and p < 0.001, respectively).
e) The PCoA and f) the NMDS based on OTUs distribution showed that the gut taxonomic composition was significantly different between CKD (n =
110) and HC (n = 210). g) A Venn diagram displaying the overlaps between groups showed that 2290 of the total number of 3970 OTUs were shared in
both groups, while 63 were unique for CKD (n = 110). *, p <0.05; **, p<0.01; *** p<0.001. CKD, chronic kidney disease; HC, healthy controls; OTUs,
operational taxonomic units; PCoA, principal coordinate analysis; NMDS, non-metric multidimensional scaling.

of CKD by a fivefold cross-validation of the random forest model
(Figure 6a). The relative abundance of the 5 OTUs markers in
each sample is shown in the online supplementary data S10.
The probability of disease (POD) index of the discovery cohort,
the validation cohort, and the independent diagnosis cohort
was calculated using the identified optimal 5 OTUs set (online
supplementary data S11, S13, and S15, respectively). In the
discovery cohort, the POD value of CKD increased significantly
compared with that in the healthy controls (p < 0.05, Figure 6b),
and the POD index reached an area under the receiver operating
characteristic (ROC) curve (AUC) of 0.9887 with 95% confidence
interval (CI) of 0.9802–0.9973 between the CKD and healthy con-
trols (p < 0.0001, Figure 6c). The data indicated that the classifier
model based on microbial markers reached a powerful diagnostic
potential in distinguishing CKD from healthy controls.

Furthermore, 63 healthy control samples from Zhengzhou
were combined with 49 CKD samples from Zhengzhou and 57
CKD samples from Hangzhou, respectively, to form a validation
cohort and an independent diagnostic cohort to validate the di-
agnostic effectiveness of the classifier model for CKD. The rel-
ative abundance of the 5 OTUs markers in each sample at the
validation cohort and the independent diagnosis cohort is shown
in the online supplementary data S12 & S14, respectively. The
data showed that the POD values of CKD in both cohorts were

remarkably higher than those in healthy controls (all p < 0.001,
Figure 6d). In the validation cohort, the POD index reached an are
under the curve (AUC) value of 0.9512 with a 95% CI of 0.9133–
0.9892 between CKD and healthy controls (p< 0.0001, Figure 6e).
Moreover, the POD index reached an AUC value of 0.8986 with
a 95% CI of 0.8427–0.9545 between CKD and healthy controls in
the independent diagnostic cohort (p < 0.0001, Figure 6f). These
data validated a significant diagnostic potential of gut microbial
markers for CKD.

2.6. Alterations of the Gut Microbiome in Different Clinical
Stages of CKD

To clarify the alterations of the gut microbiome in different clini-
cal stages of CKD, the 110 samples of CKD in the discovery cohort
were divided into three groups according to the clinical stages of
CKD. It included 26 samples of CKD stages 1–2 (Group A), 36
samples of CKD stages 3–4 (Group B), and 48 samples of CKD
stage 5 (Group C). We characterized and compared the gut mi-
crobiome among the three groups. AS estimated by the alpha
diversity index, there was no significant difference in gut micro-
bial diversity among the three groups (Figure S20, Supporting
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Figure 3. Phylogenetic profiles of the gut microbiome between CKD (n = 110) and HC (n = 210). a) Average compositions and relative abundance of
the bacterial community in both groups at the phylum level. b) Compared with HC (n = 210), five phyla were significantly enriched, whereas four phyla
were significantly reduced in CKD (n = 110) (all p < 0.05). c) Thirty-six genera were significantly enriched, while 16 genera were significantly reduced in
CKD (n = 110) versus HC (n = 210) (all p < 0.05). *, p < 0.05, **, p < 0.01, ***, p < 0.001. CKD, chronic kidney disease; HC, healthy controls.
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Figure 4. Crucial bacteria of gut microbiome related to CKD. Based on the LDA selection, 24 genera were significantly enriched, while 9 genera were
significantly reduced in CKD (n = 110) compared with HC (n = 210) (all p < 0.01). CKD, chronic kidney disease; HC, healthy controls; LDA, linear
discriminant analysis.

Information, online supplementary data S16). A Venn diagram
showed that the total abundance of OTUs was 2353, and 1362
OTUs were shared in all groups (Figure 7a). It is worth noting
that 101 OTUs, 177 OTUs, and 269 OTUs were unique for CKD
stages 1–2, CKD stages 3–4, and CKD stage 5, respectively. At the
phylum level, Verrucomicrobia was significantly enriched as CKD
progressed within the three groups (p < 0.05, Figure 7b, online
supplementary data S17). Correspondingly, five genera includ-
ing Thalassospira, Akkermansia, and Blautia were significantly en-
riched, and the genus RF9_norank was significantly reduced as
CKD progressed within the three groups (all p < 0.05, Figure 7c,
online supplementary data S18). Based on the LDA selection, ten
microbial taxa including Akkermansia, Blautia, and Verrucomicro-

bia were enriched in CKD stage 5, Parasutterella was enriched in
CKD stages 3–4, and Tenericutes and Mollicutes were enriched in
CKD stages 1–2 (p < 0.05, Figure S21, Supporting Information,
online supplementary data S19).

2.7. Correlation between the Gut Microbiome and Clinical
Indicators of CKD

We further analyzed the correlations between the gut micro-
biome and clinical indicators of CKD and found six clinical in-
dicators (eGFR, hemoglobin, SCr, BUN, and ALB) were closely
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Figure 5. Crucial microbial predicted functions related to CKD. Based on the LDA selection, 50 predicted microbial functions were remarkably increased,
while 36 functions were remarkably decreased in CKD (n = 110) compared with HC (n = 210) (all p < 0.05). CKD, chronic kidney disease; HC, healthy
controls; LDA, linear discriminant analysis.
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Figure 6. Diagnostic potential of gut microbial markers in CKD patients. a) Five microbial markers were selected as the optimal markers set by the
random forest model. b) The POD value was significantly increased in CKD (n = 110) versus HC (n = 210) in the discovery cohort. c) The POD index
achieved an AUC value of 0.9887 with 95% CI of 0.9802 to 0.9973 between CKD (n = 110) versus HC (n = 210) in the discovery cohort (p < 0.0001). d)
The POD values were remarkably increased in CKD (n = 49) and HZ_CKD (n = 57) compared with HC (all p < 0.001). e) The POD index achieved an
AUC value of 0.9512 with 95% CI of 0.9133 to 0.9892 between CKD (n = 49) versus HC (n = 63) in the validation cohort (p < 0.0001). f) The POD index
achieved an AUC value of 0.8986 with 95% CI of 0.8427 to 0.9545 between HZ_CKD (n = 57) versus HC (n = 63) in the independent diagnostic cohort
(p < 0.0001). *, p < 0.05, **, p < 0.01, ***, p < 0.001. CV Error, the cross-validation error; CKD, chronic kidney disease; HZ_CKD, the patients of CKD
come from Hangzhou; HC, healthy controls; POD, probability of disease; CI, confidence interval; AUC, area under the curve.

related to the gut microbiome of CKD. Canonical correspondence
analysis (CCA) of the CKD gut microbiome and these clinical in-
dicators has been shown in Figure 7d (online supplementary data
S20). Furthermore, we analyzed the correlation between 13 OTUs
and the six clinical indicators of CKD based on the Spearman
correlation analysis (Figure 7e, online supplementary data S21).
SCr and BUN were positively correlated with 7 OTUs includ-
ing OTU2456 (Blautia), OTU1256 (Butyricimonas), and OTU3432
(Akkermansia), while negatively correlated with OTU3642 (Veil-
lonella) and OTU1294 (Lactobacillus). Moreover, ALB was posi-
tively correlated with OTU3618 (Barnesiella) and negatively cor-
related with OTU3642 (Veillonella).

3. Discussion and Conclusion

Disturbances of the normal gut microbiome have been recog-
nized in the pathogenesis of diverse chronic diseases, such as
obesity,[14] diabetes,[9] and liver cirrhosis.[15] In recent years, the
role of the gut microbiome in CKD has been gradually explored.

For example, the PCS level of gut-derived uremia toxin increased
with the decrease of eGFR,[6a] and its baseline concentration has
been reported as an independent predictor for cardiovascular
events. Another gut-derived uremia toxin, TMAO, can also in-
duce atherosclerosis syndrome and increase the risk of cardio-
vascular disease and death in ESRD patients.[16] These studies
have shown a strong association between the gut microbiome
and CKD. However, specific alterations of the gut microbiome
in humans with non-dialysis CKD have been rarely reported.

Our study comprehensively elucidated the gut microbial
profiling in non-dialysis CKD through the Miseq sequencing
of a large number of Chinese samples. Noteworthy, we further
elucidated the gut microbiome of different clinical stages of CKD
and identified the gut microflora associated with the progression
of CKD. At the same time, five optimal microbial markers for
CKD were identified by the random forest model. The microbial
marker-based CKD classifiers achieved a strong diagnostic
potential in distinguishing CKD from healthy controls. More
significantly, the CKD classifier also successfully implemented
a cross-regional validation. Regional, dietary, and population
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Figure 7. Alterations of the gut microbiome along with the CKD progression. a) A Venn diagram displaying the overlaps among groups showed that the
total number of OTUs was 2353, and 1362 OUTs were shared in all groups. Noteworthy, 101 OTUs, 177 OTUs, and 269 OTUs were unique for CKD stages
1–2 (n = 26), CKD stages 3–4 (n = 36), and CKD stage 5 (n = 48), respectively. b) With the progress of CKD, the increased microbial community at the
phylum level (p < 0.05). c) With the progression of CKD, the increased and decreased microbial community at the genus level (all p < 0.05). d) The CCA
analysis of the associations between the gut microbiome and clinical indicators for CKD from CCA1 and CCA2 (1.91% and 1.2%). e) Heatmap showing the
partial Spearman’s correlation coefficients among 13 OTUs and 6 clinical indicators of CKD (n = 110). Distance correlation plots of relative abundances
of 13 OTUs and the clinical indices SCr, eGFR, P, BUN, ALB, and Hb. CKD, chronic kidney disease; CCA, canonical correspondence analysis; OTUs,
operational taxonomy units; Hb, hemoglobin; ALB, albumin; BUN, blood urea nitrogen; SCr, serum creatinine; eGFR, estimated glomerular filtration
rate; P, phosphate.

genetic factors are the main influencing factors for gut micro-
biome variation.[17] Studies have shown that non-genetic factors
and genetic factors each account for about 10% of the variation
of gut flora, and regional variation limits the application of gut
microbial disease models to some extent.[17d,18] Our study is the
first to realize cross-regional verification of the CKD classifier
model based on gut microbial markers, which reduces the
influence of these variation factors to some extent. These results
indicated that targeted biomarkers of the gut microbiome have

the potential to be used as a non-invasive diagnostic tool for
CKD. This new diagnostic tool can be used as a supplement to
the traditional CKD diagnostic method.

We found that the gut microbial diversity of CKD was sig-
nificantly reduced compared with that of healthy controls, and
the microbial community was significantly different from that
of healthy controls. The result indicated that the human gut
microbiome changed significantly from a healthy state to the
development of CKD. Compared with healthy controls, the abun-
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dance of 5 phyla and 36 genera were significantly increased in
CKD. This suggests that it is these populations with significant
differences in abundance that cause significant alterations in the
composition of gut microbiome of non-dialysis CKD. Meanwhile,
24 genera were dominant in CKD. Among them, Enterobacteri-
aceae possessing urease, indole, and p-cresol-forming enzymes,
while Haemophilus and Klebsiella producing lipopolysaccharide
(LPS), IS, and PCS were the main uretic toxins and can be used as
indicators of CKD progression.[6a,b,7,19] Overgrowth of the gut mi-
crobial taxa possessing these enzymes may facilitate the progres-
sion of CKD by affecting the synthesis of uremia toxin molecules
associated with the progression of CKD. In addition, high levels
of LPS activate the NF-KB pathway and promote the production
of pro-inflammatory cytokines (IL-1, IL-6, and TNF-𝛼), leading to
systemic inflammation and the progression of CKD.[20]

Different microbial productions and functions contribute to
the pathogenesis and development of different diseases.[21] In
our study, the metabolism of ascorbate and aromatic amino acids
(phenylalanine, tryptophan) and LPS biosynthesis were signifi-
cantly increased in CKD, while the metabolism of arginine and
proline was significantly decreased. Catabolism of ascorbic acid
can produce oxalic acid (OA),[22] increased metabolism of tryp-
tophan can promote the production of indoles,[20,23] and en-
hanced metabolism of phenylalanine contributes to the produc-
tion of para-cresol. Indoles and para-cresol are the precursor sub-
stances for the synthesis of uremia toxins related to the pro-
gression of CKD, while excessive elevation of OA can damage
renal function,[20,23] and high levels of LPSs can also promote
systemic inflammatory reactions leading to the progression of
CKD.[20] This suggests that the alterations in gut microbiome
function in non-dialysis CKD also contribute to the production
of metabolites associated with the progression of CKD. In addi-
tion, it was found that butanoate metabolism and biosynthesis
of siderophore group nonribosomal peptides increased signifi-
cantly in CKD gut microbial prediction function. Currently, no
studies have been able to confirm the correlation between these
functional alterations and CKD, but their significant alterations
in the gut microbiome of CKD suggest that they may have impor-
tant physiological significance n the occurrence and development
of CKD, which is a research direction worthy of further explo-
ration.

We further analyzed and compared the gut microbiome of
non-dialysis CKD at different clinical stages, and found that the
abundance of Thalassospira, Akkermansia and Ruminococcaceae
incertae sedis increased along with the progression of CKD, sug-
gesting that these gut microbiota play an important role in the
disease progression of CKD and may be the key pathogenic bac-
teria causing the progression of CKD. Studies by Wang et al.[24]

have shown that in addition to renal function, gut flora appears to
be an important determinant of host fecal and serum metabolic
landscapes, and that species associated with uremia toxin pro-
duction are directly and closely related to ESRD clinical variables.
We further analyzed the correlation between clinical indicators
reflecting the severity of CKD disease and gut microbiome, and
found that the abundance of Akkermansia was positively corre-
lated with SCr and BUN levels, and negatively correlated with
eGFR and hemoglobin levels. This suggests that Akkermansia
plays a crucial role in the progression of CKD and may be a mi-
crobial species closely related to the production of uremia toxins.

This finding is of great significance and can provide a direction
for further exploration of new therapeutic targets for CKD based
on gut microbiome.

In conclusion, our study demonstrated the gut microbiome
characteristics of non-dialysis CKD in a large clinical cohort,
identified specific microbial markers, and demonstrated the po-
tential of microbial markers as a non-invasive diagnostic tool for
CKD. At the same time, we explained the alterations of the gut
microbiome in CKD of different clinical stages and identified the
gut microbiota associated with the progression of CKD. These are
the advantages of this study. However, the progression of CKD is
closely related to the metabolites of gut microbiome. Our study
lacks the detection of gut microbial metabolites in patients with
CKD, which is the deficiency of this study. Nevertheless, our data
provide a comprehensive investigation of the gut microbiome of
patients with CKD from a large cohort sample and raises the pos-
sibility of using non-invasive biomarkers to diagnose CKD, pro-
viding new insights into the association between CKD and gut
microbiome.

4. Experimental Section
Participant Information: This study was designed based on the princi-

ple of the PRoBE design (prospective specimen collection and retrospec-
tive blinded evaluation).[25] The study was conducted in accordance with
the Declaration of Helsinki and the Rules of Good Clinical Practice. The
whole study was reviewed and approved by the Institutional Review Board
of the First Affiliated Hospital of Zhengzhou University. Informed consents
on enrolment had been signed and provided by all participants. Demo-
graphics and clinical data of the participants were obtained from ques-
tionnaires and hospital electronic medical records of hospitals.

Inclusion and Exclusion Criteria: The diagnosis and staging of all pa-
tients with CKD were in accordance with the diagnostic criteria and stag-
ing criteria for CKD in the KDIGO 2012 clinical practice guideline for the
evaluation and management of CKD.[26] Exclusion criteria were as follows:
a) antibiotics or probiotics used in the past 4 weeks; b) CKD-related drug
therapy had been initiated or hemodialysis or peritoneal dialysis had been
performed; c) presence of other diseases such as liver disease, digestive
disease, diabetes, and tumor; and d) participants missing clinical infor-
mation.

The control group consisted of 300 healthy volunteers who visited the
hospital for their annual physical examination. They had to fulfil the fol-
lowing inclusion criteria in order to be included in the experiment: a)
hemoglobin, liver function, kidney function, electrolytes, urine, and stool
were normal; b) the absence of hypertension, diabetes, obesity, liver dis-
ease, digestive disease, and tumor; c) the absence of the hepatitis B/C
virus antigen; and d) did not take antibiotics and/or probiotics within
4 weeks before sample collection.

Fecal sample Collection and DNA Extraction: A fresh fecal sample of
each participant was provided between 06:00 and 08:00 a.m. Routine fecal
testing was performed on each fecal sample. Each sample was divided into
five equal parts of 200 mg and was frozen at −80 °C immediately. The DNA
extraction was conducted as per a method described previously.[27] Briefly,
the bacterial genomic DNA was extracted by the Quick gel extraction kit
(Qiagen, Germany). NanoDrop (Thermo Scientific) was used to measure
DNA concentration and agarose gel electrophoresis was used to estimate
the molecular size.

PCR Amplification, Miseq Sequencing, and Sequence Data Process: A set
of primers targeting the high-variant v3–v4 region (338F/806R) of the 16S
rRNA gene were used to amplify the extracted DNA samples by PCR. PCR
products were detected on a 2% w/v agarose gel, and the band was ex-
tracted and purified using the AxyPrepDNA Gel (Axygen, CA, USA) and
the PCR Clean-up System. The purified PCR product for each sample was
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mixed. The DNA library was constructed according to the manufacturer’s
instructions. Sequencing was performed on an Illumina MiSeq platform
by Shanghai Mobio Biomedical Technology Co., Ltd., China. The raw Il-
lumina read data for all samples were deposited in the European Bioin-
formatics Institute European Nucleotide Archive database under the ac-
cession number PRJNA562327. The amplicon reads were processed by
the following steps: a) FLASH version 1.2.10[28] with default parameters
overlapped the pair-end sequenced reads of each library; b) A custom per
program was used to perform more specific quality control of overlapped
reads generated by FLASH: 1) Ambiguous bases (N) were not allowed in
reads, 2) No more than five mismatches were allowed in overlap region,
3) Mismatches were not allowed in the barcode primer region; c) Reads
were de-multiplexed and assigned into different samples based on the bar-
codes; d) Chimeric sequences were detected and removed with UCHIME
version 4.2.40,[29] and the 16S “golden standard” database provided by
Broad Institute (version microbiome util-r20110519, http://drive5.com/
uchime/gold.fa) was used as a reference to match the OTUs.

OTUs Clustering and Taxonomy Annotation: Reads were randomly se-
lected from all samples of the equal number, and then OTUs were binned
using the UPARSE pipeline[30] through the following steps: a) deleted the
abundant sequences and singletons first; b) used the command “usearch-
cluster_OTUs” to bin the unique sequences into OTUs; c) used the com-
mand “usearch-usearch_global-id 0.97” to align against the randomly se-
lected sequences with the OTU sequences, set the identity threshold as
0.97, and then created an OTUs composition table. All OTUs for the
samples in the discovery cohort, validation cohort, and independent di-
agnosis cohort were collected. The sequences were annotated with the
RDP classifier version 2.6[31] and set the confidence level as 0.5 according
to the developer’s documents (http://rdp.cme.msu.edu/classifier/class_
help.jsp#conf).

Bacterial Diversity and Taxonomic Analysis: By a sampling-based OTUs
analysis, bacterial diversity was determined and shown by the Shannon
index, the Chao index, and the Ace index, which used the R program pack-
age “vegan” for calculations.[32] NMDS, PCA, and PCoA were conducted
by the R package (http://www.R-project.org/) to display the microbiome
space between both the group samples. A heatmap that identified key vari-
ables was accomplished by the heatmap builder.

Bacterial taxonomic analyses and comparison between both groups by
the Wilcoxon rank-sum test were conducted, which included the bacterial
phylum and genus. Based on the normalized relative abundance matrix,
the LEfSe method (http://huttenhower.sph.harvard.edu/lefse/) was ap-
plied to analyze fecal microbial characterization between cases and healthy
controls.[33] This method first used the Kruskal–Wallis rank-sum test (p
< 0.05) to detect features with a significant differential abundance, then
evaluated the effect size of each feature by LDA (LDA score (log10) = 2 as
cut-off value).[34]

Functional Annotation of 16S rRNA Gene Based on the KEGG Profile:
The KEGG orthology (KO) and the KEGG pathway/module profile were
constructed by the PICRUSt version 1.0.0 pipeline[12] and human ver-
sion 0.99,[13] and 16S rRNA marker gene sequences were used to pre-
dict the microbial community function profiles. PICRUSt recaptures key
findings from the Human Microbiome Project by an extended ancestral-
state reconstruction algorithm and accurately predicts abundance in host-
associated communities of the gene families, with a quantifiable uncer-
tainty.

Identification of the OTU Biomarker and Construction of POD: The dis-
covery OTU frequency profile and the validation OTU frequency profile by
mapping reads from the discovery cohort and the validation cohort against
these represented sequences, respectively, were obtained. The Wilcoxon
test was used to determine the significance (p < 0.05), based on which 47
OTUs were selected for further analysis. The 47 OTUs abundance profile
of the discovery cohort were used for fivefold cross-validation. The verifi-
cation was performed on a random forest model, in which all parameters
were default except for “importance = TRUE.” Then the cross-validation
error curve was obtained by using five trials of the fivefold cross-validation.
The point with the minimum cross-validation error as the cut-off point was
taken, and the minimum error plus the SD of the corresponding point was
used to determine the cut-off value. All sets of OTU markers with the er-

ror less than the cut-off value were selected, and the set with the smallest
number of OTUs was considered as the optimal set. Finally, the deter-
mined optimal OTUs set was used to calculate the POD index of the dis-
covery cohort and the verification cohort. The POD index as the ratio of
the number of randomly generated decision trees that predicted the sam-
ple as “CKD” and the number that predicted healthy controls was defined.
The ROC curve was constructed (R 3.3.0, pROC package) to evaluate the
constructed models, and the AUC was used to represent the ROC effect.

Statistical Analysis: Continuous variables were presented with the
form of means (standard deviations) or median (interquartile ranges).
Categorical variables were presented with the form of percentages. Differ-
ences between subjects in CKD (n = 110, n = 49) and healthy controls (n
= 210, n = 63) were compared by using Student’s t-test for normal contin-
uous variables, Wilcoxon rank-sum test for non-normal continuous vari-
ables, and Chi-square test or Fisher’s exact test for categorical variables.
Statistical analyses were performed using the SPSS V.21.0 for Windows
(SPSS, Chicago, Illinois, USA). Statistical significance was defined by p <

0.05 (two tailed), without post-analysis and 𝛼 adjustment. Data transfor-
mation, normalization, evaluation of outliers was not used in the study.

Data Availability

The raw Illumina read data for all samples were deposited in the
European Bioinformatics Institute European Nucleotide Archive
database under the accession number PRJNA562327.

Supporting Information
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the author.
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