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Abstract: This work is focused on the analysis of the influence of welding on the properties and
microstructure of the AISI316L stainless steel tube produced by 3D printing, specifically the SLM
(Selective Laser Melting) method. Both non-destructive and destructive tests, including metallographic
and fractographic analyses, were performed within the experiment. Microstructure analysis shows
that the initial texture of the 3D print disappears toward the fuse boundary. It is evident that high
temperature during welding has a positive effect on microstructure. Material failure occurred in
the base material near the heat affected zone (HAZ). The results obtained show the fundamental
influence of SLM technology in terms of material defects, on the properties of welded joints.
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1. Introduction

The trend in recent years has become to automate the process of product production in connection
with the Industry 4.0 concept. This concept includes additive technologies (AM), which replace
traditional conventional technologies such as machining, casting, forming, etc. AM technologies
initially included only polymeric materials [1], over time they spread to the metals sector, making them
interesting for a wider range of industries. The most widespread and at the same time very complex
AM method of metal production is called Selective Laser Melting (SLM). The SLM method, like other
AM methods, is based on a default 3D model, which is divided into 2D layers in special slicer SW
(software). These layers are then melted to each other (layer-by-layer) directly from metallic powder
by a high-energy source (laser or electron beam). The layer thickness is usually in the range of 20 to
60 µm [2]. With the correct printing parameters, a very good relative density can be achieved with
components produced in this way [3].

For printers using SLM methods, there are several technological barriers that prevent the
production of components that are too large. For example, in a large building chamber, it is difficult to
properly regulate the flow of inert gas; it is also a requirement to use a large amount of powder and,
last but not least, compliance with dimensional tolerances [4]. The solution to this problem may be a
suitable division of the part and subsequent joining using a welding, soldering or gluing technique.
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Due to the fact that most of the available printable materials in powder form by the SLM method are
weldable, it offers to deal with and further develop the welding technique.

A few studies have already dealt with this issue. Kuryntsev [5] investigated the weldability of
stainless steel produced by SLM in comparison with the same cold rolled (CR) material. He concluded
that steel produced by different methods is very well weldable and that heat treatment fundamentally
affects the strength of SLM welded joints. Similar research was performed by Matilainen et al. [6],
when they used Laser welding as a welding method and came to the conclusion that the material
produced by SLM has higher melt efficiencies at lower energy inputs (80 J/mm) than CR material.
Furthermore, each material creates a different weld shape formation. Other studies have examined
other types of materials. Yu et al. [7] investigated the weldability of SLMed Ti-6Al-4V alloy. They found
that SLMed sheets can be well joined by laser welding together with the same material up to a cavity
diameter of 200 µm. Voropaev et al. [8] observed laser welding of Inconel 718 alloy, finding the inverse
effect of linear energy on the microhardness of the welded joint and also that heat treatment increased
the microhardness of the welded joints by 50%. In recent years, there has also been a growing interest
in welding aluminum alloys made with SLM. Scherillo et al. [9] studied Friction stir welding (FSW) of
SLMed AlSi10Mg alloys. The results showed that FSW refined the grains and reduced the porosity,
which led to an increase in microhardness. Zhang et al. [4] focused on the comparison of Laser and TIG
(Tungsten Inert Gas) welding methods for AlSi10Mg alloy, and further investigated the weldability
between the printed SLM material and the cast material. From the results, it can be concluded that the
biggest problem in welding is the increased porosity of SLM components, and also that in TIG welding
there is a distribution of large pores at the weld boundary.

The main subject of this article is to find a suitable solution for efficient joints of printed components
using SLM technology. This technology does not allow the production of large components due to
the limitations of the build chamber. The aim of the article is to better understand what happens
during TIG welding of two materials printed by the SLM method. At present, there are already
many articles focused on the optimization of process parameters [10–12], microstructure [13–16] and
surface roughness [17–22] of AISI (American Iron and Steel Institute) 316L material after printing by
SLM. However, there are still only few studies [23,24] dealing with the weldability of this material.
For this reason, this article deals with the research of TIG weldability and the subsequent study of the
microstructure and mechanical properties of AISI316L stainless steel produced by the SLM method.

2. Materials and Methods

2.1. Powder Characterisation

Gas atomized AISI316L powder supplied by Renishaw (Wotton-under-Edge, UK) was used
for experimental purposes. It is a non-magnetic austenitic stainless steel with a very small carbon
content. For the determination of chemical composition (see Table 1), glow discharge optical emission
spectrometry (GDOES) analysis was used, which was carried out using a Spectruma Analytic optical
emission spectrometer (Spectruma Analytik GmbH, Hof, Germany) [25,26]. The bulk analysis revealed
the average chemical composition of the material and was carried out under conditions of excitation
of 700 V and 35 mA. The powder particle mean size was 26.33 µm with an average diameter d50 of
25.09 µm. Particle size was measured by an optical method on the KYENCE VHX-5000 (KYENCE,
Osaka, Japan) device. These results were acquire from our previously research [27].

Table 1. Chemical composition of AISI316L base material in Wt.%.

C Mn Si P S Cr Ni Mo W Cu Ti Nb Al B

0.016 1.17 0.22 0.023 0.0067 17.72 14.24 2.73 0.19 0.077 0.0003 0.013 0.01 0.002
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2.2. Settings and SLM Sample Fabrication

A Renishaw AM400 3D printer (Wotton-under-Edge, UK) was used to produce circular samples
in the form of tubes, which is equipped with a laser with a maximum nominal power of 400 W. During
the production of the samples, the focus size was set to 70 µm, which is the technical maximum of
the device, and Argon with purity 5.0 was chosen as the inert shielding gas. Prior to inertization, the
chamber was compressed. The inert gas further expelled the remaining air from the chamber and the
oxygen level was kept below 1000 ppm throughout the building. Thanks to this setting, there was no
oxidation of the powder during building and this also ensured the correct removal of metal fumes by
gas flow. The build was prepared in QuantAM software (5.0.0.135, Renishaw, Wotton-under-Edge,
UK), which is developed by Renishaw. The samples were made with dimensions of the outer diameter
of 20 mm with a wall thickness of 2 mm. The SLM processing parameters are tabulated in Table 2.

Table 2. Settings of process parameters for production SLM samples.

Laser Power [W] Scanning Speed [mm/s] Layer Thickness [µm] Strategy

200 650 50 Chessboard

2.3. Density Measurement

The total density of the samples was determined using the Archimedes method. The principle of
the measurement was to weigh the sample on a scale in air, then immerse it in water and reweigh.
The difference between the weight of an object in air and in water indicates the volume of the object.
By dividing the weight of the object with its volume, we get the density of the sample. A Mettler
Toledo MS204SIMO1 (Mettler-Toledo International Inc., Columbus, OH, USA) scale was used to
measure and determine total density. The measurement was set to 10 replicates and the mean value
and standard deviation were calculated. Samples was measured by the Archimedes’ method, see
Equations (1) and (2) [28]:

ρ =
W1

W2 − W3
·ρw, (1)

ρRe =
ρ

ρre f .
·100 (2)

where ρ [g cm−3] is the density of the sample, W1 [g] is the absolute weight of the sample in air, W2

[g] is weight of the sample after removal from the water, W3 [g] is weight of the sample in water, ρw

[g cm−3] is a density of water, ρRe [g cm−3] is a relative density of the sample and ρref. [g cm−3] is the
density of the reference material.

More detailed research was conducted to determine the internal porosity. The optical method
with software evaluation was chosen as the evaluation method. The sample was cross-sectioned in
four locations (see Figure 1), then embedded in resin and polished. The prepared sample was then
scanned by an OLYMPUS GX51 microscope (Olympus, Tokyo, Japan) and the image converted to
8-bit depth for a clearer calculation of the porosity. For calculation of the total amount of pores, Image
Studio 3.1 software (LI-COR Biosciences, Lincoln, NE, USA) was used for image analysis.

2.4. Welding of Pipes Samples

Prior to any treatment, all samples were first heat-treated in a Clasic O816 VAK (Clasic CZ, Řevnice,
Czech Republic) vacuum furnace. Annealing was applied to reduce the internal stress to 550 ◦C with
a temperature hold of 360 min and cooling in a furnace for 12 h under vacuum [29,30]. After heat
treatment, the end welds of the tubes were adapted for welding by chamfering the edges at an angle
of 45◦ (see Figure 2) and stitching was performed followed by welding. Welding method 141 (TIG)
was used for all samples, using a WLa15 electrode with a diameter of 1.6 mm. For all welded joints,
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a 1.6 mm diameter wire, designated 316 LSi EN 12072-19 12 3, was used. The welding position was PA
(flat position with automatic tube rotation) for all tubes.Materials 2020, 13, x FOR PEER REVIEW 4 of 15 
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Figure 2. (a) Weld surface preparation and (b) method of laying weld beads.

Welding parameters have been set on the basis of previous experience with regard to welding
thickness. The welding current for the root layer ranged from 45 to 52 A and the welding voltage
ranged from 10.5 to 12.0 V. For the cover layer, the welding current was slightly increased to 48–56 A
and the voltage ranged from 11.0 to 12.0 A. Argon was used as shielding gas for root protection (flow
rate of 5 L/min). The welding pool was protected with the same shielding gas with a flow rate of
14 L/min. An interpass temperature of 100 ◦C was maintained between the root layer and the cover
layer. The heat input Q was estimated according to Equation (3).

Q = 0.6
U·I

1000·v
, (3)

where, Q is input heat [kJ mm−1], U is welding voltage [V], I is welding current [A], v is welding speed
[mm/s]. The heat input was very low, ranging from 0.18 to 0.34 kJ mm−1 for the root layer and from
0.34 to 0.59 kJ mm−1 for the cover layer. A total of eight test welds were made, which were numbered 1
to 8. Figure 3 shows welded joint No. 1.
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Figure 3. Welded joint No. 1.

2.5. Mechanical Properties Measurement

After welding, the samples were cross-sectioned to perform microstructure and microhardness
analysis. For this purpose, the samples were embedded in resin and electrolytically etched in 4% oxalic
acid under conditions of 6V and 1.5A. An Olympus GX51 optical microscope (Olympus, Tokyo, Japan)
with image analysis software was used for analyses.

HV10 hardness was measured on a WPM Leipzig 300/436 hardness tester (WPM GmbH, Leipzig,
Germany); microhardness was measured on a LECO LM 247AT microhardness tester (Leco Corporation,
St Joseph, MI, USA) with a load of HV0.1. In each case, 15 punctures were made across the entire
welded joint in one line. The distance between the individual indentation was set at 0.5 mm,
see Figure 4. Control measurements were also made in HAZ, which were measured above and below
the measurement line.
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Figure 4. Hardness measurement methodology.

Tensile tests were performed at +20 ◦C according to standard EN ISO 6892-1 [31], using the
Zwick Roell Z1200H testing machine (Zwick Roell Group, Ulm, Germany). After fracture, the fracture
morphology was observed by the Quanta 450 FEG (FEI Company, Hillsboro, OR, USA) scanning
electron microscopy.

3. Results

3.1. Evaluation of Base Material Porosity

The total density was determined from the measurements and evaluation using the Archimedes
method. The mean value of the printed base metal was 7.849 ± 0.01 g cm−3. For comparison, the total
density of the homogeneous cast and rolled material of AISI316L steel is 7.999 g cm−3. Equation (2)
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is used to calculate the relative density, where the relative density is a ratio between the measured
substance to the density of a given reference material [28]. The relative density in the performed
experiment was 98.12%.

Using Image analysis, the porosity of the base material was determined. The image analysis
method has the disadvantage that it affects only a given 2D section and not the entire 3D volume of the
sample. However, the results can be considered relevant. The average calculated porosity of the base
material is 1.14%. Figure 5 shows an evaluated sample with determination of the type of porosity;
more about this issue in the Discussion section, Section 4.1.
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3.2. Evaluation of Weld Defects

The capillary test was performed according to the implementation standard ČSN EN ISO 3452-1.
A penetration test with the method of color indication was used, where the defects are manifested by
the formation of a contrasting color indication (mostly red on a white background). Prior to testing,
the samples were thoroughly cleaned from mechanical impurities and grease adhering to the surface.
Subsequently, a detection liquid or penetrant bearing Pfinder 860 (Pfinder KG, Böblingen, Germany)
was applied. It was a water-washable colored penetrant with a minimum exposure time of 10 min.
After the exposure time, the dried liquid was wiped off so that it was not visible on the sample and
remained placed only in any defects (see Figure 6). Since the sample was made using 3D printing
technology, there were pores on the surface from which it was difficult to exclude the liquid.
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The indication was developed by spraying the Pfinder 871 developer, which created a white
layer showing defects in the weld metal or base material. For all recorded results, Table 3 shows the
occurrence of defects.

Table 3. Indication overview.

Sample Indication
Immediately after Spraying

Indication
after 10 min

No. 1 - Crater crack in weld metal
No. 2 - -
No. 3 Yes Pores in the base material around the perimeter
No. 4 - -
No. 5 Yes Pores in the base material around the perimeter
No. 6 - -
No. 7 - -
No. 8 - Isolated defects in the base material

In sample No. 3, pores occurred around the entire circumference of the tube, which can be seen in
Figure 7a. As for the characteristics of defects, we can classify them into round indications, which can
be a defect of gas cavities—linear porosity (No. of Imperfections 2014 according to EN ISO 6520). This
defect could have arisen during manufacture during printing, since the production is carried out in
layers, i.e., from the bottom up. It was in these layers that the defect occurred due to an unknown cause.
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On sample No. 1, a crater crack of small dimensions was formed (see Figure 7b), which according
to the ČSN EN ISO 6520 standard is marked with the number 104. A crack is a specific type of hot
crack that occurs when welding is stopped abruptly and quickly. They are formed in the crater cavity
and are caused by shrinkage during the solidification of the weld metal.

3.3. Evaluation of Mechanical Properties

3.3.1. Metallographic Analysis

For macroscopic tests, sample No. 4 was selected. Figure 8a shows the macrostructure of the tube
in the longitudinal and transverse sections. In this image, a characteristic pattern of 3D printing can
be observed, which is guided by the chosen scanning strategy, which in this case is the chessboard.
Figure 8b shows the macrostructure of the welded joint.

The microstructure of the base material is shown in Figure 9a. It is a typical SLM microstructure,
formed from very little “weld beads” (a deposit of filler metal from a single welding pass, similar to in
microwelding). The size of the individual layers is 50 µm. Different orientations of “weld beads” can
be seen on the image. Figure 9b shows the detail of the base metal microstructure with defects.
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Figure 9. (a) Microstructure of the base metal; (b) Microstructure with process defects.

Figure 10a shows the transition between the base metal and the weld metal. In the heat affected
zone (HAZ), the original texture of 3D printing changes to an almost homogeneous austenitic structure
with a minimum of pores. The smaller the distance from the fuse boundary line, the lless the occurrence
of pores in the structure is observed. The initial texture of the 3D print toward the fuse boundary
disappears. The weld metal has a homogeneous austenitic microstructure with a rare occurrence of
delta ferrite, otherwise with minimal defects. Figure 10b shows epitaxial growth of weld metal grains.Materials 2020, 13, x FOR PEER REVIEW 9 of 15 
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3.3.2. Hardness and Microhardness

The trend of hardness and microhardness shows that the base material is harder than the weld
metal by about 50 HV, see Figure 11. Fluctuations in the measurement in the base material could be
caused by measuring at the location of the defect of the base material, such as pores. The trends of
hardness and microhardness values are very similar, see Figure 11.
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Figure 11. Comparison of hardness and microhardness of sample No. 4.

Figure 12a shows a significant dispersion of lamellar particles (precipitates) at the boundaries of
austenitic grains and inside the grains. Precipitation occurred during the heat treatment of the base
material. Prior to welding, annealing was performed to remove internal stress at 550 ◦C/360 min. In
contrast, no precipitates are observed in the weld metal. The microstructure of the weld metal has
dendritic morphology and is formed by austenite with delta ferrite formations, which corresponds
with study [32], see Figure 12b. The HAZ microstructure is formed by austenite with a rare occurrence
of globular precipitates. Most precipitates probably dissolved in this area during welding.
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formations are delta ferrite, such as those marked with a red arrow); captured by the Olympus GX51
optical microscope, Nomarski contrast mode.
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3.3.3. Tensile Properities

Weld joints No. 3, 5 and 6 were selected for the tensile test. All three samples were tested in
the same way by the transverse tensile test; whole welded tubes were used as a sample for the test.
Samples 3 and 5 experienced premature fracture. The fracture in sample No. 3 occurred before reaching
the yield point outside the weld (in base metal). In sample 5, premature fracture was also indicated
just above the yield point. The place of rupture was also located outside the weld. The test specimen
of sample No. 6 ruptured in the heat affected zone (HAZ). This sample can therefore be considered
acceptable for the research of the strength of the welded joint, the measured UTS (Ultimate tensile
strength) value was 573 MPa. The obtained results are listed in Table 4.

Table 4. Results of tensile test.

Sample No. Max. Load Tensile Strength Place of Rupture

- kN MPa -

3 33.3 267 Out of weld
5 46.1 375 Out of weld
6 70.0 573 HAZ (Heat Affected Zone)

Premature fracture of sample No. 3 was caused by a defect in the base material, which was
identified by a penetrant test, see Figure 7a. The fracture occurred at the site of this defect. A similar
situation appeared in sample No. 5, which also indicated premature fracture just above the yield
point due to defects in the base material. These defects were partially detected by the penetrant test.
Figure 13 shows broken testing specimens—samples No. 3, 5 and 6 after the tensile test; this figure
also shows that the fracture point for sample No. 6 is situated in HAZ (unlike samples 3 and 5). It is
apparent that only the sample 6 has reached the strength limit.Materials 2020, 13, x FOR PEER REVIEW 11 of 15 
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3.3.4. Fractography of Fracture Surfaces

Fractography analysis was performed on samples 5 and 6 (specimens after tensile test). Scanning
electron microscopy using secondary electrons (SEM-SE) was used for this analysis. Figure 14a shows
fracture surface of sample 5. Most of the fracture surface is created by large, connected pores and
non-molten powder particles. The ridges on the fracture surface were broken by transcrystalline
ductile fracture, see Figure 14b. It should be recalled that Sample No. 5 ruptured by premature fracture.
Figure 14c shows the fracture surface of sample 6, which reached the strength limit. The fracture
occurred in a transcrystalline ductile manner. Seldom, larger, individual pores occur, especially in the
center of the sample, see Figure 14d.
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Figure 14. (a) Fracture surface of sample No. 5; (b) Detail of ridges on the fracture surface, sample
No. 5, transcrystalline ductile fracture; (c) Fracture surface of sample No. 6; (d) Details of fracture
surface in the middle of the sample, sample No. 6, transcrystalline ductile fracture and pores.

4. Discussion

4.1. Porosity Formation

From Figure 3, it can be seen that components made using the SLM method contain internal pores.
These pores are caused by insufficient or imperfect melting of the particles, or due to the entrapment of
gases by surface turbulence. The porosity caused by insufficient melting (so-called fusion porosity)
usually occurs along the boundaries of the layers and is characterized by its irregularity of shapes
extending along the X and Y planes [33]. Pore size and occurrence are affected by process parameters
(laser power, layer thickness, scanning speed and hatching distance). The cause of the porosity is
insufficient scattering of the laser energy density over the entire surface of the layer, which results
in non-melting of the surface of the previous layer and does not result in a coherent bond between
adjacent layers. To eliminate this phenomenon, Yasa et al. [34] suggested using the re-melting method.
They found that a full density of 100% could almost be achieved when each layer was scanned twice.
Another possible cause of porosity is the entrapment of gas by the surface turbulent flow of molten
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metal in the melting bath. Deev et al. [35] states that this gas may be formed by evaporation of the
material or it may be a protective atmosphere gas, but it may also be a combination thereof.

The calculated relative density using Archimedes’ law correlates with the results obtained by the
Image analysis method. The weld material did not show any porosity values, so the TIG method is
suitable for welding SLMed steel AISI316L.

4.2. Mechanical Properties Analysis

The hardness of the base material is higher compared to the weld metal and the HAZ zone also has
lower hardness values. This is due to the precipitation of carbides in the base material; the subsequent
TIG welding caused a partial dissolution of the carbides in the HAZ, which resulted in a reduction
in hardness.

When evaluating tensile tests, only one sample proved to be relevant (sample No. 6) when
the rupture occurred in the HAZ zone, in the other samples there was a rupture outside the HAZ,
which was caused by increased porosity in the production of SLM samples. The fracture surface of
samples 5 and 6 differs significantly. Sample No. 5 ruptured by premature fracture. The fracture
surface is created by large, connected pores and non-molten powder particles; only the ridges on the
fracture surface were broken by transcrystalline ductile fracture. The fracture of sample 6 (which
reached the strength limit) represents a transcrystalline ductile manner.

5. Conclusions

This work is a contribution to the research and development of the joining of components produced
by 3D printing, specifically produced by Selective Laser Melting (SLM), for the material AISI316L.
The TIG method was used as the welding method. A total of eight welded joints were made. For
individual tests (microhardness, tensile tests, porosity determination), welded samples were randomly
selected on which the tests were realized. The following conclusions can be drawn from the obtained
results:

1. The relative density of components manufactured by the SLM method is 98.12%.
2. The defects in the base material, which mainly include pores, have affected the mechanical

properties of the welded joints so much that they initiated premature fracture before or just above
the yield point.

3. Material failure occurred in the area of the base material near the heat affected zone (HAZ).
4. The microhardness is about 30% lower in the HAZ zone than in the base material.
5. In terms of microstructure, a higher temperature (closer to the fuse boundary) has a positive

effect. The original texture of 3D printing changes to an almost homogeneous austenitic structure.
From this point of view, heat treatment of SLM products at temperatures above 1000 ◦C can be
recommended after 3D printing.

6. Two of the three samples broke outside the “weld zone”. This was probably because of the SLM
process parameters.

7. The weld material did not show any porosity and therefore the TIG method is suitable for welding
the SLMed steel AISI316L.

Further tests and analysis are required in order to confirm the experimental results and optimize
part manufacturing. However, the results obtained can serve as a good scientific basis for further
research in this area.
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