Skip to main content
. 2020 Oct 1;17(19):7196. doi: 10.3390/ijerph17197196

Table 3.

Latent class model fit indices.

2 Classes 3 Classes 4 Classes 5 Classes 6 Classes
Pearson’s chi-squared 250.423 174.469 125.068 90.822 64.962
LR chi-squared 242.742 160.678 116.547 84.817 70.056
Chi-squared df 112 104 96 88 80
Log-likelihood −7513.337 −7472.305 −7450.240 −7434.375 −7426.994
AIC 15,056.674 14,990.610 14,962.480 14,946.750 14,947.989
BIC 15,141.441 15,120.586 15,137.665 15,167.143 15,213.592
Adj-BIC 15,093.785 15,047.513 15,039.174 15,043.236 15,064.268
Entropy 0.639 0.551 0.643 0.742 0.734
Vong–Lo–Mendell–Rubin likelihood ratio test (LMR) 1 Versus 2 Classes 2 Versus 3 Classes 3 Versus 4 Classes 4 Versus 5 Classes 5 Versus 6 Classes
LMR p-value 0.0000 0.0000 0.0000 0.0000 0.2069

Note 1: Smaller AIC or adjusted BIC values and larger entropy values indicate a more favorable model fit. Note 2: LMR test compares the improvement in model fit between sequential classes, p < 0.0001 is considered to have a good model fit.