
WJG https://www.wjgnet.com 5759 October 14, 2020 Volume 26 Issue 38

World Journal of 

GastroenterologyW J G
Submit a Manuscript: https://www.f6publishing.com World J Gastroenterol 2020 October 14; 26(38): 5759-5783

DOI: 10.3748/wjg.v26.i38.5759 ISSN 1007-9327 (print) ISSN 2219-2840 (online)

REVIEW

Molecular mechanisms of viral hepatitis induced hepatocellular 
carcinoma

Simmone D'souza, Keith CK Lau, Carla S Coffin, Trushar R Patel

ORCID number: Simmone D'souza 
0000-0003-2750-8675; Keith CK Lau 
0000-0001-7870-6597; Carla S Coffin 
0000-0002-1472-0901; Trushar R 
Patel 0000-0003-0627-2923.

Author contributions: D’souza S 
wrote the article; Lau KCK, Coffin 
CS, Patel TR, formatted and 
revised the article.

Supported by Canada Research 
Chair Program; Alberta Innovates 
Strategic Research Projects, No. 
G2018000880; and Calgary Clinical 
Research Fund Pilot, No. CRF18-
0704.

Conflict-of-interest statement: The 
authors have no conflict of interest 
to declare.

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
p://creativecommons.org/License
s/by-nc/4.0/

Simmone D'souza, Keith CK Lau, Carla S Coffin, Trushar R Patel, Department of Microbiology, 
Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, 
Calgary T2N 1N4, AB, Canada

Trushar R Patel, Department of Chemistry and Biochemistry, Alberta RNA Research and 
Training Institute, University of Lethbridge, Lethbridge T1K3M4, AB, Canada

Corresponding author: Trushar R Patel, PhD, Associate Professor, Department of Chemistry 
and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 
4401 University Drive West, Lethbridge T1K3M4, AB, Canada. trushar.patel@uleth.ca

Abstract
Chronic infection with viral hepatitis affects half a billion individuals worldwide 
and can lead to cirrhosis, cancer, and liver failure. Liver cancer is the third leading 
cause of cancer-associated mortality, of which hepatocellular carcinoma (HCC) 
represents 90% of all primary liver cancers. Solid tumors like HCC are complex 
and have heterogeneous tumor genomic profiles contributing to complexity in 
diagnosis and management. Chronic infection with hepatitis B virus (HBV), 
hepatitis delta virus (HDV), and hepatitis C virus (HCV) are the greatest 
etiological risk factors for HCC. Due to the significant role of chronic viral 
infection in HCC development, it is important to investigate direct (viral 
associated) and indirect (immune-associated) mechanisms involved in the 
pathogenesis of HCC. Common mechanisms used by HBV, HCV, and HDV that 
drive hepatocarcinogenesis include persistent liver inflammation with an 
impaired antiviral immune response, immune and viral protein-mediated 
oxidative stress, and deregulation of cellular signaling pathways by viral proteins. 
DNA integration to promote genome instability is a feature of HBV infection, and 
metabolic reprogramming leading to steatosis is driven by HCV infection. The 
current review aims to provide a brief overview of HBV, HCV and HDV 
molecular biology, and highlight specific viral-associated oncogenic mechanisms 
and common molecular pathways deregulated in HCC, and current as well as 
emerging treatments for HCC.
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Core Tip: Hepatocellular carcinoma (HCC) is a dreaded complication of viral infection 
with hepatitis B virus and/or hepatitis delta virus and hepatitis C virus. Many of the direct 
and indirect molecular mechanisms used by these viruses to co-opt the liver 
microenvironment for persistence also disrupt cell cycle pathways. Indirectly, the immune 
system has a major role in the contribution of HCC in the context of viral hepatitis, but 
direct viral mechanisms also create a pro-tumorigenic environment.

Citation: D'souza S, Lau KCK, Coffin CS, Patel TR. Molecular mechanisms of viral hepatitis 
induced hepatocellular carcinoma. World J Gastroenterol 2020; 26(38): 5759-5783
URL: https://www.wjgnet.com/1007-9327/full/v26/i38/5759.htm
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INTRODUCTION
Epidemiology of viral hepatitis associated hepatocellular carcinoma
Liver cancer is the third leading cause of cancer-associated mortality (781631 
people/year), despite being ranked seventh on global incidence (841080 
people/year)[1]. Approximately 12% of all cancer cases globally arise from chronic 
infections with bloodborne oncogenic viral pathogens including hepatitis B virus 
(HBV), hepatitis C virus (HCV), and hepatitis delta virus (HDV)[2]. Although incidence 
in the majority of cancers has decreased, primary liver cancer incidence is the fastest-
growing cancer with regards to incidence and mortality[3]. Hepatocellular carcinoma 
(HCC) represents 90% of all liver cancer cases and the risk factors are well defined: 
Viral infection with HBV, (54% of all HCCs) and/or HCV (31% of all HCCs), cirrhosis 
(80% of all HCCs), high alcohol consumption, obesity, genetic disorders such as 
hemochromatosis, exposure to aflatoxins, sex (male) and older age (50+)[4-7].

Virus-induced HCC is present worldwide, however, there are considerable 
differences in populations that develop HBV or HDV induced HCC vs HCV induced 
HCC. HBV and HDV associated HCC is more common in low and middle-human 
development index countries, while HCV induced HCC is more common in high and 
very high-human development index[2]. Chronic hepatitis B (CHB) infection affects 
around 257 million people worldwide, of which 48-60 million people are co-infected 
with HDV and an estimated 2.6 million are co-infected with HCV[8-10]. Exposure to 
infected blood/bodily fluids is the primary mode of transmission for HBV and 
HBV/HDV, with majority of exposures occurring from mother to child during birth or 
early years of life. Unvaccinated neonates and children who have been exposed to 
HBV have > 95% risk of developing chronic disease, while infection during adulthood 
results in < 2% chance of developing chronic disease[11]. HBV/HDV co-infection have 
the highest mortality rate (20%) associated with any viral hepatitis infection and most 
severe liver disease (i.e. acute liver failure, cirrhosis within 5 years, and HCC within 10 
years)[10,12,13]. HCV has established chronic infection in 70 million people primarily 
through horizontal blood-borne transmission routes such as intravenous drug use, 
needle pricks, unscreened blood transfusions, and high-risk sexual practices[11]. In 
comparison to HBV or HCV mono-infection, individuals who are co-infected with 
HBV/HCV have increased rates of HCC development. Overall, viral etiologies 
represent approximately 80% of all HCC related cases, highlighting the importance of 
investigating the role of these viruses in the development of liver cancer.

Preventative measures against HBV and HDV induced liver cancer include birth-
dose vaccinations, hepatitis B immunoglobulin treatment for children born to infected 
mothers as well as treatment of mothers with high HBV viral load with nucleos(t)ide 
inhibitors in the third trimester[14]. For those individuals who are already chronic 
carriers of HBV/HDV, there is no virological cure; however, treatment with 
nucleos(t)ide analogs can lower the risk of HCC development[15]. There is no protective 
vaccine available for HCV, but there are effective direct-acting antivirals that can cure 
> 90% of chronic carriers. Those who have a sustained virological response from 
direct-acting antiviral treatment have a significantly lower risk of HCC development if 
cirrhosis is absent[16]. Although there are treatment options to lower the risk of HCC in 
those who have chronic viral hepatitis infection, globally many individuals are 
unaware of their status, lack access to testing, and effective treatment.

https://www.wjgnet.com/1007-9327/full/v26/i38/5759.htm
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In this review article, we discuss the molecular biology of HBV, HCV, and HDV, 
common features associated with virus-induced cancers, viral oncogenic mechanisms 
leading to HCC relating to the hallmarks of cancer, common molecular pathways 
deregulated in HCC, and current as well as emerging treatments for HCC.

OVERVIEW OF VIRAL LIFE CYCLES
Hepatitis B virus life cycle
The HBV is a member of the Hepadnaviridae family, which has a cellular tropism for 
hepatocytes, but has also been detected in extra-hepatic reservoirs such as the 
lymphoid cells (i.e. peripheral blood mononuclear cells)[17-20]. HBV has a compact 3.2 kb 
partially double-stranded relaxed circular DNA genome (rcDNA) containing four 
overlapping open reading frames: Pre-S/S, X, P, and pre-C/C, which are under the 
transcription control of the pre-S1 promoter, pre-S2/S promoter, enhancer I/X and 
enhancer II/basal core promoter[21]. The viral protein products include three surface 
proteins (large/pre-S1, middle/pre-S2, and small/S - also known as HBsAg), the core 
antigen (HBcAg), the excreted “e” antigen (HBeAg), the viral polymerase (which has 
reverse transcriptase, DNA polymerase, and RNaseH activity), and the X protein 
(HBx) that plays an essential role in HBV pathogenesis and viral transcription[21]. Upon 
viral attachment of the envelope HBV preS1 protein to the sodium taurocholate co-
transporting polypeptide receptor, the virus is endocytosed (Figure 1). The 
nucleocapsid is transported via microtubules from the cytoplasm to the nucleus where 
the rcDNA is converted to covalently closed circular DNA (cccDNA)[22,23]. The cccDNA 
associates with histone and non-histone proteins which form a viral minichromosome 
that persists in the hepatocyte to serve as the template for transcription of pregenomic 
RNA (pgRNA) and subgenomic RNAs by host RNA polymerase II[24]. The exported 
pgRNA and subgenomic transcripts are translated to produce the core protein, viral 
envelope surface proteins, HBeAg, polymerase, and X proteins. In addition, the 
pgRNA transcript is packaged by the capsid proteins and reverse transcribed by the 
viral polymerase into rcDNA. The newly packaged rcDNA can either localize back to 
the nucleus to replenish the cellular cccDNA population or gain their coat through the 
endoplasmic reticulum (ER)/Golgi and proceed to bud out of the to infect other 
cells[25]. Current nucleos(t)ide antivirals target the viral reverse transcriptase to produce 
aberrant transcripts that cannot produce infectious virions. Additional details about 
the lifecycle and host-transcription factors/proteins required for HBV replication are 
included in our previous article by Turton et al[26].

Hepatitis Delta virus life cycle
HDV is the smallest human infecting virus and the sole member of the Deltavirus 
genus[27]. HDV is characterized as a “satellite” or “defective” virus as it is dependent 
on HBV co-infection for viral assembly and persistence. HDV has an approximate 1.7 
kb circular, single-stranded, negative-sense RNA genome that encodes for a single 
protein of two isoforms: The small and large delta antigens (S-HDAg and L-HDAg, 
respectively)[28]. Viral entry (Figure 2) occurs similarly to HBV due to HDV’s co-opted 
use of the envelope HBsAg protein[29]. Following viral entry, HDV uncoats in the 
cytoplasm and the ribonucleoprotein complex consisting of the HDV viral genome and 
HDAg complex is imported into the nucleus[30]. Rolling-circle replication occurs in the 
nucleolus using the host RNA polymerase II to produce antigenomic positive sense 
HDV RNA that serves as a template for genomic HDV RNA synthesis and protein 
production[31]. The antigenome can be edited by host protein adenosine deaminase act- 
ing on RNA 1 (ADAR1) to change adenine to inosine in the UAG stop-codon to 
produce the L-HDAg. The edited and non-edited antigenomes are then linearized by 
the HDV associated ribozyme, exported to the cytoplasm, and translated to HDV 
antigens. The non-edited transcript produces S-HDAg (24 kDa) and the transcript 
modified by ADAR1 produces the L-HDAg (27 kDa)[32]. Following extensive post-
translational modifications, the viral antigens associate with the HDV RNA in the 
cytoplasm to form the ribonucleoprotein complex. The ribonucleoprotein is trafficked 
through the ER and Golgi apparatus where it co-opts the HBsAg envelope produced 
by HBV, and then buds out of the cell[33].

Hepatitis C virus life cycle
The HCV is part of the Flaviviridae family and the genus Hepacivirus. HCV is an 
enveloped, positive-sense, 9.6 kb single-stranded RNA virus with highly conserved 5’ 
and 3’ untranslated regions[34]. HCV primarily infects hepatocytes due to the 
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Figure 1 Hepatitis B virus life cycle. Viral entry is mediated by low-affinity binding of the Pre-S1 protein to the heparin sulfate proteoglycan receptor, followed 
by binding to the sodium-taurocholate co-transporting polypeptide to facilitate entry. The nucleocapsid is transported from the cytoplasm to the nucleus where the 
relaxed circular DNA (rcDNA) genome is converted into the persistent covalently closed circular DNA (cccDNA) form. Viral mRNA is then transcribed from the 
cccDNA genome and translated at the rough endoplasmic reticulum. The greater than genome length pregenomic RNA is transported to the cytoplasm, encapsidated 
by the hepatitis B virus core protein and reverse transcribed by the hepatitis B virus polymerase to produce rcDNA or double-stranded linear DNA. The core particles 
can then obtain their envelope proteins at the endoplasmic reticulum to be excreted out of the cell, or the core particles containing double-stranded linear DNA can 
relocate into the nucleus and integrate into the host genome, and the rcDNA can be recycled intracellularly to replenish the cccDNA pool.

expression of essential entry receptors and liver-specific cellular host factors (miRNA-
122) required for viral replication[35]. However, extrahepatic manifestations have been 
observed in peripheral blood mononuclear cells, epithelial cells, kidneys and in the 
peripheral nervous system[36]. Through complex mechanisms, HCV particles interact 
with several receptors (see[37] for details) to induce conformational changes and 
proceeds to enter the cell (Figure 3) via clathrin-mediated endocytosis[37]. Endosomal 
acidification causes the fusion of the viral envelope to the endosome membrane, 
disassociation of the viral core, and release of the HCV RNA genome into the 
cytoplasm[37]. In the ER the viral RNA is replicated and translated from a single open 
reading frame using the 5’ untranslated regions internal ribosomal entry site. The 
translated product is an approximately 3000 amino acid polyprotein precursor that is 
cleaved by host and viral proteases to form ten proteins[38]. There are three structural 
proteins - core, E1 and E2 - and seven non-structural proteins p7, NS2, NS3, NS4A, 
NS4B, NS5A, and NS5B that have roles in polyprotein cleavage, viral replication, 
assembly, and release[39]. More recently, two isoforms of the core protein, known as the 
“mini-core” were discovered to be translated from an alternative open reading frame 
at amino acids 70 and 91 which preserve the c-terminal portion of the mature p21 core 
nucleocapsid but lack the N-terminus. The function of these mini-core proteins has yet 
to be elucidated, however, mutations in amino acid positions 70 and 91 are associated 
with increased risk of HCC, insulin resistance, and failure of interferon treatments[40,41]. 
Following viral replication and protein translation, the core protein assembles in the 
ER on a lipid droplet and recruits HCV viral RNA which is subsequently 
encapsidated[42]. The viral nucleocapsid is then processed through the ER-lumen and 
Golgi apparatus for maturation and the HCV particle associated with very low-density 
lipoproteins are released from the plasma membrane[38,43,44].
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Figure 2 Hepatitis delta virus lifecycle. Viral entry is mediated (like hepatitis B virus) by low-affinity binding of the Pre-S1 protein to the heparin sulfate 
proteoglycan receptor, followed by binding to the sodium-taurocholate co-transporting polypeptide to facilitate entry. Following uncoating, the ribonucleoprotein (RNP) 
complex consisting of negative-sense single-stranded RNA genome plus the small and large hepatitis delta virus (HDV) antigens (L-HDAg/S-HDAg) are transported 
to the nucleus. Within the nucleolus, HDV RNA is replicated using a double rolling circle amplification to form the positive-sense anti-genomic RNA and more genomic 
RNA. From the amplification process, the genomic RNA is transported out of the nucleolus and into the nucleus where it can be transcribed to produce the S-HDAg 
transcript or undergo A to I editing by ADARI to produce the L-HDAg RNA. Once the RNA transcripts are exported out of the nucleus, translation machinery produces 
the S-HDAg and L-HDAg which associate with the genomic HDV RNA to produce the RNP complex. The RNP complex passes through the endoplasmic reticulum 
and Golgi apparatus to obtain its coat and are then released out of the cell to infect neighboring hepatocytes. ER: Endoplasmic reticulum; NTCP: Sodium-
taurocholate co-transporting polypeptide; HSPG: Heparin sulfate proteoglycan receptor; RNP: Ribonucleoprotein.

Overview of mechanisms driving HCC development with infection by HBV, HCV, 
HDV
HBV, HCV, and HDV use several mechanisms to co-opt the infected cells which may 
unintentionally lead to HCC development. Commonly used mechanisms between all 
three viruses include: (1) Persistent liver inflammation and immune-mediated 
oxidative stress damage from a chronic viral infection; (2) Intracellular oxidative stress 
damage induced by viral proteins; and (3) Deregulation of cell signaling pathways by 
viral proteins (e.g. HBx, L-HDAg, S-HDAg, HCV core, NS3, and NS5A/B). HBV is the 
only hepatotropic DNA virus that also uses viral DNA integration to induce genome 
instability, which can lead to the creation of fusion gene products, and altered 
expression of oncogenes or tumor suppressors. In addition, HCV facilitates metabolic 
reprogramming leading to steatosis, which aids in the progression of fibrosis and 
HCC.

General traits of oncogenic viruses 
There are several viral traits that are common to human oncogenic viruses[45,46]: (1) 
Oncoviruses are ubiquitous in the environment and infection alone is not sufficient for 
cancer development. Although chronic infection with HBV/HCV/HDV results in 
higher rates of HCC development, not all persistently infected individuals develop 
liver cancer. Thus, this observation would suggest that the viruses by themselves are 
insufficient for cancer development. (2) Virally induced cancers are biological 
accidents as tumor formation is not an intentional outcome of viral infection. (3) Viral 
cancers appear in the context of persistent infections and occur many years to decades 
after initial exposure. Hepatic viruses have co-evolved with their hosts and hence, 
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Figure 3 Hepatitis C virus life cycle. Hepatitis C virus entry is facilitated by a variety of receptors and signaling pathways (described in[37]). Upon viral entry, the 
positive sense RNA genome is released into the cytoplasm from endosomal acidification. The viral RNA undergoes replication and translation at the rough 
endoplasmic reticulum to produce a single polyprotein chain at the endoplasmic reticulum membrane that is cleaved by viral and host proteases into 10 different viral 
proteins (structural and non-structural). The virus particles are assembled on lipid droplets and associate with very-low-density lipoproteins which mature at the Golgi 
apparatus and are released via the secretory pathway. HSPG: Heparin sulfate proteoglycan receptor; LD: Lipid droplets; VLDL: Very-low-density lipoproteins.

have evolved effective immune evasion strategies to establish long-term infection such 
as expression of viral proteins that interfere with innate interferon responses, 
inflammation, and adaptive immunity. (4) Most viral remnants within a tumor are 
non-infectious and tumors are non-permissive for viral replication. Active virion 
production is typically absent in transformed tumor cells. (5) All virally induced 
cancers have non-infectious co-factors that influence tumorigenesis. Host factors such 
as age, sex, genetics, environmental factors, and immunodeficiencies are associated 
with viral hepatitis-related HCC. (6) The immune system can play a deleterious or 
protective role, with some virus-associated cancers increasing with immu-
nosuppression and others appearing during chronic inflammation. In the context of 
viral hepatitis induced HCC, the host antiviral immune response is unable to eliminate 
virally infected cells and instead causes immune-mediated damage. This phenomenon 
is evident in chronic infections where bouts of repeated hepatitis caused by the 
inflammation-necrosis-proliferation cycle leads to the production of reactive oxygen 
species (ROS) that promote genetic mutations, fibrosis, cirrhosis, and HCC.

The features of oncogenic viruses described above reflect the multifactored nature of 
virus-induced hepatocarcinogenesis. Human oncovirus infection alone is insufficient 
to directly drive cancer and viral infection provides only a portion of the oncogenic 
alterations. The combination of viral factors and other factors (i.e. host, environment, 
time) is generally required for the development of cancer[45]. The hallmarks of cancer 
outline developed by Hanahan and Weinberg[47] deconstruct the specifics of cellular 
deregulation into factors that contribute to cancer development[47]. This outline also 
explains the reliance on time progression to accumulate oncogenic mutations and the 
multistep nature of acquiring various hallmarks that eventually lead to cancer. By 
applying this system to viral-induced cancers, we can better understand how 
alterations in cellular processes induced by hepatitis viruses contribute to HCC 
development (depicted in Figure 4 and Figure 5).
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Figure 4 Relating the hallmarks of cancer to the molecular mechanisms of hepatitis B virus and delta virus hepatocarcinogenesis. 
Hepatitis B virus can activate all ten hallmarks of cancer using viral proteins (HBx, HBsAg, HBeAg, HBcAg) and DNA integration. Hepatitis delta virus has been linked 
to four hallmarks, primarily through molecular mechanisms manipulated by the large and small hepatitis delta virus antigens (L-HDAg and S-HDAg). HBV: Hepatitis B 
virus; HDV: Hepatitis delta virus; ER: Endoplasmic reticulum; ROS: Reactive oxygen species.

Specific viral factors affecting HCC development
Viral genotypes vary across the globe and play an important role in virus treatment 
response and assessing HCC risk. HBV has ten genotypes (A-J) which have a genetic 
divergence of > 8%. The HBV genotypes associated with the highest risk of HCC 
development are genotype C > B > F > D > A[7,48]. Some studies suggest that 
individuals infected with either HBV genotype B or C that have T1762/A1764 basal 
core promoter mutations have a higher risk of HCC development in younger 
individuals (< 50 years old) without cirrhosis[49]. In HBV genotype C infections, 
mutations/deletions in the preS region, enhancer II at position C1653T, and/or T173V 
in the basal core promoter can predict the development of HCC in 80% of cases[50]. 
Moreover, genotypes A and B have a better response to peg-IFN-α therapies, while 
there are no genotypic preferences for nucleos(t)ide analog treatments[51].

HCV has 6 major genotypes (1-6) that have a genetic divergence of 31%-35%. With 
HCV, studies linking genotype to the risk of developing HCC have inconsistent 
findings[7]. However more recently, a large cohort study of United States veteran 
concluded that HCV genotype 3 infections had an 80% higher risk of HCC 
development compared to genotype 1[52]. In a southeast Asian cohort, HCV genotype 6 
is also associated with an increased is of HCC development[53]. With currently 
approved direct-acting antiviral treatments for all HCV genotypes, sustained 
virological response is observed in > 90% of treated individuals and reduces HCC risk 
in individuals without cirrhosis[54].

There are eight different HDV genotypes (1-8), which have a large genetic 
divergence ranging from 20%-40%[55]. There has not been a significant amount of 
research conducted to elucidate the effects of HDV genotypes on clinical outcomes. 
One study concluded that genotype 1 is associated with worse clinical disease 
including HCC than genotype 2[56]. Moreover, clinical outcomes of the disease are 
potentially regulated by both HBV and HDV genotypes. Due to the reliance of HDV 
on HBV co-infection, the only treatment option for HDV infection is peg-IFN-α, which 
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Figure 5 Relating the hallmarks of cancer to the molecular mechanisms of hepatitis C virus hepatocarcinogenesis. Hepatitis C virus uses its 
RNA genome and many viral associated structural and non-structural proteins to alter cellular pathways to influence all ten hallmarks of cancer. HCV: Hepatitis C virus.

is poorly tolerated and has < 30% response rate, highlighting the urgent need for 
improved therapies[57].

CHRONIC INFLAMMATION-MEDIATED BY VIRAL HEPATITIS 
Non-resolving inflammation is a hallmark of cancer that significantly contributes to 
the development and progression of HCC[47]. Approximately 80% of HCC cases arise 
from hepatocyte injury and chronic inflammation resulting in cirrhosis[6,58]. HCC in 
chronic hepatitis B, C, or HBV/HDV co-infection patients occurs in the presence of 
cirrhosis[59,60]. In contrast, 10%-20% of HBV-related HCC can occur in the absence of 
cirrhosis and liver inflammation[61]. Under normal circumstances, the innate and 
adaptive immune responses are activated during an infection or tissue injury and 
immune cells are recruited to fight against the pathogen and induce wound healing. 
Following the elimination of the pathogen via cytolytic and non-cytolytic mechanisms, 
the damaged tissue is repaired through the wound-healing process[62]. However, the 
persistence of the inflammatory stimuli (e.g. chronic viral infection) or dysregulation of 
the immune regulatory mechanisms prevents complete wound-healing and causes 
non-resolving inflammation that may lead to liver complications resulting in 
autoimmunity, fibrosis, cirrhosis, metaplasia and/or tumor growth[62].

There are five clinical phases of chronic hepatitis B infection (Figure 6A) from the 
2019 AASLD guidelines[63]: HBeAg+ chronic infection, HBeAg+ chronic hepatitis, 
HBeAg- chronic infection, HBeAg- chronic hepatitis, and a functional cure (HBsAg-). 
Each clinical phase is defined by a host immune response with respect to HBV viral 
activity. During the initial HBeAg+ chronic infection phase the host is immune 
response has a poorly activated HBV-specific CD8+ T-cell response[64]. Transition to the 
chronic hepatitis phase is characterized by increased activation of the adaptive 
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Figure 6 Natural history of infection with hepatitis B, delta, or C virus. Variations in hepatitis B virus (HBV) DNA, hepatitis C virus RNA, hepatitis delta 
virus (HDV) RNA, and ALT levels indicated by dashed lines. A: Natural history of chronic Hepatitis B virus infection. There are five phases of infection HBeAg+ chronic 
infection, HBeAg+ chronic hepatitis, HBeAg- chronic infection, and HBeAg- phase. Each clinical phase is defined by a host immune response with respect to HBV viral 
activity; B: Natural history of HDV infection in either HBV co-infection or HDV superinfection when the individual is a chronic carrier of HBV; and C: Natural history of 
Hepatitis C virus infection. There are two main phases of infection acute infection and chronic infection. HBV: Hepatitis B virus; HCC: Hepatocellular carcinoma; HDV: 
Hepatitis delta virus; HCV: Hepatitis C virus.
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immune response (e.g., HBV-specific CD8+ T-cells, pro-inflammatory cytokines) which 
causes decreased HBV DNA levels, liver inflammation, and variable/progressive liver 
fibrosis. Failure to completely clear HBV in the HBeAg+ chronic infection phase results 
in prolonged over-active immune cell-mediated damage that leads to rapid liver 
disease progression. Immune-mediated liver damage is facilitated by natural killer 
cells and T-cells through the release of ROS and proinflammatory cytokines which 
causes bouts of necroinflammation, hepatocyte regeneration/healing and remodeling 
of the liver microenvironment[65,66]. Constant necroinflammation and failed wound 
healing responses lead to prolonged oxidative stress exposure which can promote the 
rapid development of fibrosis, cirrhosis, and cell transformation (epigenetic 
alterations, oncogenic mutations, telomere shortening, and genomic instability)[67,68]. 
The 5-year cumulative HCC risk for CHB patients with cirrhosis ranges from 9.7%-
15.5%[69]. However, 20% of HCC caused by HBV does not require liver cirrhosis, 
indicating there are other intrinsic viral associated factors that are responsible for 
transforming hepatocytes.

HDV infection occurs either in a co-infection model with HBV or as a superinfection 
from horizontal transmission in individuals with CHB (Figure 6B). The mechanisms 
used by HDV to modulate the immune system are different from that expressed by 
HBV and HCV due to the consistent presence of co-infection. The natural history of 
chronic HDV infection is also dynamic and can be characterized as[70]: (1) Suppressed 
HBV replication and active HDV replication with high ALT; (2) Slightly decreased 
HDV replication and HBV reactivation with moderate ALT; and (3) Late-stage disease 
where cirrhosis and HCC are caused by either HBV/HDV or remission resulting in a 
reduction of both HBV and HDV viral load. During initial infection, HDV evades IFN-
α-mediated innate immune responses to promote cell survival and viral persistence[71]. 
Under normal cellular conditions, double-stranded RNA induces expression IFN-α 
which binds to the IFN receptor-associated JAK kinase tyrosine kinase-2(tyr-2). 
Dimerization of the tyr-2 receptor activates a JAK/STAT signaling cascade to produce 
innate antiviral proteins: myxovirus resistance A, 2’,5’-oligoadenylate synthase, and 
dsRNA-activated protein kinase[72]. HDV blocks phosphorylation of tyr-2 to prevent 
downstream signaling and impairs phosphorylation activity and nuclear accumulation 
of STAT1/STAT2[71].

The superinfection of HDV in patients with CHB has the most severe liver disease 
outcome, partially due to the pre-existing liver damage caused by HBV infection[73]. 
Moreover, superinfection with HDV leads to HBV viral load suppression through 
mechanisms that are not thoroughly understood[74]. Recognition of MHC-1 HDV 
antigens on infected cells by CD8+ T-cells mediates cellular killing. Released viral 
antigens are endocytosed by Kupffer cells (liver resident macrophages), B-
lymphocytes, and dendritic cells and presented to CD4+ helper T-cells via MHC-II 
receptors. Clonal expansion of CD4+ T-cells releases IL-2, IL-10, and IFN-γ cytokines 
which stimulate immune-mediated killing of HDV infected cells, severe liver necrosis 
and progressive liver disease[75].

Infection from the HCV is usually acquired from horizontal transmission in 
adulthood, where 75%-80% of people develop a chronic infection from viral 
persistence[11]. Chronic hepatitis C (CHC) infected individuals have mild liver 
inflammation (Figure 6C), stable HCV RNA titers, and liver disease that progresses 
especially in the presence of other risk factors (age, male, obesity, diabetes alcohol, 
HIV or HBV co-infection)[76]. HCV infection activates intrinsic type I and III IFN 
responses which induces transcription of innate-antiviral IFN stimulated genes[77]. 
Adaptive viral-specific CD8+/CD4+ T-cells and natural killer cells facilitate the release 
of pro-inflammatory cytokines and growth factors while destroying of HCV infected 
hepatocytes by promoting the inflammation-necrosis-proliferation cycle[78]. Immune-
mediated damage produces large amounts of ROS mediated DNA damage, lipid 
peroxidation, epigenetic modifications, mitochondrial alteration, senescence, and 
chromosomal translocation that lead to hepatocyte transformation[79]. Immune failure 
to remove all HCV infected cells causes the selection of viral escape mutants within a 
carrier population. These escape mutants prevent stimulation of CD4+/CD8+ T-cell 
responses, and aid in viral immune evasion, chronic infection, loss of immune 
regulation, and promotion of HCV-mediated HCC[80,81]. Moreover, persistent liver 
inflammation caused by immune cells over decades of infection can lead to the 
development of fibrosis, cirrhosis, and HCC. Approximately 10-20% of CHC patients 
develop cirrhosis in 20-30 years in the absence of treatment for hepatitis C, indicating 
the high risk for HCC development[82].
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Cirrhosis is a major risk factor for HCC development 
The liver is made up of approximately 80% parenchymal cells (i.e., hepatocytes) and 
20% non-parenchymal cells (e.g., sinusoidal endothelial cells, hepatic stellate cells, and 
Kupffer cells)[83]. Infection with viral hepatitis primarily targets the large population of 
hepatocytes, leading to production of ROS. Release of ROS and pro-inflammatory 
cytokines by Kupffer cells/hepatocytes activate neighboring stellate cells and liver 
sinusoidal endothelial cells which are key players in the development of fibrosis[84,85] 
(Figure 7). Stellate cells and fibroblasts enhance collagen synthesis and alter the 
extracellular matrix which lead to remodeling of the liver microenvironment[86].

Progressive inflammation and fibrosis pave the way for disease progression to 
cirrhosis which is the largest risk factor for HCC development (Figure 7). Cirrhosis is 
irreversible and often individuals are asymptomatic, which makes diagnosis and 
treatment difficult[87]. Those who develop severe symptoms of cirrhosis, are likely to 
have advanced liver disease and HCC. This is especially problematic for the 
populations who are unaware of their infection status with HBV, HCV, and/or HDV 
because they are unable to seek treatment intervention to lower the risk of developing 
cirrhosis. During cirrhosis, altered blood flow can lead to a hypoxic environment for 
hepatocytes leading to altered molecular signaling and increased oxidative damage[88]. 
Cells within the context of cirrhosis have experienced a multitude of changes from 
inflammation mediated damage, repair, and regeneration. The hypoxic environment 
in the liver during cirrhosis can select for altered oncogenic cells and promote 
angiogenesis. For a comprehensive review of molecular mechanisms of host factors 
driving the progression of liver cirrhosis to HCC see (Fridland et al[88] and Kanda et  
al[89]).

HBV-SPECIFIC INDUCTION OF HCC
HBV DNA integration
Although HBV uses reverse transcription for replication, unlike retroviruses, 
integration is not an essential step in the virus lifecycle and does not produce 
replication-competent virus[90]. During reverse transcription of the pgRNA, partially 
double-stranded rcDNA is formed 90% of the time[17]. The rcDNA is the genetic 
material that can be used to replenish the cccDNA pool and produce viable virions 
that can proceed to infect new hepatocytes. For 10% of cases, the reverse transcription 
process does not produce rcDNA and instead synthesizes double-stranded linear DNA 
(dslDNA)[17]. The HBV dslDNA can also be present in virions and repaired to produce 
cccDNA with a 16nt insertion that cannot produce pgRNA (unless it reverts to wild 
type cccDNA via homologous recombination)[91]. Integration of dslDNA is reported to 
occur in 1 of approximately 105-106 infected hepatocytes, and has been observed to 
occur early in infection (children as young as 5 mo old), and in patients who have 
acute HBV, CHB, and HCC[23,92]. The currently accepted mechanisms for HBV 
integration driving HCC include (reviewed by Tu et al[17]): (1) Chromosomal instability 
from HBV integrated DNA; (2) Insertional mutagenesis in proto-oncogenes and tumor 
suppressors; and (3) Expression of mutant HBV proteins from integration[17].

A key hallmark of cancer is genome instability. Hepatitis B virus can induce genome 
instability through viral integration into the host genome to cause cellular 
transformation (Figure 4). In non-HCC patients, HBV integration sites are randomly 
distributed through the genome and do not contain enriched sequence mutations. 
However, in CHB-HCC patients, HBV integration can be enriched in certain areas to 
cause chromosomal instability through integration near fragile sites: Intergenic 
regions, repetitive regions (e.g., LINEs), short interspaced nuclear elements, simple 
repeats, CpG islands, and telomeres[93]. Chromosomal rearrangements and gene copy 
number variations also contribute to chromosomal instability and are present in the 
majority of CHB associated HCC[94].

Next-generation sequencing studies that compare HBV integration sites between 
tumor and matched non-tumor tissues have found that HCC tumors generally have a 
greater number of integration events and increased integration frequency in coding or 
promoter regions. In non-tumorous HBV infected hepatocytes, recurrent integration in 
driver genes can promote hepatocyte clonal expansion[17]. In 10%-15% of HCC cases, 
recurrent integration of the enhancer II/core HBV promoter in/near telomerase 
reverse transcriptase (TERT) or myeloid/lymphoid or mixed-lineage leukemia 4 genes 
causes upregulation of these oncogenes[95,96]. The upregulation of these genes has been 
observed in early and late tumor development, which may indicate that integration in 
these genes may aid in cell transformation and HCC progression.
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Figure 7 Liver disease progression to hepatocellular carcinoma from chronic viral hepatitis infection. Genetics, co-morbidities, gender, age, and 
aflatoxin exposure influence liver disease progression along with chronic viral infection with hepatitis B, C, and/or delta virus. Cirrhosis is the greatest risk factor for 
development of hepatocellular carcinoma, however, hepatocellular carcinoma in the context of chronic Hepatitis B virus infection can occur in the absence of cirrhosis. 
Chronic hepatitis C infection can lead to steatohepatitis, which can accelerate fibrosis and cirrhosis. Superinfection with Hepatitis delta virus in individuals who have 
chronic Hepatitis B virus infection creates an accelerated disease course leading to liver failure and/or hepatocellular carcinoma. Many driver mutations (telomerase 
reverse transcriptase, TP53, CTNNB1, AXIN1, ARID1A/ARID2, NFE2L2/KEAP1/RPS6KA3, KAK1) can occur as liver disease progresses to hepatocellular carcinoma 
and can lead to accelerated disease progression. TERT: Telomerase reverse transcriptase; HBV: Hepatitis B virus; HDV: Hepatitis delta virus; HCV: Hepatitis C virus.

Integration of HBV dslDNA can lead to the persistent expression of mutant and 
truncated HBsAg, HBcAg and HBx proteins. High expression rates of these normal 
and mutated proteins are associated with ER and mitochondrial stress responses 
which can increase the risk of HCC[97]. These mutants have also been observed to 
stimulate hepatocyte expansion and may provide a proliferative advantage. In animal 
models, over-expression of mutant HBsAg and HBx show precancerous liver lesions 
and HCC[98]. Moreover, expression of C-terminal truncated HBx protein from 
integrated HBV induces stem-cell-like properties, cell transformation, tumor invasion, 
and inhibition of apoptosis[17,99].

Deregulation of cellular pathways by HBx protein
The HBx protein (17 kDa) plays various roles in the HBV lifecycle and HCC 
development (Figure 4)[100]. HBx does not directly bind to DNA, instead, it interacts 
with other proteins to cause promiscuous transactivation of viral and cellular 
genes[101]. There are four main mechanisms used by HBx that contribute to HCC[102]: (1) 
Integration of HBx gene into the hepatocyte genome promoting genetic instability 
(Figure 4); (2) Interaction with the mitochondrial and other cellular proteins to induce 
oxidative stress; (3) Activation of cell survival signaling pathways and inactivation of 
tumor-suppressors; and (4) HBx induced epigenetic modifications such as DNA 
methylation, histone acetylation, and microRNA expression.

HBx modulates proto-oncogenic signaling pathways that are involved in 
inflammation and proliferation: Mitogen-activated protein kinase (MAPK)/ 
Ras/Raf/c-Jun, NF-κβ, JAK-STAT, protein kinase C, Src, survivin and PI3K 
cascades[101,103]. HBx has also been proposed to activate the Wnt/β-catenin pathway 
through the binding of Antigen presenting cells protein or inactivation of GSK-3β 
through Extracellular signal regulated kinase activation. These mechanisms result in 
the accumulation of β-catenin and increased transcription of pro-an-
giogenic/metastatic factors[104,105]. HBx promotes genome instability through inhibition 
of UV-induced DNA damage repair pathways and S-phase progression by binding to 
UV-DDB1[106]. Hypoxic cirrhotic nodules expressing HBx promotes survival and 
growth through transcriptional activation/stabilization of HIF1α, which activates 
transcription of Ang-2 and vascular endothelial growth factor to promote angiogenesis 
and metastasis[107]. HBx also upregulates matrix metalloproteinases that digest fibrous 
capsules in tumors resulting in increased epithelial-mesenchymal transition (EMT) and 
metastasis[108]. HBx can also trans-activate cAMP-response element binding protein 
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response element genes and Yes-associated protein, which are often over-expressed in 
HCC[109]. The tumor suppressor p53 can also be bound by HBx in the cytoplasm and 
prevent p53 nuclear localization. Binding of p53 by HBx causes deregulation of cell-
cycle checkpoints, inhibition of p53 dependent apoptosis and DNA-repair pathways. 
Loss of p53 activity leads to genome instability and the deregulation of tumor 
suppressors[47].

HBx is an epigenetic regulator of DNA hyper or hypomethylation in proto-
oncogenes and tumor suppressors, respectively[110]. Viral-induced upregulation of 
DNMTs causes aberrant hypermethylation of CpG islands in tumor suppressor, 
leading to gene silencing[111]. In one study, 82% of HCC tumors had at least one tumor 
suppressor gene inactivated by hypermethylation, indicating the important role of 
epigenetic modifications in cancer development[112]. HBx protein increases the 
transcription of methyl catalase DNMT1, which hypermethylates the tumor 
suppressor gene E-cadherin and INK4A[113]. Loss of INK4A leads to loss of cell-cycle 
regulation, and loss of E-cadherin promotes epithelial to mesenchymal transition 
which promotes invasion and metastasis. HBx has also shown to promote histone 
acetylation and deacetylation to alter the expression of cancer-related genes, 
microRNAs, and non-coding RNAs. Increased levels of miR-29a, miR143, miR-148a, 
and miR-602 by HBx promotes upregulation of genes involved in angiogenesis and 
metastasis[114]. There are several miRNAs that are downregulated by HBx, one of the 
most important being miR-122 a liver-specific miRNA that has an anti-tumorigenic 
role[115]. HBx also induces expression of long non-coding RNAs: LINE1 which 
upregulates Wnt/B-Catenin (promoting invasion and metastasis), HULC, UCA1 
which inhibit tumor suppressors p18 and p27 (promoting G1/S cell cycle transition), 
and DBH-AS1 which activates extracellular signal-regulated kinase (ERK)/ 
p38/MAPK (anti-apoptosis)[114].

HBV proteins mediate intracellular oxidative stress
Individuals with CHB exhibit 1.5-4 times higher levels of oxidative stress (8-
oxoguanine DNA products, lipid peroxidation, oxidation of proteins, decreased levels 
of anti-oxidant enzyme glutathione and higher oxidative forms) in the liver and 
plasma/sera compared to HBV negative individuals[116,117]. Extracellular oxidative 
stress can be immune mediated through the expression of pro-inflammatory cytokines 
or the release of ROS from cellular destruction. Intrinsic oxidative stress in the ER and 
mitochondria can be mediated by HBV associated proteins HBsAg, HBcAg, and HBx 
(Figure 4)[118]. These HBV associated proteins can be expressed from integrated HBV 
DNA or from the cccDNA minichromosome.

During the HBV lifecycle, secretory proteins such as the HBsAg and HBeAg are 
folded and assembled in the ER and transported through the Golgi[119]. High 
expression levels of secretory proteins or mutant HBV proteins that are misfolded can 
accumulate in the ER and cause activation of an unfolded protein response (UPR)[120]. 
The UPR induces inflammation, tissue damage from cell death, regeneration, and 
fibrosis (Figure 7). The wild-type and mutant LHBsAg and mutant HBcAg induce 
oxidative stress through protein accumulation in the ER membrane causing an 
UPR[121]. Excess LHBsAg leads to the blockage of HBsAg secretion, while mutant 
LHBsAg leads to ER stress, which may induce DNA damage and genomic 
instability[121-123]. A study of a Korean cohort with CHB genotype C suggested 
mutations in the HBcAg could upregulate ER stress resulting in ROS, increased pro-
inflammatory cytokines, and increased intracellular Ca2+[124]. Activation of the UPR 
response by HBsAg and HBcAg causes release of hydrogen peroxide and calcium ions 
into the cytoplasm, enhancing ROS production[121]. HBV infection also reduces anti-
oxidative stress response pathways (e.g. Nrf2/ARE, catalase, and HO-1)[125]. Moreover, 
HBsAg is able to promote cell transformation through immune dysregulation, 
upregulation of survival signaling pathways, activation of transcription factors (NF-
kB, AP-1, STAT3), increased mutations through the generation of free-radicals, cell-
cycle deregulation, release of pro-inflammatory cytokines, and activation of stellate 
cells[67,126,127].

The HBx protein can localize into several cellular compartments (mitochondria, 
cytoplasm, and nucleus) to aid in various roles including transcription, cell-cycle 
progression, protein-degradation, apoptosis, and genetic instability[100]. Localization of 
HBx on the outer mitochondrial membrane, causes reduced expression and activity of 
respiratory complex proteins I, II, IV and V in the electron transport. Reduced cellular 
respiration results in altered mitochondrial function, increased production of 
superoxide anions, and 8-oxoguanine DNA products[118,128,129].
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HDV-SPECIFIC INDUCTION OF HCC
HDV can indirectly mediate hepatocarcinogenesis through innate immune response 
modifications, induction of adaptive immune responses, epigenetic changes, lncRNA 
modifications and ROS production (Figure 4). The L-HDAg has an important role in 
facilitating many of these mechanisms through interaction with signaling pathways 
involved in pro-growth/survival, apoptosis, and wound healing[130,131]. Activation of 
the transforming growth factor β (TGF-β) and AP-1 pathways by L-HDAg binding of 
Smad3, STAT3, and c-jun promotes EMT, fibrosis, and cell-transformation[131,132].

HDV is also able to promote oxidative stress in the ER through L-HDAg’s 
interaction with NOX-4[133]. Activation of the NOX4 pathway causes the release of ROS 
which can activate STAT3 and NF-κβ signaling[133]. The L-HDAg can also promote pro-
inflammatory NF-κβ activity through stimulation of TNF-α. The S-HDAg can directly 
bind to glutathione S-transferase P1 mRNA causing downregulation in expression, 
increased ROS, and apoptosis[134]. Moreover, epigenetic modifications such as histone 
H3 acetylation by small and large HDAg enhances clusterin gene expression[128]. 
Increased levels of clusterin and histone acetylation aid in HDV infected cell survival 
and are upregulated in cancerous cells[135,136].

HCV-SPECIFIC INDUCTION OF HCC
Viral protein-mediated oxidative stress
Similar to HBV, individuals with chronic HCV infection experience significant 
decreases in antioxidant enzymes, and two to seven logs increase in liver and blood 
oxidative stress[137,138]. Prolonged oxidative stress results in increased levels of free 
oxygen radicals, DNA adduct formation (e.g. 8-oxoG), protein adducts, and lipid 
peroxidation[116,139,140].

In the ER, oxidative stress is mediated by HCV core, E1, E2, NS4B, and NS5A 
proteins (Figure 5). Viral glycoproteins E1/E2, and non-structural protein NS4B 
induce the unfolded protein response in the ER, which causes calcium release and 
production of hydrogen peroxide[141,142]. NS5A facilitates calcium uptake in the 
mitochondria and ER, causing release of hydrogen peroxide and organelle 
dysfunction[143]. HCV core-mediated binding of the mitochondria activates the 
mitochondrial calcium uniporter facilitating the uptake of ER released calcium ions[144]. 
Subsequently, an influx of calcium into the mitochondria directly effects the electron 
transport chain and leads to increased ROS production[144,145].

Enhanced expression of TGF-β1 from HCV core and NS5A upregulates the 
production of Nicotinamide adenine dinucleotide phosphate oxidases NOX1/NOX4 
and cytochrome p450 2E1 oxidase (CYP2E1)[146,147]. CYP2E1 aids in metabolism of 
ethanol and drugs with the release of superoxide and hydrogen peroxide by-
products[148]. Although CYP2E1 has an important metabolic role, high levels of 
expression induced by HCV core and NS5A lead to increased levels of ROS by-
product accumulation[146,149]. In the context of HCV induced fibrosis, CYP2E1 
expression levels are also increased which may imply that ROS have an important role 
in liver damage[150]. NOX1 expression and localization to the nuclear membrane is 
stimulated shortly after HCV infection and promotes release of superoxide ions into 
the cytoplasm[151]. NOX4 can be found on the nuclear or the ER membranes, which 
release hydrogen peroxide into the cytoplasm or nucleus promoting direct DNA 
damage[151].

Hepatic steatosis 
Steatohepatitis is characterized by the presence of excess triglycerides in hepatocytes. 
HCV promotes steatohepatitis through enhancing lipogenesis, and impairing lipid 
degradation/export which may cause cellular lipotoxicity[152]. Approximately 40%-80% 
of CHC individuals have steatohepatitis due to viral pathogenesis, which is associated 
with the increased risk of HCC[153]. The HCV core protein is a key player in altering 
lipid metabolism through (Figure 5): (1) Decreasing lipid turnover of HCV core 
particles coated lipid droplets (LD); (2) Inhibition of LD mobility; (3) Inhibition of 
microsomal triglyceride transfer protein which prevents lipid export and degradation; 
and (4) Inhibition of peroxisome proliferator-activating receptor-α/γ; inhibition of 
diacylglycerol acetyltransferase 1[154,155]. Accumulation of free fatty acids causes severe 
mitochondrial and ER oxidative stress. The accumulation or ROS stimulates lipid 
peroxidation and activation of inflammatory signaling cascades such as TNF-α and IL-
1 which can lead to the development of steatohepatitis and insulin resistance[156].
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Deregulation of cellular pathways by HCV proteins
Activation of cell-survival and growth pathways are mediated by core, E2, NS2, NS3, 
NS4A NS5a, and NS5B proteins (Figure 5). To promote cell cycling and evasion of the 
G1/S checkpoint, NS5B binds to tumor suppressor Rb to facilitate proteasomal 
degradation and release of E2F to produce cell-cycle dependent genes[157]. NS2 activates 
the cyclin D/CDK 4 complex to induce the expression of cyclin E[158]. The core protein 
upregulates cyclin E/CDK 2 to promote cell cycle transition from G1 to S phase with 
checkpoint evasion, genome instability, and aberrant cell growth[159]. NS5A inactivates 
the tumor suppressor pTEN through binding, to cause proliferative growth and 
survival using the PI3K/Akt pathway[160]. HCV Core, E2, NS3, and NS5A interact with 
various proteins in the RAF/MAPK/ERK pathways to promote cellular 
proliferation[161-164]. The Wnt/β-catenin signaling pathway is activated by direct binding 
of β-catenin by NS5A or phospho-inactivation of GSK-3β by NS5A and core 
proteins[165-168]. Activation of Wnt target genes promotes proliferation, angiogenesis and 
EMT transfer. High quantities of β-catenin are associated with poor prognosis of 
HCC[169].

The inhibition of apoptosis contributes to the development of HCC through the 
growth of abnormal cells. The tumor suppressor protein, p53, is targeted by many 
HCV proteins to prevent apoptosis, DNA-repair, and senescence. NS5A directly binds 
to p53 causing inhibition, while NS2, NS3/4A interfere with the p53 pathway by 
inducing p53 delocalization from the nucleus to the cytoplasm or perinuclear 
regions[170-173]. There is some evidence that the HCV core protein is also able to bind to 
p53, however, this is debated, because high levels of core cause repression while low 
levels promote p53 activity[174]. To avoid cell death, HCV also has various protein 
mechanisms to inhibit TNF-α cytokine-mediated apoptosis: (1) The core protein 
activates FLICE, an inhibitor of TNF-α signaling[175]; (2) NS5A protein prevents TNF-α-
mediated cell death by inhibiting activation of caspase-3 and PARP1 cleavage[176]; and 
(3) NS5A can also interact with intrinsic apoptosis regulator Bid to inhibit activation of 
apoptosis[177].

The expression of TGF- β signaling is antiproliferative and pro-apoptosis[178]. HCV 
NS5A binds directly to the TGF- β receptor 1 to block signaling, and as such prevents 
phosphorylation and nuclear localization of smad2 and the smad3/smad4 
heterodimer[179]. Mutant core proteins derived from HCV tumors inhibit the TGF- β 
pathway through direct interaction with Smad3, which results in the inhibition of 
DNA-binding by the Smad3/4 heterodimer[180]. Inhibition of the TGF- β pathway 
promotes EMT which enhances fibrogenesis, tumor invasion, and metastasis[178].

COMMON SOMATIC MUTATIONS IN PROGRESSIVE HCC TUMORS
As the progression of liver disease to HCC occurs, many common driver mutations 
that allow for selective growth advantage for tumor cells over normal cells can be 
identified (Figure 7). HCC tumors are highly heterogeneous within the same 
individual and these differences in tumor genetic profiles are amplified by single cell 
and next-generation sequencing. From sequence analysis several driver genes have 
been identified in the progression of HCC: TERT, tumor protein p53 (TP53), catenin 
beta 1 (CTNNB1), Wnt/β-catenin signaling protein AXIN1, chromatin remodeling 
genes ARID1A and ARID2, oxidative stress response genes NFE2L2 and KEAP1, 
RAS/MAPK signaling (RPS6KA3), and the JAK/STAT signaling cascade activator 
(KAK1). The most disrupted driver genes are described below, for a comprehensive 
overview refer to[181].

Regardless of geographic location, recurrent somatic mutations in the TERT 
promoter have been identified as the most common mutation in HCC (20.7%-59%)[181]. 
The TERT protein has an important role in maintaining telomere length by adding 
short-repeated TTAGGG nucleotides at the end of chromosomes[182]. Maintenance of 
the telomeres is important to avoid DNA damage, however normal adult cells do not 
express TERT and can only undergo 40-60 cycles of replication before senescence[183]. In 
HCC, activating mutations in the TERT promoter enable replicative immortality 
through the consistent addition of telomeric repeats which allow cells expressing 
TERT to replicate without entering senescence[182,183]. TERT mutations have been 
identified to occur early in malignant transformation and persist throughout tumor 
progression[184]

The tumor suppressor protein P53 is a critical protein commonly mutated in cancer, 
that is involved in cell-cycle arrest at the G1/S checkpoint and activation of 
apoptosis[185]. TP53 is most frequently mutated in its DNA binding domain, to prevent 
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its role in activating TP53 responsive genes that aid in cell-cycle control[186]. Loss of p53 
function aids cell transformation through constant cell cycling without DNA damage 
checkpoint regulation[5]. Mutational frequency of P53 in HCC is dependent on 
geographic locations, as mutational frequency requires aflatoxin exposure. High 
dietary aflatoxin exposure and endemic hepatitis B infection is associated with TP53 
mutations located on R249S/V157F and poor prognosis[187,188].

High mutational frequency in the CTNNB1 gene which codes for the β-catenin 
transcription factor in the Wnt-pathway is associated with tumor progression and poor 
prognosis[5]. Activating mutations in CTNNB1 increase cytoplasmic accumulation of β-
catenin without a Wnt signaling molecule[189]. Normally without a signaling molecule, 
β-catenin is expressed, bound by the destruction complex, phosphorylated by GSK3, 
and degraded by the proteasome[189]. However, in the presence of a Wnt ligand signal, 
β-catenin is not degraded and instead it is expressed to high levels and translocates 
into the nucleus and activates transcription factor TCF to transcribe Wnt target 
genes[190]. These target genes are involved in growth, proliferation, and EMT 
promoting metastasis[5,191]. In HCC, the tumor suppressor AXIN1 is the second most 
mutated gene (6.8%) in the Wnt-signaling pathway. AXIN1 is involved as a scaffold 
protein for the β-catenin destruction complex, and inactivating mutations prevent the 
complex from forming and destroying β-catenin, thus leading to increased β-catenin 
levels leading to tumor growth and proliferation[190,192]. The deregulation of Wnt/β-
catenin signaling has been observed in 40%-70% of HCC patients. Moreover, β-catenin 
associated mutations occur in lower frequencies in HBV-related HCC, and are more 
common in HCV and alcohol-related HCC[181].

The ARID1A and ARID2 genes encode for a key subunit component of the 
SWI/SNF chromatin remodeling complex[193]. The dysregulation of the SWI/SNF 
complex contributes to tumor heterogeneity, and drug treatment resistance[181]. 
ARID1A acts as a tumor suppressor gene that is expressed at high levels in normal 
livers to regulate DNA activity using nucleosomes to restrict cell proliferation[5]. 
Inactivating mutations in the ARID1A and ARID2 genes occur in around 10% of HCC 
cases and are associated with poor prognosis, increased cell proliferation, and 
migration/metastases of HCC cells[181,193,194].

CONSIDERATIONS FOR THE FUTURE 
The low 5-year survival rate for those diagnosed with HCC is largely due to the failure 
of early detection of small lesions and lack of medical therapy for advanced 
disease[195]. The best curative treatment option for HCC is liver transplantation, 
however, this is limited to those who are in the early stages of HCC and follow the 
Milan transplantation criteria or the Alberta HCC algorithm in Canada[196,197]. Other 
available treatment options during earlier stages of HCC include surgical resection 
(70% 5-year survival rate) and radiofrequency ablation therapy (40%-70% 5-year 
survival rate in tumors < 2 cm)[198,199]. During intermediate HCC disease stages, 
transarterial chemoembolization treatment can be offered (median survival rate 16-20 
mo)[200]. In advanced disease, HCC is often quite unresponsive to most 
chemotherapeutics, and current chemotherapeutics (Sorafenib and Lenvatinib) that 
target overexpressed receptor-tyrosine-kinase pathways (e.g. vascular endothelial 
growth factor, MAPK, EGFR, RAS, IGF, PI3K/PTEN/Akt/mTOR, Wnt/beta-catenin) 
only increase median survival by three months[201]. In 2018, the monoclonal antibody 
nivolumab which targets the programed cell death 1 receptor on T-cells was approved 
as a second-line therapeutic for HCC. Nivolumab has a 20% response rate in initial 
phase II clinical trials and works by activating T-cells for the immune-mediated killing 
of tumors[196].

Exploiting traits of virally induced cancers as therapeutics
An important feat for the future of HCC treatment will be the development of effective 
immunotherapies. Nivolumab was the first monoclonal antibody approved for 
advanced-stage HCC treatment and there are many others that are currently in clinical 
trials. Since both chronic viral infection and cancer create an immunosuppressive 
environment to prevent cytotoxic killing, future immunotherapies could target 
regulatory (Treg) and resident memory T-cells (TRM) to reactivate the immune system 
against viral infection and HCC tumors[202]. Additionally, molecular pathways 
deregulated by HBV/HCV/HDV could be targeted by immunotherapies through 
inhibition of pathways involved in aberrant cell growth leading to HCC. Alternatively, 
tumors caused by viral etiologies can be targeted through training of the immune 
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system to target viral particles and/or fusion proteins in HCC[203]. Tan et al[203], 
describes a CAR-T cell technology that can recognize HBV specific epitopes in HCC 
tumors. Since HBV-associated tumors do not contain actively replicating viruses and 
only express partially integrated/truncated proteins, T-cells can be designed to target 
these tumors associated antigens. One of the patients from this study treated with 
HBV specific CAR-T cells had a decreased tumor volume in 5 of 6 pulmonary 
metastases over the course of 1-year. Building on the study performed by Tan et al[203], 
another possibility to improve the persistence of CAR-T technology in viral related 
HCC could be through engineering a separate CAR-T receptor to recognize viral 
antigens to boost T-cell populations while targeting cancer-specific lesions. Although 
immunotherapeutics for solid tumors is in its infancy, this is likely the future for the 
development of better treatment options for HCC.

CONCLUSION
Chronic hepatitis B, C, and delta viral infections affect almost half a billion people 
worldwide. Decades-long persistent viral infection and immune-mediated damage 
cause significant changes in the liver microenvironment and are the strongest risk 
factors for the development of HCC. Current treatment options for HBV and HCV 
reduce HCC risk, but do not eliminate it. Moreover, the lack of an HBV virological 
cure and limited treatment options for HDV requires the exploration of more effective 
treatments.

HBV and HCV can manipulate pathways in ten hallmarks of cancer, which may 
explain how these viruses escalate risk of HCC development. HDV is not considered a 
“directly” oncogenic virus, due to HDV reliance on HBV to complete the viral life 
cycle, uses several mechanisms to aid the progression of liver disease and increase the 
risk of HCC[46]. Successful epidemiology studies, in-vitro cell culture studies, and 
animal studies have provided us with significant insight into the molecular 
mechanisms of interactions between host-viral interactions. Genomic analyses 
comparing HCC tumors to those of healthy tissue have provided us insight into driver 
mutations that aid in the progression of viral-mediated HCC and possible targets for 
future treatments. Although much progress has been made in the field, there is a lot 
that remains unknown due to the lack of cell-culture systems that can be used to study 
all viral genotypes, co-infections, and animal models that can be infected with these 
viruses to produce liver disease similar to humans. The development of stronger 
experimental models will provide us with further insight into the role these viruses 
play in promoting HCC development. Until we have better screening methods and 
more accessible and/or effective antiviral treatments, the rates of liver cancer will be 
steadily on the rise. Thus, we need to investigate commonly deregulated pathways in 
HCC to identify targets and develop more effective treatments to improve the survival 
rate for those diagnosed with this disease.
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