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De novo transcriptome assembly from the
gonads of a scleractinian coral, Euphyllia
ancora: molecular mechanisms underlying
scleractinian gametogenesis
Yi-Ling Chiu1,2, Shinya Shikina3,4*, Yuki Yoshioka5, Chuya Shinzato5* and Ching-Fong Chang4,6*

Abstract

Background: Sexual reproduction of scleractinians has captured the attention of researchers and the general public
for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms
remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated
ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a
transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes
associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and
fertilization.

Results: 1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and
elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a
reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023
genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature
ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those
involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans,
including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT
database were also observed among upregulated genes in premature / mature ovaries and mature testes.
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Conclusions: Our findings show that scleractinian gametogenesis shares many molecular characteristics with that
of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian
evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any
scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis
and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our
transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ
cell markers that can be used in coral aquaculture and ecological studies.

Keywords: Scleractinian corals, Euphyllia ancora, Ovary, Testis, Gonads, RNA-seq, Transcriptome assembly, Sex-
specific, Phase-specific, Oogenesis, Spermatogenesis

Background
Since the discovery of scleractinian mass spawning events
in the Great Barrier Reef in the 1980s [1–3], sexual
reproduction of scleractinians has captured the attention
of researchers and the general public. Studies on various
aspects of sexual reproduction, such as the timing of
broadcast spawning or brooding, general cellular pro-
cesses of gametogenesis, and sexuality (hermaphroditic or
gonochoric), have been undertaken mainly from an eco-
logical perspective in many scleractinian species in many
locations during the past 3 decades [4–6]. Although large
amounts of data are now available from more than four
hundred species [7], our current understanding of intrin-
sic mechanisms underlying key processes of sexual
reproduction, such as sex determination/differentiation,
gametogenesis, and ovulation/spawning, is quite limited.
Gametogenesis is a highly organized process whereby gen-

etically diverse haploid gametes are created from diploid
germ cells through meiosis with recombination. Generally,
scleractinian germ cells are developed in endodermal mesen-
teries of polyps [4, 8, 9]. Sites of germ cell development are
often observed as swellings in polyps during active gameto-
genesis, and are termed gonads [4]. Oogenesis begins with
mitotic division of a small number of oogonia along the go-
nadal mesoglea, a thin layer composed of extracellular
matrix. After oogonia differentiate into oocytes by entering a
meiotic phase, oocytes increase in size and migrate into the
mesoglea layer [4, 9–11]. There, oocytes further increase in
size until maturation by accumulating yolk proteins, lipids,
and other essential materials for embryonic development
[12, 13]. Spermatogenesis begins with the active mitotic div-
ision of spermatogonia in the gonadal mesogleal layer. After
spermatogonia form many small clusters comprising dozens
of spermatogonia, they migrate into the mesoglea layer and
form many spermatogenic compartments called spermaries.
Further proliferation of spermatogonia, meiotic differenti-
ation into spermatocytes, and spermiogenesis take place
within each spermary [4, 14].
Studies of molecular and cellular aspects of scleractin-

ian gametogenesis have just recently begun. Only several
reports are available describing genes related to

oogenesis, including vitellogenesis [12–20] and sperm-
atogenesis [21, 22]. Currently, in order to cope with recent
declines of coral reefs, reef restoration efforts via aquaculture
are being initiated worldwide [23–25]. A comprehensive un-
derstanding of intrinsic mechanisms of gametogenesis will
enable us to approach coral reef restoration from a new per-
spective. For instance, hormonal induction of gametogenesis
and spawning under artificial rearing systems would allow
more efficient propagation of target species [14]. Sex-and
stage-specific molecular markers for germ cells would also
enable us to monitor and to evaluate the developmental sta-
tus of germ cells in corals cultured in captivity [21]. More-
over, because scleractinians belong to the phylum Cnidaria
(e.g., corals, sea anemones, hydras, and jellyfish), which are
regarded as evolutionarily basal in the animal kingdom, stud-
ies highlighting common mechanisms of sexual reproduction
between scleractinians and advanced animals (e.g., verte-
brates) should provide insights into the evolution of sexual
reproduction in metazoans [14].
Transcriptome analysis using high-throughput sequen-

cing has greatly enhanced identification of transcripts in-
volved in sexual reproduction in various taxa [26–30].
This study performed gonadal transcriptome sequencing
of a scleractinian coral, Euphyllia ancora, commonly
known as the anchor or hammer coral (Fig. 1 a-c). E.
ancora was selected for the following reasons: (i) These
corals are common in the Indo-Pacific region. (ii) They
are gonochoric, and their annual gametogenic cycle in
reefs along southern Taiwan has been studied histologi-
cally in both male and female colonies [8, 9]. For in-
stance, a single oogenic or spermatogenic cycle in this
region takes approximately a year in females and half a
year in males. Annual spawning occurs within a week
after a full moon in April or May, or occasionally in
June. Finally, (iii) They have large polyps (3–5 cm in
diameter) that allow us to isolate ovaries and testes with
relative ease [12]. This transcriptomic analysis of isolated
gonads was undertaken in order to discover genes par-
ticipating in gametogenesis.
The present study isolated ovaries and testes at different

developmental phases from wild E. ancora colonies in
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Fig. 1 (See legend on next page.)
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order to reveal sex- and phase-specific gene expression
profiles. In particular, we focused on premature and ma-
ture phases of gonads to identify candidate genes associ-
ated with oocyte development and maturation,
spermiogenesis, sperm motility and capacitation, and
fertilization, because of their importance for coral aqua-
culture (e.g., induction of sexual maturation) and eco-
logical studies (e.g., monitoring germline development or
predicting spawning time). These findings may highlight
conserved molecular mechanisms of gametogenesis be-
tween scleractinians and other animals, including humans.

Results
Histological analysis of E. ancora gonads collected at
different times
Ovaries and testes were isolated from wild colonies at
different times during a period of 9 months in 2016–
2017 (Fig. 1d). Progress of gametogenesis was histologi-
cally confirmed as the spawning season approached
(April–June, 2017). Gametogenesis is generally synchro-
nized among polyps in a colony. Histological analysis of
isolated ovaries showed that oocytes grew steadily during
the 9-month investigation, and that ovaries isolated at 4
sampling dates generally displayed different oocyte de-
velopmental stages: October 2016 (oocytes with cyto-
plasmic polarization, < 125 μm in diameter), December

2016 (oocytes with accumulation of yolk and other com-
ponents, 126–200 μm in diameter), February 2017 (oo-
cytes with accumulation of yolk and other components,
201–275 μm in diameter), and April 2017 (oocytes with
‘U’-like germinal vesicles or GVBD, > 276 μm in diam-
eter) (Fig. 1d, Table 1). Notably, in the April 2017 sam-
ples, most oocyte nuclei had translocated to the
peripheral membrane (Fig. 1 e-h), and some oocyte nu-
clei had disappeared (Additional file 1), indicating that
germinal vesicle breakdown (GVBD) had occurred in
those oocytes. These ovarian samples were then classi-
fied into 4 phases, early, middle, late, and premature/ma-
ture, and were used for RNA-seq (Fig. 1 e-h, Table 1).
Similarly, testes isolated at the following 4 sampling

dates in 2017 possessed germ cells in different devel-
opmental stages: February (spermatogonia), March
(spermatogonia and primary spermatocytes), April
(secondary spermatocytes and spermatids), and June
(mature sperm) (Fig. 1 d, Table 1) (Fig. 1 i-l). In the
June samples, although a small number of spermaries with
both round spermatids and mature sperm were observed in
some testes, cytological observation confirmed the presence
of morphologically mature sperm (Additional file 1). Testis
samples were then classified into 4 phases, early, middle, late,
and mature, and were subjected to RNA-seq (Fig. 1 i-l, Table
1).

(See figure on previous page.)
Fig. 1 Euphyllia ancora and its germ cells observed histologically in isolated gonads at different sampling times. a External appearance of an E.
ancora colony. b External appearance of tentacles of an E. ancora colony. Anchor-like tentacles and the flabello-meandroid skeleton typify E.
ancora. The pictures were taken at Nanwan Bay, Kenting National Park, in southern Taiwan in October 2016. c A top view of an E. ancora
skeleton. The picture was taken after removal of polyp tissue in the laboratory. d Periods of oogenesis (pink arrow) and spermatogenesis (blue
arrow) and predicated spawning timing (*). Letters (e-l) on the arrows correspond to Figure 1 (e-l) below, and indicate the timing (month) of
sampling for ovaries and testes. e-h The external appearance of isolated ovaries in October and December 2016 and February and April 2017. e’-
h’ Histological observation of the isolated ovaries. e, e’ The early phase of ovaries. f, f’ The middle phase of an ovary. g, g’ The late phase of an
ovary. h, h’ The premature/mature phase of an ovary. i-l The external appearance of isolated testes in February, March, April, and June 2017. i’-l’
Histological observation of isolated testes. i, i’ The early phase of a testis with spermatogonia. j, j’ The middle phase of a testis having
spermatogonia and primary spermatocytes. k, k’ The late phase of a testis with secondary spermatocytes and spermatids. l, l’ The mature phase
of a testis with mature sperm. Sections were stained with hematoxylin and eosin. Scale bars = 1 cm (c); 500 μm (e-l); 50 μm (e’-h’); 10 μm (i’-l’)

Table 1 Criteria for classification of gonadal phases

Gonad Phase The most represented germ cells observed in the gonads Approximate timings of collection in 2016
to 2017

Ovary Early Oocytes with cytoplasmic polarization (<125 μm in diameter) October, 2016

Middle Oocytes with accumulation of yolk and other components (126-200 μm
in diameter)

December, 2016

Late Oocytes with accumulation of yolk and other components (201-275 μm
in diameter)

February, 2017

Premature/
mature

Oocytes with ‘U’-like germinal vesicles and GVBD (>276 μm in diameter) April, 2017

Testis Early Spermatogonia February, 2017

Middle Spermatogonia and primary spermatocytes March, 2017

Late Secondary spermatocytes and spermatids April, 2017

Mature Sperm June, 2017
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De novo transcriptome assembly of E. ancora gonads,
identification of coral contigs, and functional annotation
1.6 billion raw reads comprising approximately 240 Gb
of clean transcriptomic sequencing data were obtained
by Illumina paired-end sequencing from the selected 12
testis (3 colonies, 4 time points) and 12 ovary (3 col-
onies, 4 time points) samples. Clean reads were depos-
ited in the Sequence Read Archive (SRA) of DDBJ under
BioProject number PRJDB9831 (Additional file 2). De
novo assembly of all clean reads produced 169,272 initial
contigs with an average size of 2321 bp and an N50 of
4610 bp. Maximum contig length reached 52,720 bp
(Table 2). The assembled transcriptome sequences were
also deposited in DDBJ under accession number
ICQS01000001-ICQS01169272. In addition, we provided
the accession numbers that are included in the reference
gonadal transcriptome, E. ancora contigs and Symbiodi-
niaceae as Additional files 3, 4, 5 respectively.
Since the initial transcriptome assembly contained con-

tigs from E. ancora gonads, symbiotic dinoflagellates
(Symbiodiniaceae), and other organisms (e.g., bacteria), we
first bioinformatically identified possible E. ancora contigs
prior to detailed analyses (Fig. 2a). All assembled contigs
were aligned to available genome databases of 4 scleractin-
ian species (Acropora digitifera, Pocillopora damicornis,
Stylophora pistillata, and Orbicella faveolata) and tran-
scriptomic databases of 6 Symbiodiniaceae (Symbiodinium
sp. A1, Symbiodinium sp. A2, Breviolum sp. B2, Breviolum
muscatinei, Uncultured Cladocopium sp. and Uncultured
Durusdinium sp.) (For more details, see Additional file 6),
and contigs unambiguously matched to coral genomic da-
tabases (72,238 contigs) and to Symbiodiniaceae transcrip-
tomic databases (31,353 contigs) were separated (Fig. 2a).
Contigs matching both databases (43,332 contigs) were
further aligned to the combined databases of coral ge-
nomes and Symbiodiniaceae transcriptomes, and were

separated into coral contigs (23,742 contigs) and symbiotic
dinoflagellate contigs (19,590 contigs) based on top hit re-
sults of BLASTN (−evalue 1e-3). Eventually, 95,980 con-
tigs were assigned as E. ancora, and 50,943 to
Symbiodiniaceae (Fig. 2a). E. ancora contigs had a GC
peak at 41.5%, while symbiotic Symbiodiniaceae peaked at
50.6% (Fig. 2b). These GC contents correspond well to
previous genomic studies of corals and Breviolum minu-
tum [31–33].
In order to remove sequence heterogeneity originating

from different individuals or different haplotypes in the
same individual, translated sequences of the extracted
95,980 E. ancora contigs were further clustered using
CD-HIT with 95% amino acid sequence identity. Finally,
35,802 contigs totaling approximately 125 Mbp (N50,
5019 bp) were used as the reference E. ancora gonadal
transcriptome with bench-marking universal single-copy
orthologs (BUSCO) of more than 90% (Table 2), which
covers all E. ancora candidate genes involved in gameto-
genesis. BLAST search (BLASTP, −evalue 1e-5) revealed
that 21,569 of 35,802 (60.2%) contigs had significant
similarities to sequences in the SWISS-PROT database
(Fig. 3a). Moreover, 23,686 of 35,802 (66.2%) contigs
matched conserved protein domains in the Pfam data-
base (Fig. 3b).
The reference E. ancora gonadal transcriptome con-

tained reproduction-related genes identified in our pre-
vious studies using degenerate PCR or cDNA libraries
(Additional file 7). Furthermore, evolutionarily con-
served genes associated with germline development (Gcl,
Mago, Boule, and Pum1) were identified. Genes involved
in meiotic processes, such as invasion and pairing of the
homologous strand (Msh4, Msh5, Mlh1), formation of a
synaptonemal complex (Sycp1, Sycp3), and maintenance
of chromosome structure integrity (Rad21) were also
identified (Additional file 8).

Table 2 Summary of transcriptome assemblies in this study

E. ancora holobiont
(all contigs)

Assigned as E.
ancora contigs

Assigned as
Symbiodiniaceae contigs

Reference E. ancora gonadal transcriptome
contigs used for this study

Number of contigs
sequences

169,272 95,980 (56.7%) 50,943 (30.1%) 35,802

Total basepair (bp) 392,911,637 328,250,055 53,222,313 125,288,259

Minimum length
(bp)

200 200 200 297

Average (bp) 2,321 3,420 1,045 3,500

Maximum unigene
length (bp)

52,720 52,720 16,557 43,419

N50 size (bp) 4,610 5,384 1,318 5,019

GC (%) 44.2 41.5 50.6 42.1

BUSCO
completeness (%)

99.7 98 65 92.1
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Fig. 2 Identification of E. ancora contigs from the transcriptome assembly of an E. ancora holobiont. a A flow chart for identification of E. ancora
contigs from the transcriptome assembly (all contigs) that contains contigs from the host coral, symbiotic (dinoflagellates), and other organisms
(bacteria). b Distribution of GC percentages of assembled contigs. Red line: all contigs, green line: E. ancora contigs, blue line: extracted
Symbiodiniaceae contigs. c Proportions of contigs from E. ancora, Symbiodiniaceae, and other symbiotic organisms (other contigs) in the initial
whole holobiont transcriptome assembly. Only extracted E. ancora contigs (56.7%) were used for further analysis
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Differential gene expression analysis among different
developmental stages of ovaries and testes
Hierarchical cluster analysis of 24 selected samples (12 testes
and 12 ovaries) determined that 2 samples (Oct-female-1
and Feb-male-1) differed from all others (Additional file 9).
These were assigned as outliers, possibly resulting from acci-
dental collection of allospecific samples adjacent to the la-
beled colonies. To minimize data variation, the foregoing 2
samples were removed, and the remaining 22 samples were
used for downstream analysis. Differential gene expression
analysis of 4 developmental phases of ovaries and testes iden-
tified 2023 and 678 differentially expressed genes during oo-
genesis and spermatogenesis, respectively, and 67
differentially expressed genes in both ovaries and testes dur-
ing gametogenesis (q-value< 0.05, Fig. 4a). There were 1165,
89, 138, and 631 upregulated genes specific to the early, mid-
dle, late, and premature/mature ovarian phases, respectively
(Fig. 4b). In the testis, there were 6, 19, 115, and 538 upregu-
lated genes specific to the early, middle, late, and mature
phases, respectively (Fig. 4c).

Upregulated genes of premature/mature ovaries
The 631 genes specifically upregulated in premature/ma-
ture ovaries were further analyzed. Four hundred forty
six of those genes (71%) matched the human SWISS-
PROT database (Fig. 4b). Analysis of enriched functional
terms revealed that 18 GO terms were enriched in pre-
mature/mature ovaries (P < 0.05 and enrichment > 4-
fold; Additional file 10): 16 biological processes (BP) and
2 molecular functions (MF). Of the enriched BP terms,
terms related to neuronal activity such as positive regula-
tion of synaptic transmission, GABAergic (GO: 0050806),
calcium ion-regulated exocytosis of neurotransmitter
(GO: 0048791), neurotransmitter transport (GO:
0006836) and neuronal action potential (GO: 0019228)
were highly enriched. Among enriched MF terms,

extracellular ligand-gated ion channel activity (GO:
0005230) was most enriched (Additional file 10).
In premature/mature ovaries, genes upregulated > 5-fold

more than in the other three phases (log2, FDR < 0.05), 9
genes, including those encoding GFP-like fluorescent
chromoprotein, neurogenic locus notch homolog protein
3, carbonic anhydrase 2, octopamine receptor beta-1R,
beta-1,4-galactosyltransferase galt-1 were identified. One
of the 9 genes could not be annotated (Table 3).
Evolutionarily conserved genes associated with oocyte de-

velopment (vitellogenin-A2, low-density lipoprotein
receptor-related proteins), formation of chromosome struc-
ture (histone H2B), and oocyte maturation (serine/threo-
nine-protein kinase mos, mitogen-activated protein kinase
1) were identified (Table 4). Additionally, several sequences
similar to components of skeletal organic matrix proteins
of scleractinians (mucin-like protein, MAM and LDL-
receptor class A domain-containing protein 2,
cephalotoxin-like protein, uncharacterized skeletal organic
matrix protein 5, polycystic kidney disease protein 1-like,
and hemicentin) were also identified (Table 4, Fig. 5).

Upregulated genes of mature testes
There were 538 specifically upregulated genes in mature
testes. Of those, 305 (57%) matched human genes in the
SWISS-PROT database (Fig. 4c). GO functional enrich-
ment analysis showed that 32 GO terms were enriched
(P < 0.05 and > 4-fold enrichment; Additional file 11): 21
biological processes (BP), 8 cellular components (CC),
and 3 molecular functions (MF). Of the enriched BP
terms, response to corticosteroid (GO: 0031960), seques-
tering of TGF beta in extracellular matrix (GO:
0035583), and regulation of cellular response to growth
factor stimulus (GO: 0090287) were highly enriched.
The term spermatid development (GO: 0007286) was
also identified, and further queries of genes representa-
tive of the term identified genes encoding testis-specific

Fig. 3 Contig numbers in the reference E. ancora gonadal transcriptome that matched SWISS-PROT and Pfam databases. a Results of BLAST
searches against the SWISS-PROT database (cut-off -evalue le-5). Note that 21,569 out of 35,802 contigs (60.2%) had significant similarities with
database sequences. bIdentification of protein domains using the Pfam database (cut-off -evalue le-5) for contigs from the reference E. ancora
gonadal transcriptome. Note that 23,686 out of 35,802contigs (66.2%) had conserved protein domains
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serine/threonine-protein kinases, outer dense fiber pro-
tein 2, alstrom syndrome protein 1, radial spoke head 1
homolog, and dynein regulatory complex protein 9. Of
the enriched CC terms, microfibril (GO: 0001527) was
among the most enriched. Of the 3 MF terms identified,
the term extracellular matrix structural constituent (GO:
0030021) was most enriched (Additional file 11).
Among significantly upregulated genes in mature tes-

tes (log2 > 8-fold change compared to the other 3 phases,
FDR < 0.05), we identified 28 genes, including those en-
coding creatine kinase, S-type mitochondrial, creatine

kinase flagellar, omega-6 fatty acid desaturase, glutamate
receptor ionotropic, kainate 2, testis-specific serine/
threonine-protein kinase 4, and fibrillin-2 (Table 3). Ten
of the 28 genes could not be annotated.
Evolutionarily conserved genes involved in spermiogen-

esis and fertilization were further explored among upregu-
lated genes in mature testes (Table 5). We identified a
number of important genes encoding proteins associated
with spermiogenesis (spermatogenesis-associated protein
6, cilia- and flagella-associated protein 69), sperm motility
and/or capacitation (dynein regulatory complex subunit 7,

Fig. 4 Differentially expressed genes in oogenesis and spermatogenesis of E. ancora. a 2023 and 678 genes were differentially expressed during
oogenesis and spermatogenesis, respectively, and 67 of those genes were differentially expressed in both oogenesis and spermatogenesis (q-
value< 0.05, ANOVA). b Relative gene expression levels of differentially expressed genes (2023 genes) at different phases of ovaries. CPM values
were scaled to row Z-scores for each of the genes. In premature/mature ovaries, 631 genes were expressed at higher levels than in the other 3
phases. Among the 631 genes, 446 genes (71%) matched the SWISS-PROT human database, as shown in the pie chart. c Relative gene expression
levels of differentially expressed genes (678 genes) at different phase of testes. CPM values were scaled to row Z-scores for each of the genes. In
mature testes, 538 genes were expressed more highly than in the other 3 phases. Among the 538 genes, 305 (57%) matched the SWISS-PROT
human database, as shown in the pie chart. In the heatmaps, each row represents a differentially expressed gene and the columns represent
time points. The color bar on the left indicates expression levels
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sodium/hydrogen exchanger 10, creatine kinase, flagellar,
adenylate cyclase type 10, and cation channel sperm-
associated protein 3), and fertilization process (hapless 2/
generative cell specific 1 and receptor guanylate cyclase).
We also identified a gene encoding steroid 17α-
hydroxylase/17,20-lyase (Cyp17a), a key enzyme in sex
steroid and cortisol production (Fig. 5, Table 5).

Discussion
Scleractinian gonadal transcriptome assembly
Since scleractinian gametogenesis occurs exclusively in
gonads, isolated gonads (but not whole polyps) are use-
ful to explore genes associated with gametogenesis.
However, gonad isolation is technically difficult in many
scleractinians due to small polyp sizes. Gonad isolation
not only requires an understanding of polyp anatomy,
but also technical skill. The present study applied previ-
ously established techniques for gonad isolation from E.
ancora polyps [12] to the current transcriptomic study.
Bioinformatics methods to eliminate contigs from

symbiotic dinoflagellates or other contaminants were
also employed [33]. 60.2% of the contigs in the E. ancora
gonadal transcriptome assembly showed similarities to
entries in the SWISS-PROT database (Fig. 3). Specific-
ally, 68% were similar to Stylophora pistilata gene
models [34] and 59.7% to Pocillpora damicornis gene
models [35] in SWISS-PROT. In addition, conserved
Pfam protein domains were detected in 66.2% of contigs
in the E. ancora gonadal transcriptome (Fig. 3). Con-
served Pfam protein domains were detected in 54% of
sequences in the Heliopora coerulea transcriptome as-
sembly [36]. Other transcriptome assemblies showed
similar percentages: Dendrophyllia sp. (48.8%), Eguchip-
sammia fistula (45.4%), and Rhizotrochus typus (51.3%)
[37]. The E. ancora gonadal transcriptome is clearly
comparable to other coral genomic or transcriptomic
datasets. The present transcriptome assembly allowed us
to identify sex-specific and gonadal phase-specific upreg-
ulated genes as well as evolutionarily conserved genes
associated with germ cell development. The resulting

Table 3 Genes highly upregulated in premature/mature ovaries and mature testes compared to the other 3 phases

Gonad Annotation Assembly ID E-value

Ovaries (log2>5) GFP-like fluorescent chromoprotein CL9557.Contig3_All 4.00E-101

Neurogenic locus notch homolog protein 3 CL2173.Contig10_All 1.00E-63

Carbonic anhydrase 2 CL8194.Contig1_All 3.00E-50

Octopamine receptor beta-1R CL4990.Contig1_All 1.00E-22

Beta-1,4-galactosyltransferase galt-1 Unigene16679_All 1.00E-13

Polcalcin Juno 2 CL7546.Contig1_All 2.00E-12

Transmembrane protein 26 Unigene179326_All 7.00E-10

Integrin-linked protein kinase Unigene80860_All 1.00E-08

Testes (log2>8) Creatine kinase S-type, mitochondrial CL3023.Contig3_All 0

Creatine kinase, flagellar CL12240.Contig1_All 0

Omega-6 fatty acid desaturase, endoplasmic reticulum isozyme 1 Unigene27219_All 4.00E-114

Glutamate receptor ionotropic, kainate 2 Unigene8664_All 1.00E-105

Testis-specific serine/threonine-protein kinase 4 CL327.Contig1_All 2.00E-91

Fibrillin-2 CL1782.Contig1_All 8.00E-71

Monocarboxylate transporter 10 CL1025.Contig1_All 4.00E-66

Latent-transforming growth factor beta-binding protein 1 CL10775.Contig3_All 4.00E-54

Uncharacterized protein KIAA0895-like CL11131.Contig2_All 1.00E-44

Disheveled-associated activator of morphogenesis 1 CL7734.Contig1_All 2.00E-39

BTB/POZ domain-containing protein 8 Unigene35893_All 1.00E-33

Cyclic nucleotide-binding domain-containing protein 2 CL4865.Contig1_All 8.00E-23

F-box/LRR-repeat protein 14 Unigene33934_All 7.00E-13

Testis-expressed protein 11 CL11981.Contig40_All 1.00E-12

Nuclear receptor corepressor 2 CL7171.Contig3_All 8.00E-10

Netrin receptor UNC5C CL47.Contig4_All 2.00E-09

cAMP-dependent protein kinase regulatory subunit Unigene2733_All 7.00E-09

Polysialoglycoprotein Unigene16171_All 3.00E-07
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dataset will provide a foundation for future research in-
vestigating molecular and cellular mechanisms of gam-
etogenesis in scleractinians.

Characteristics of premature/mature ovaries as assessed
by anatomical and histological analyses
The observed growth of oocytes and the loss of germinal
vesicles in oocytes of premature/mature ovaries suggest
that oocytes were still actively accumulating essential
materials (e.g., yolk and other components) for survival
and development of embryos until just before matur-
ation. Also, the oocyte maturation process, including
germinal vesicle breakdown (GVBD) and resumption of
meiosis occurred in some oocytes.

Upregulated genes in premature/mature ovaries
Yolk formation and accumulation is one of the most im-
portant aspects of oogenesis for oviparous animals. In
scleractinian eggs, several major yolk proteins, including
vitellogenin (Vg), a female-specific phosphoglycolipopro-
tein, and large amounts of lipids (e.g., wax esters, fatty
acids, phosphatidylethanolamines, and phosphatidylcho-
lines) have been identified to date [12, 13, 19, 20, 38]. The
present study found that transcripts encoding 3 major
yolk proteins were upregulated (Vg, Egg protein, and
Euphy, Fig. 5, Table 4), in agreement with histological ob-
servations, indicating that oocytes were actively accumu-
lating yolk materials. Those yolk proteins are produced by
ovarian somatic cells adjacent to oocytes [12, 13]. How-
ever, little is known about the uptake mechanisms of yolk

proteins by oocytes. Although receptor-mediated endo-
cytosis has been hypothesized, related receptor molecules
have not been identified yet [12]. The present study also
identified transcripts encoding two types of low-density
lipoprotein receptor-related proteins (Lrps) as upregulated
genes in premature/mature ovaries (Fig. 5, Table 4). In
some teleosts, a member of Lrps, Lrp13, serves as one of
the Vg receptors expressed on oocyte membranes [39, 40].
Thus, the Lrps identified here may be involved in uptake
mechanisms of yolk materials in scleractinians, and are
promising candidate receptors for Vg and/or other lipo-
proteins in future studies.
In addition to the major yolk materials, eggs of scleracti-

nians are assumed to accumulate materials essential for
larval development. Among the upregulated genes in pre-
mature/mature ovaries, we identified several sequences
similar to components of skeletal organic matrix proteins
found in A. digitifera [41], A. millepora [42], and S. pistil-
lata [43]. Since no skeleton formation occurs in ovaries, it
is likely that these gene products (mRNA and proteins)
are stored in oocytes during oogenesis to be used for skel-
eton formation during larval development. We cannot
rule out the possibility that the identified genes may have
other functions in oocyte development/maturation.
The occurrence of GVBD in some oocytes of ovaries

collected in April 2017 was an unexpected finding, be-
cause mature gametes were not observed in testes col-
lected at the same time. It is possible that timing of
oocyte maturation was split among oocytes and/or ovar-
ies over April and May (or June) for unknown reasons.

Table 4 Upregulated genes of interest in premature/mature ovaries showing similarities to oocyte development/maturation-related
genes in other animals

Category Annotation Assembly ID Reference

Oocyte development Vitellogenin-A2 CL4556.Contig6_All (E. ancora Vitellogenin) [12]

Uncharacterized skeletal organic matrix protein 5 Unigene22577_All (E. ancora Egg protein) [12]

Neurogenic locus notch homolog protein 1 Unigene28293_All (E. ancora Euphy)[13]

Low-density lipoprotein receptor-related protein 2 Unigene39647_All [39, 40]

Low-density lipoprotein receptor-related protein 4 Unigene20580 All [39, 40]

Chromosome structure Histone H2B Unigene6592_All [119]

Oocyte maturation Serine/threonine-protein kinase mos Unigene58091_All [44]

Mitogen-activated protein kinase 1 CL13032.Contig3_All [44]

Neurotransmitter receptors Octopamine receptor beta-1R CL4990.Contig1_All [57, 58]

Octopamine receptor beta-2R Unigene7363_All [57, 58]

Dopamine receptor Unigene35882_All [59]

Skeletogenesis Mucin-like protein CL7569.Contig3_All [41]

MAM and LDL-receptor class A domain-containing protein 2 CL3169.Contig2_All [41]

Cephalotoxin-like protein Unigene22179_All [41]

Uncharacterized skeletal organic matrix protein 5 Unigene22577_All [41]

Polycystic kidney disease protein 1-like CL5263.Contig3_All [42]

Hemicentin CL1601.Contig3_All [43]
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We cannot completely rule out the possibility that the
GVBD was partially induced by isolation of ovaries from
polyps, i.e., mechanical stress. Nevertheless, this study
successfully identified two sequences similar to the
serine/threonine-protein kinase mos (Mos) gene and the
mitogen-activated protein kinase 1 (Mapk1) gene, which
contribute to signaling pathways of oocyte maturation in
a variety of animals, including cnidarians [44] (Fig. 5).
Upregulation of these two genes in premature/mature
ovaries implies that they may also function in oocyte
maturation in scleractinians. Previous studies regarding
oocyte maturation in scleractinians were limited to
histological observations and focused on the presence
and timing of GVBD [45, 46]. To the best of our know-
ledge, this is the first study to identify these candidate
molecules in oocyte maturation of scleractinians.
In a variety of animals, hormones (i.e., steroids, growth

factors, peptides, and other substances) are involved in
the reproduction [47–54]. In Acropora species,

transcriptomic studies suggest that melanopsin-like
homolog and /or neuropeptides [55] and Rhodopsin-like
receptors [56] are involved in the signaling pathway for
spawning in scleractinians. Enriched BP terms in E.
ancora premature/mature ovaries imply that neuronal ac-
tivity is significantly higher than during other phases. Up-
regulation of transcripts similar to genes encoding
monoamine receptors (e.g., octopamine receptors, dopa-
mine receptors, adrenergic receptors, and serotonin recep-
tors, [57, 58] Fig. 5, Table 4) also support this assumption.
Recent studies show that some neurotransmitters (dopa-
mine and serotonin) are also involved in regulation of
scleractinian spawning. Treatment of Acropora tenuis with
dopamine during the final phase of gametogenesis inhibited
spawning [59]. By contrast, treatments with serotonin and
its precursor, L-5-hydroxytryptophan (5-HTP) induced
spawning of Acropora cervicornis [60]. Taking all these lines
of evidence into account, the identified monoamine recep-
tors may also be essential during the premature/mature

Fig. 5 Genes potentially involved in oocyte development and maturation, and in sperm motility/capacitation, and fertilization in E. ancora. Genes
indicated in red have been reported in our previous studies
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phase of E. ancora oogenesis. It will be of interest to investi-
gate whether treatment of female E. ancora with these neu-
rotransmitters induces or inhibits oocyte maturation and
spawning.
Of particular interest is the upregulation of three

genes encoding neurogenic locus notch homolog pro-
teins in premature/mature ovaries (Additional file 12).
The Notch signaling pathway is conserved across animal
taxa, and regulates cell-cell interactions and cell fate de-
termination [61]. One of the identified genes, neurogenic
locus notch homolog protein 1, encodes Euphy, a novel
major yolk protein in E. ancora oocytes identified in our
previous study [13]. The remaining 2 genes have not
been previously reported. Although both sequences pos-
sess EGF-like domain repeats typifying notch homolog
proteins, they are structurally distinct from Notch1 iden-
tified in vertebrates (e.g., human Notch1). These may be
novel genes that emerged after gene duplication, domain
shuffling, and rapid molecular evolution in cnidarian/
scleractinian lineages [41, 42]. Interestingly, one of them,
neurogenic locus notch homolog protein 3, was highly
and significantly upregulated, and contains a zona pellu-
cida (ZP) protein and transmembrane domains (Fig. 5,
Additional file 12). The ZP is the extracellular matrix
(ECM) surrounding mammalian oocytes, composed of
four glycoproteins (ZP1-ZP4). ZP functions during oo-
genesis, fertilization, and preimplantation development

in mammals [62]. In jellyfish, a ZP domain-containing
protein called mesoglein, which resembles mammalian
ZP, was identified in the contact plate of oocytes [63].
Although scleractinian oocytes have neither a protective
coat nor a membrane surrounding them, this finding im-
plies that the identified ZP domain-containing protein
probably participates in oogenesis and subsequent
fertilization processes.
GFP is one of the natural pigments of corals [64–67].

Although the natural functions of GFP remain obscure,
proposed functions include photoprotection from high
UVA/blue irradiation, photosynthetic enhancement,
phototaxis of zooxanthellae [68–72], and antioxidant ac-
tivity [73, 74]. We previously showed that E. ancora oo-
cytes express an endogenous RFP with H2O2

degradation activity from early to mature stages of oo-
cytes, and suggested a possible role of RFP in protecting
oocytes from oxidative stress during oogenesis [15]. Our
finding implies that not only RFP, but also GFP may serve in
oogenesis, particularly during the premature/mature phase
(Fig. 5).

Characteristics of mature testes as assessed by
histological and cytological analyses
Spermiogenesis is a process by which haploid spermatids
undergo a complex series of morphological changes, and
eventually become elongated functional sperm. The

Table 5 Upregulated genes of interest in mature testes showing similarities to sperm-related genes in other animals

Category Annotation Assembly ID Reference

Spermiogenesis Spermatogenesis-associated protein 6 Unigene40770_All [76]

Cilia- and flagella-associated protein 69 Unigene30111_All [77]

Testis-specific serine/threonine-protein kinase 1 CL2440.Contig1_All [78, 79]

Testis-specific serine/threonine-protein kinase 2 Unigene8363_All [78, 79]

Outer dense fiber protein 2 CL11766.Contig4_All [80]

Alstrom syndrome protein 1 CL2440.Contig1_All [81]

Radial spoke head 1 homolog CL2440.Contig1_All [82]

Dynein regulatory complex protein 9 CL4871.Contig6_All [83]

Sperm motility/capacitation Dynein regulatory complex subunit 7 CL8060.Contig33_All [86]

Sodium/hydrogen exchanger 10 CL11505.Contig1_All [87]

Creatine kinase, flagellar CL12240.Contig1_All [88]

Adenylate cyclase type 10 CL1089.Contig3_All [87]

Cation channel sperm-associated protein 3 Unigene27629_All [87]

Cyclin-F Unigene55093_All [89]

Dynein regulatory complex subunit 4 Unigene7541_All [90]

Chromosome structure Histone H2A CL4659.Contig4_All [120]

Fertilization process Hapless 2 CL1879.Contig3_All [109, 110]

Receptor guanylate cyclases CL4659.Contig4_All [22]

Cyclic nucleotide-gated channel cone photoreceptor subunit alpha CL3457.Contig2_All [153]

Steroidogenesis Steroid 17-alpha-hydroxylase/17,20 lyase Unigene38823_All [104]
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presence of spermaries having both round spermatids
and mature sperm in testes collected in June 2017 sug-
gested that spermiogenesis was occurring in the testes at
the time of collection, and that genes involved in regula-
tion of spermiogenesis were being expressed in testes.

Upregulated genes in mature testes
Morphological changes of male germ cells during sper-
miogenesis include flagellum formation, nuclear DNA
condensation, and elimination of organelles and cyto-
plasm. Scleractinian spermiogenesis is generally morpho-
logically similar to that of vertebrates, except that male
germ cells possess long flagella from early to late stages of
development [21]. Nevertheless, scleractinian male germ
cells possess typical flagellar axonemes, characterized by
a“9 + 2” arrangement of microtubules [21, 75]. In this
study, further queries of genes associated with spermatid
development (GO term:0007286), together with literature-
based gene identification, allowed us to identify various
candidate genes encoding proteins of flagellar components
[76–83]. The presence of a conserved molecular toolkit
for spermiogenesis suggests that scleractinians and verte-
brates share similar characteristics at both morphological
and molecular levels.
Sperm motility is important for most scleractinians,

which fertilize externally in seawater. Sperm of acroporid
corals remain completely immotile in seawater until they
come close to eggs, whereupon they acquire motility [84].
The presence of chemoattractants and involvement of
intracellular pH elevation and Ca2+-dependent signal
transduction in sperm motility have been experimentally
demonstrated [84, 85]. Molecules regulating flagellar mo-
tility still remain largely unexplored in scleractinians. This
study identified a number of important genes encoding
proteins involved in sperm motility and/or capacitation in
mammals and sea urchins, such as cation channel sperm-
associated protein 3 (CatSper3), sodium/hydrogen ex-
changer (sNHE), and adenylate cyclase type 10 (sAC) [86–
90] (Fig. 5, Table 5). These findings support the hypothesis
of Romero and Nishigaki that CatSper3, sNHE, and sAC
form prototypical machinery for sperm flagellar beating in
metazoans [87]. This study further identified the gene
encoding creatine kinase, flagellar, which was first identi-
fied from flagella of sea urchin sperm, participating in en-
ergy transport from sperm heads to the flagella during
sperm motility [89]. Genes associated with sperm motility
and/or capacitation in scleractinians suggest that these
features were most likely present in the common ancestor
prior to divergence of the cnidarian and bilaterian
lineages.
Sex steroids are critical for sex differentiation, gameto-

genesis, and gamete maturation in vertebrates [91–95]. Sex
steroids (e.g., estrogen, testosterone, and progesterone) have
been demonstrated in several scleractinians, including E.

ancora [96–99]. Additionally, the correlation between sex
steroid levels and gametogenic cycles has led to the hypoth-
esis that sex steroids may be involved in regulation of scler-
actinian reproduction [97, 99]. Steroid biosynthesis is
catalyzed by various steroidogenic enzymes. Although ster-
oid biosynthetic activities are known from extracts of some
scleractinian tissues [97, 98, 100–102], only one gene en-
coding a steroidogenic enzyme, 17β-hydroxysteroid de-
hydrogenase type 14 (17β-hsd 14), has been identified and
characterized so far [103]. In the present study, a gene en-
coding steroid 17α-hydroxylase/17,20-lyase (Cyp17a) (Fig.
5, Table 5), a key enzyme in production of sex steroids and
cortisol [104], was upregulated in mature testes. Although
further analysis is required to clarify its activity, the pres-
ence of this enzyme implies that steroid biosynthesis occurs
in mature testes, and the produced sex steroids/cortisol
could be associated with maturation of male germ cells in
scleractinians.
Molecules involved in fertilization remain largely un-

known in scleractinians. We found that a gene similar to
Hapless 2/Generative Cell Specific 1 (Hap2/Gcs1) was
upregulated in mature testes (Fig. 5, Table 5). Hap2/
Gcs1 was first identified as a male gamete-specific trans-
membrane protein in lilies [105]. The coding gene is
found in genomes of most major eukaryotic taxa (e.g.,
protozoa, plants, and animals) except fungi [106, 107].
Functional analysis with the mutant/gene targeting sys-
tem showed that Hap2/Gcs1 are essential for gamete fu-
sion in Arabidopsis [105], the protozoan parasite,
Plasmodium [106], and the green alga, Chlamydomonas
[108]. Expression of Hap2/Gcs1 was also confirmed in
male germ cells of some cnidarians, such as Hydra [109]
and the starlet sea anemone, Nematostella vectensis
[110], and its involvement in fertilization has been dem-
onstrated in sea anemones [110]. Upregulation of Hap2/
Gcs1 in E. ancora mature testes suggests that Hap2/
Gcs1 participates in scleractinian sperm-egg fusion.
Most recently, we reported that receptor guanylate cy-
clase A (rGC-a) (also known as atrial natriuretic peptide
receptor 1 in mammals) is expressed in E. ancora sperm
flagella [22] (Fig. 5, Table 5). rGCs are expressed on
sperm and serve as receptors for egg-derived sperm-
activating and sperm-attracting factors in some echino-
derms and mammals [111–114]. Taken together, evolu-
tionarily conserved proteins underlie fertilization
mechanisms of scleractinians.

Other major findings and potential applications
Genes encoding Histone H2B and Histone H2A were
upregulated in premature/mature ovaries and mature
testes, respectively (Fig. 5, Table 4, 5). Histones are the
major protein components of chromatins in eukaryote
cell nuclei. Five histone protein families exist: the core
histone families (H2A, H2B, H3, and H4) and the linker
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histone family (H1) [115]. Core histones are components
of the nucleosome core, whereas linker histones are present
in adjacent nucleosomes, where they bind to nucleosomal
core particles, and stabilize both nucleosome structure and
higher-order chromatin architecture [115, 116]. Various
isoforms of each family have been identified as histone vari-
ants, and their importance in diverse cellular processes
(e.g., transcriptional control, chromosome segregation,
DNA repair and recombination, and germline specific
translational regulation) have been revealed [117–120]. In
scleractinians, although sequences of the histone gene clus-
ter have been identified in Acropora formosa (H3, H4, H2A,
and H2B) [121] and Acropora gemmifera (H3, and H2B)
[122], differences in gene expression levels between ovaries
and testes have not been reported so far. This study re-
vealed the existence of histone variants showing sexually di-
morphic expression in scleractinians. In the cnidarian
model organism, Hydractinia echinata, 19 genes encoding
histones were identified, and some of them, such as histone
H2A.X and five H2B variants, are specifically expressed in
female and male germ cells, respectively [123]. Our findings
imply that the identified histone may control gene expres-
sion in female and male germ cells during scleractinian
gametogenesis.
Studies of a variety of animals have revealed that a set

of specialized and highly conserved genes govern germ-
line specification, development, meiosis, and/or main-
tenance in metazoans [124–136]. In the gonadal
transcriptome, we could identify many genes associated
with germline specification and meiotic processes (Add-
itional file 8). Although further spatiotemporal expres-
sion analyses and functional assays are required to
clarify their functions, their expression in gonads implies
that these genes participate in scleractinian germline de-
velopment and meiosis.
The E. ancora gonadal transcriptome assembly in-

cludes a large number of genes without homology to se-
quences in the SWISS-PROT database. These findings
suggest that although scleractinian gametogenesis shares
many common molecular characteristics with gameto-
genesis in other metazoans, it also possesses characteris-
tics that developed in evolutionarily unique ways.
Further characterization and functional studies of these
unannotated genes will clarify unique features in sclerac-
tinian gametogenesis, and this will eventually lead to com-
prehensive understanding of scleractinian gametogenesis.
The knowledge obtained in the present study will be

useful for ecological studies and coral aquaculture. For in-
stance, since scleractinian corals have no secondary sexual
characteristics, histological analysis has traditionally been
used to investigate polyp or colony sex, as well as to deter-
mine the status of germ cell development. However, histo-
logical analysis of scleractinians is time consuming. It
generally requires decalcification steps, and the whole

histological process sometimes takes 1–2 weeks. Identifi-
cation of molecular markers for determining colony sex
and germ cell development status offers a useful alterna-
tive process. Colony sex and germ-cell type could be de-
termined faster using PCR with markers, than by
histological means. Sex- and gonad phase-specific genes
identified in this study would be candidates.

Conclusions
Analysis of upregulated genes in premature/mature gonads
allowed us to identify many genes potentially involved in oo-
cyte development, oocyte maturation, spermiogenesis, sperm
motility/capacitation, and fertilization processes (Fig. 5). We
identified a large number of sex-biased or sex-specific genes
and shed light on possible molecular mechanisms of sclerac-
tinian gametogenesis, which appear to be coordinated by
both conserved and novel genes. This study and its gener-
ated datasets thus provide a foundation for future studies re-
garding gametogenesis and differences between sexes from
molecular and cellular perspectives. Furthermore, our tran-
scriptome assembly will be a useful reference for future de-
velopment of sex-specific and/or stage-specific markers for
germ cells for use in coral aquaculture and ecological
studies.

Methods
Sample collection
E. ancora specimens were collected by scuba divers at
Nanwan Bay, Kenting National Park, in southern Taiwan
(21°57′N, 120°46′E). Approximately 10 colonies were la-
beled, and gonads (> 20 gonads) of labeled colonies were
microscopically isolated at different times during a 9-
month period from October 2016 (non-spawning period)
to June 2017 (spawning period) (Fig. 1d). Collection was
approved by the administrative office of Kenting Na-
tional Park (issue number: 1010006545). For RNA-seq,
collected samples were snap frozen in liquid nitrogen,
and stored at − 80 °C until use. Some of the isolated go-
nads were also fixed with 20% Zinc-Formal-Fixx
(Thermo Fisher Scientific, Pittsburgh, PA, USA) for
histological analysis. Experiments were performed in ac-
cordance with principles and procedures approved by
the Institutional Animal Care and Use Committee, Na-
tional Taiwan Ocean University, Taiwan.

Histological analysis for sample selection
Histological analyses were performed to determine de-
velopmental phases of gonads, and to select samples for
RNA-seq. Isolated gonads (> 10 gonads/colony/time
point) were analyzed according to the methodology in
our previous studies [8, 9]. Developmental stages of
germ cells were determined according to previous cri-
teria [8, 9] with some modifications (see Table 1).
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RNA extraction and RNA-seq library construction
In total, 12 testes and 12 ovaries (3 colonies × 4 time
points) were selected based on the results of histological
analyses. Total RNA of the 24 samples was extracted
using TRIzol reagent (Thermo Fisher Scientific) accord-
ing to the manufacturer’s protocol. DNase I treated-
RNA samples were sent to Beijing Genomics Institute
(BGI, Shenzhen). RNAs were qualified using a Bioanaly-
zer 2100 (Agilent Technologies, Palo Alto, CA, USA)
with an RNA 6000 labchip kit (Agilent Technologies)
and all samples were confirmed as high-quality RNA
(RIN > 8). Twenty four RNA-seq libraries were con-
structed using TruSeq mRNA Library Prep Kits v2 (Illu-
mina, San Diego, CA, USA), and sequenced with 150-bp
paired-ends (150PE) on an Illumina HiSeq X Ten. Illu-
mina adaptors, low-quality sequences (Phred value Q <
20), and reads with a high proportion of N (> 5%) were
removed. Cleaned sequencing data were used for subse-
quent analyses.

De novo assembly and annotation of the E. ancora
transcriptome
The transcriptome assembly of the E. ancora “holo-
biont”, the host and its symbiotic organisms, was created
by BGI as follows. Clean reads of 24 individual samples
were assembled de novo using Trinity v2.0.6 software
[137] (parameter settings: –min_contig_length 150 –
CPU 8 –min_kmer_cov 3 –min_glue 3 –bfly_opts ‘-V 5
–edge-thr = 0.1) and assembled sequences were clustered
using Tgicl v2.0.6 software [138] (parameter settings: -l
40 -c 10 -v 25 -O ‘-repeat_stringency 0.95 -minmatch 35
-minscore 35′). Since gonadal samples contained sub-
stantial numbers of symbiotic dinoflagellate cells, we
bioinformatically separated sequences originating from
E. ancora, algal symbionts (Symbiodiniaceae), or mi-
crobes as follows. All assembled sequences were aligned
to available genomic databases of 4 scleractinian corals
and 6 Symbiodiniaceae transcriptomic databases using
BLASTN (−evalue 1e-3). These databases included A.
digitifera [31, 139], P. damicornis [35, 140], S. pistillata
[34], and O. faveolata [141], Symbiodinium sp. A1 [142],
Symbiodinium sp. A2 [143], Breviolum sp. B2 [143], Bre-
violum muscatinei [144], Uncultured Cladocopium sp.
[145] and uncultured Durusdinium sp. [145] (For more
detailed information on the databases, see Additional file
6). Contigs aligned exclusively to the coral genome data-
base were annotated as “E. ancora contigs”, while those
that aligned only to Symbiodiniaceae transcriptome da-
tabases were annotated as “Symbiodiniaceae contigs”. To
separate contigs aligned to both the coral genome and
Symbiodiniaceae transcriptomic databases, contigs were
re-aligned BLASTN (−evalue 1e-3) using a combined
database of coral genomes and Symbiodiniaceae tran-
scriptomes. Based on the top hit results of BLASTN

(corals or Symbiodiniaceae), contigs were annotated as
“E. ancora contigs” or “Symbiodiniaceae contigs” (Fig. 2).
All databases used in the present study were downloaded
on 3/18/2019. Nucleotide sequences were again clustered
using CD-HIT [146] with 97% identity for removing se-
quences possibly originating from different individuals or
haplotypes in a single individual. Finally, contigs were
translated into amino acid sequences using the longorf
script [147] and clustered using CD-HIT with 95% iden-
tity. Completeness using the assembled sequences was
assessed using BUSCO (bench-marking universal single-
copy orthologs) version 3 [148, 149] in transcriptome
mode. Reference E. ancora gonadal transcriptome contigs
were annotated as follows: 1) BLAST searches against
public protein databases: SWISS-PROT database (−evalue
1e-5) (Consortium 2011) (3/18/2019), 2) Identification of
conserved protein domains with the Pfam database (−eva-
lue 1e-5) [150, 151].

Identification of reproduction-related genes in ovaries
and testes
Genes important in metazoan reproduction were searched
in the reference E. ancora gonadal transcriptome, based
on the literature [8, 9, 12, 13, 15, 16, 21, 22, 72, 126–136,
152, 153]. Two strategies were adopted. 1) Full-length
cDNA sequences of genes in vertebrates and invertebrates
were retrieved from Genbank (NCBI), and local BLAST
searches were conducted (BLASTP, cut-off -evalue 1e-5)
against translated sequences from the reference E. ancora
gonadal transcriptome. 2) Gene names or keyword
searches for target categories were performed in SWISS-
PROT annotation results.

Differential gene expression analysis
First, possible outlier RNA-seq samples were examined by
mapping raw reads to assembled sequences with Bowtie2
v2.2.6 software [154] (parameter setting: -q –phred33 –sensi-
tive –dpad 0 –gbar 99,999,999 –mp 1,1 –np 1 –score-min L,
0,-0.1 -I 1 -X 1000 –no- mixed –no-discordant -p 1 -k 200)
and the mapping coverage of contigs was determined with
RSEM v1.2.12 software [154] under default settings. The
hclust package in R was used to perform a hierarchical clus-
ter analysis of RNA-seq samples [155]. The above analyses
were performed by BGI. Illumina adaptors and low-quality
sequences (quality score >Q20, reads length > 25 bp) were
removed from raw RNA sequences of the remaining samples
using CUTADAPT v1.16 [156] . Using SALMON v0.13.1
[157], clean reads were mapped to the reference E. ancora
transcriptome contigs. Further statistical analyses based on
mapping counts were done using edgeR v3.24.3 [158, 159] in
R software. Mapping counts were normalized by the
trimmed mean of M values (TMM) method, and then con-
verted to counts per million (CPM). Differentially expressed
genes in each phase of ovaries and testes were identified
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using the likelihood ratio test (glmLRT). All P-values ob-
tained by likelihood ratio test were adjusted with the
Benjamini-Hochberg method. Genes (or transcripts) repre-
senting FDR< 0.05 were considered as differentially
expressed genes. CPM values were used to identify genes
that were differentially expressed in each phase of ovaries
and testes, respectively (ANOVA with q-value< 0.05). For
heatmap generation, CPM values were scaled to row Z-
scores for each of the genes that were highly expressed in
each phase of gonads.

Gene enrichment analysis
UniProt IDs were assigned for each reference E. ancora
gonadal transcriptome contig based on best matches
against the human SWISS-PROT database with BLASTP
(cutoff of -evalue 1e-5) [160]. Gene enrichment analysis of
Gene Ontology (GO) was performed with the assigned
UniProt ID using DAVID Bioinformatics Resources 6.8 (>
4-fold enrichment and P < 0.05) [161, 162]. UniPort IDs of
the reference E. ancora gonadal transcriptome were used
as a background for the DAVID analysis.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-07113-9.

Additional file 1 Microscopic observation of ovaries and testes isolated
in April and June 2017, respectively. (a) External appearances of oocytes
having germinal vesicles in isolated ovaries collected in April 2017. (b)
The external appearance of oocytes without germinal vesicles collected
at the same times as the samples shown in (a). Only one oocyte has a
germinal vesicle (arrow). (c) Cytological appearance of an isolated testis
collected in June 2017. Morphologically mature sperm with triangular
head shapes were observed (arrows).

Additional file 2. (Table) Summary of clean read data for 24 samples
used in de novo assembly.

Additional file 3. DDBJ accession numbers for the reference gonadal
transcriptome

Additional file 4 DDBJ accession numbers for the E. ancora contigs

Additional file 5. DDBJ accession numbers for the Symbiodiniaceae
contigs of DDBJ accession number

Additional file 6 (Table) Reference databases used for identifying E.
ancora-originated contigs from the E. ancora holobiont transcriptome
assembly

Additional file 7 (Table) Reproduction-related genes of E. ancora
identified in our previous studies

Additional file 8 (Table) Evolutionarily conserved genes in metazoan
reproduction identified in the E. ancora gonadal transcriptome assembly

Additional file 9 Hierarchical Clustering analysis of E. ancora gonadal
samples used in this study. Twelve testis samples (3 colonies, 4 time
points) and 12 ovary samples (3 colonies, 4 time points) were subjected
to analysis. The cluster dendrogram showed that 2 samples (Oct-female-1
and Feb-male-1) are outliers, while others belong to a similar group. The
2 outliers were removed and the 22 remaining samples were used for
gene expression analysis.

Additional file 10 GO functional analysis of upregulated genes in
premature/mature ovaries. Significantly (> 4-fold change, P < 0.05)
enriched GO terms in biological processes (blue bar), and molecular
function (yellow bar). The X-axis represents the magnitude of change.
The Y-axis represents the GO functional category.

Additional file 11. GO functional analysis of upregulated genes in
mature testes. Significantly (> 4-fold change, P < 0.05) enriched GO terms
in biological processes (blue bar), cellular component (green bar), and
molecular function (yellow bar). The X-axis represents the magnitude of
change. The Y-axis represents the GO functional category.

Additional file 12. Schematic figures depicting domain structures of
neurogenic locus notch homolog protein. (a) Neurogenic locus notch
homolog proteins 1. (b) Neurogenic locus notch homolog proteins 2. (c)
Neurogenic locus notch homolog proteins 3.
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