Skip to main content
. 2020 Oct 13;2020:8840174. doi: 10.1155/2020/8840174

Table 1.

Classification results from the basic models and the hybrid model structures.

Loss Accuracy Sensitivity Specificity Precision F1 score
Basic models EfficientNetB4 CE 0.8158 0.9442 0.7182 0.9027 0.9230
E-CE 0.8544 0.9736 0.7061 0.9017 0.9362
EfficientNetB5 CE 0.7932 0.9254 0.6782 0.8884 0.9065
E-CE 0.8488 0.9809 0.6549 0.8872 0.9317
NASNetLarge CE 0.7828 0.9151 0.7031 0.8951 0.9050
E-CE 0.8470 0.9845 0.6353 0.8820 0.9304
InceptionResNetV2 CE 0.7888 0.9657 0.5177 0.8471 0.9025
E-CE 0.8502 0.9739 0.6963 0.8987 0.9348
Xception CE 0.8100 0.9706 0.5742 0.8632 0.9138
E-CE 0.8476 0.9848 0.6217 0.8781 0.9284

Hybrid model Hybrid-model-a CE 0.8584 0.9877 0.6481 0.8860 0.9341
Hybrid-model-f CE 0.8626 0.9652 0.7476 0.9137 0.9387
Hybrid-model-c CE 0.8634 0.9706 0.7325 0.9094 0.9390

CE indicates cross-entropy loss function; E-CE indicates enhance cross-entropy loss function; and the bold values indicate the best results.