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Abstract

A deep learning MR parameter mapping framework which combines accelerated radial data 

acquisition with a multi-scale residual network (MS-ResNet) for image reconstruction is proposed. 

The proposed supervised learning strategy uses input image patches from multi-contrast images 

with radial undersampling artifacts and target image patches from artifact-free multi-contrast 

images. Subspace filtering is used during pre-processing to denoise input patches. For each 

anatomy and relaxation parameter, an individual network is trained. in vivo T1 mapping results are 

obtained on brain and abdomen datasets and in vivo T2 mapping results are obtained on brain and 

knee datasets. Quantitative results for the T2 mapping of the knee show that MS-ResNet trained 

using either fully sampled or undersampled data outperforms conventional model-based 

compressed sensing methods. This is significant because obtaining fully sampled training data is 

not possible in many applications. in vivo brain and abdomen results for T1 mapping and in vivo 
brain results for T2 mapping demonstrate that MS-ResNet yields contrast-weighted images and 

parameter maps that are comparable to those achieved by model-based iterative methods while 

offering two orders of magnitude reduction in reconstruction times. The proposed approach 

enables recovery of high-quality contrast-weighted images and parameter maps from highly 

accelerated radial data acquisitions. The rapid image reconstructions enabled by the proposed 

approach makes it a good candidate for routine clinical use.
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1. Introduction

Parameter mapping methods in MRI measure tissue specific parameters such as T1, T2, and 

proton density. These tissue parameters are useful for detection and characterization of a 

variety of pathologies such as Alzheimer disease [1], multiple sclerosis [2], and liver 

cirrhosis [3]. Conventional parameter mapping requires the acquisition of several images 

with different contrast weighting, which are subsequently used to estimate the parameter(s) 

of interest. However, the long data acquisition times required by these methods have limited 

their clinical use. With growing interest in quantitative MRI, many techniques have been 

proposed to accelerate data acquisition for MR parameter mapping [4–19]. These techniques 

combine accelerated data acquisition methods with constrained reconstruction techniques, 

which exploit the dependencies along both the spatial and contrast dimensions in multi-

contrast images. While these techniques significantly reduce data acquisition times and yield 

high quality parameter maps, they are computationally intensive and require long 

reconstruction times due to their iterative nature.

Recently, deep learning (DL) based methods have emerged as state-of-the-art for many 

image processing and computer vision tasks such as image classification [20], semantic 

segmentation [21], and image super-resolution [22]. DL methods have been proposed for 

medical image reconstruction problems as well[23–32]: Wang et al. [23] explored a 

convolutional neural network (CNN) for accelerating MRI. Han et al. [24, 25] trained a U-

Net on CT data and fine-tuned it using MR data for radial MR image reconstruction based 

on the similarity of the sampling patterns between radial MRI and parallel-beam CT 

imaging. Knoll and Hammernik et al. [26, 27] proposed a variational network that is 

embedded in an unrolled gradient descent method and demonstrated improved performance 

over conventional reconstruction models. Schlemper et al. [28] demonstrated that a deep 

cascade of convolutional neural networks outperforms compressed sensing approaches for 

MR cardiac cine reconstruction. More recently, Cai et al. [29] developed a deep neural 

network for T2 mapping using overlapping-echo detachment planar imaging. Liu et al. [30] 

demonstrated feasibility of direct reconstruction of T2 maps in the knee joint using deep 

convolutional neural networks. A common characteristic of these DL-based image 

reconstruction techniques is that they require reconstruction times that are up to several 

orders of magnitude faster than the constrained reconstruction methods, which makes them 

excellent candidates for clinical deployment. On the other hand, these techniques necessitate 

access to clean reference images for supervised learning. This is a challenging requirement 

for many accelerated MRI applications where such fully sampled data may be difficult to 

obtain, particularly in large quantities necessary for supervised training of the networks.

In this work, we present an MR parameter mapping framework that combines accelerated 

radial data acquisition with a deep neural network reconstruction for T1 and T2 mapping 
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applications. The proposed approach offers several advantages: First, unlike many DL-based 

medical image reconstruction methods, the proposed technique uses images reconstructed 

from undersampled data using (slow but accurate) constrained reconstructions as reference 

during supervised training. This eliminates the need for fully sampled training data, which 

cannot be obtained in many applications. We demonstrate that the network supervised with 

undersampled constrained reconstructions generates contrast-weighted images and 

parameter maps that are comparable to those produced by the network supervised with fully 

sampled data. Second, although the proposed network is trained using constrained 

reconstructions, we demonstrate that the network yields superior parameter mapping 

performance than these constrained reconstructions. Third, the proposed multi-scale residual 

network (MS-ResNet) requires two orders of magnitude less computation time in 

comparison to constrained reconstruction methods. We also show that our lightweight 

network can be trained using a limited amount of undersampled data. The proposed work 

eliminates the need for fully-sampled reference images or the need for large amount of 

undersampled data and, thus, enables many MR parameter mapping applications, especially 

for anatomies where fully sampled data are difficult to acquire. The proposed approach is 

evaluated in several in vivo T1 and T2 mapping applications.

2. Methods

2.1. Multi-contrast image acquisition and reconstruction

In a parameter mapping experiment, multi-contrast multi-coil k-space data k ∈ ℂNNcNk × 1

are acquired at N contrasts with Nk measurements at each contrast using Nc coils. These 

multi-contrast images are denoted by the matrix M ∈ ℂN × Np, where the nth row of matrix 

represents the contrast-weighted image mn ∈ ℂ1 × Np, 1 ≤ n ≤ N consisting of Np spatial 

pixels. The relationship between the acquired k-space data k and the contrast-weighted 

images can be modeled discretely as

k = E(M) + n, (1)

where E:ℂN × Np ℂNNcNk × 1 represents the spatial encoding operator consisting of 

Fourier and coil sensitivity encoding [5, 8, 13], and n denotes the k-space noise vector. The 

first step in many MR parameter mapping experiments is to estimate the contrast-weighted 

images M from the acquired k-space data k :

M = EH(k), (2)

where EH :ℂNNcNk × 1 ℂN × Np represents the Hermitian adjoint operator of the 

combined Fourier and coil sensitivity encoding. The direct reconstruction M generally 

suffers from undersampling artifacts when k-space data k is highly undersampled. One way 

to improve reconstruction quality in parameter mapping is to use a subspace constraint to 

leverage the contrast (temporal) correlation. This constraint restricts the relaxation signals to 

a low-dimensional subspace. Using this constraint, the multi-contrast images M can be 

approximated in the form
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M ≈ ΦKC, (3)

where ΦK ∈ ℂN × K represents the K -dimensional (K ≪ N) subspace basis that could be 

estimated either from training data [6, 9] or from a suitable signal model [5, 8, 13] and 

C ∈ ℂK × Np represents the subspace coefficients. This low-dimensional subspace projection 

improves the quality of direct reconstruction M by explicitly confining the multi-contrast 

images to this low-dimensional subspace, i.e.

Msf ≜ ΦKCsf = ΦKΦK
HM, (4)

where Msf denotes the subspace filtered estimate of the multi-contrast images and Csf 

denotes the corresponding subspace coefficients. Note the subspace filtering computation 

reduces to a pixel-wise matrix multiplication in the order of the number of contrasts and 

adds only a marginal computational load to the entire processing chain.

Although this subspace filtering approach reduces undersampling artifacts, severe 

undersampling artifacts often remain in the reconstructed images at high acceleration factors 

used in practical parameter mapping applications. Over the past decade, iterative 

reconstruction algorithms that combine spatial and contrast dimension constraints to 

improve the quality of the multi-contrast images and the resulting parameter maps have been 

proposed [4–15, 19, 34, 35]. One of these recent approaches, referred to as non-local rank 

3D (NLR3D) [16, 17], exploits the self-similarity of multi-contrast images in both space and 

contrast dimensions to yield state-of-the-art reconstruction performance at the expense of 

high computational complexity.

2.2. Network training and testing framework

Our framework uses supervised learning where the deep neural network is trained using 

input and target data pairs to create artifact-free multi-contrast images given input images 

with undersampling artifacts. The proposed training procedure is illustrated in Figure 1(a). 

The first step in training is to estimate coil sensitivity maps from the radial k-space data 

using ESPIRiT [36]. These coil sensitivity maps were used for the reconstruction of input 

and target images. The input images at each contrast were reconstructed using Nonuniform 

Fast Fourier Transform (NUFFT) [37] followed by coil sensitivity weighted summation as 

represented in Eq. 2. The resulting images exhibited severe streaking artifacts due to 

undersampling. Next, subspace filtering described in Eq. 4 was applied to improve network 

training performance (see Supplementary Material Fig. 3) since it greatly reduces streaking 

and noise in the input images (see Supplementary Material Fig. 4) while only adding 

marginal computation time. Subspace bases used in subspace filtering were pre-estimated 

from training signals using singular value decomposition. For T2 experiments, multi-contrast 

signal curves were obtained using the slice resolved extended phase graph model over the 

range of T2 values of interest (20–300 ms) and the range of expected B1 values (0.5–1.4) as 

described in [38]. Similarly, Bloch simulations were used to generate training signal curves 

with T1 values ranging from 100 ms to 3000 ms and T2 values ranging from 10 ms to 300 

ms for T1 experiments as described in [19]. We always retained 4 principal components 
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across all the experiments [17–19, 39]. In summary, given the subspace basis FK (K = 4) and 

the undersampled k-space data k, the input image Mi to the network was obtained using 

(combining Eq. 2 and Eq. 4)

Mi = FKFK
HEH(k) . (5)

As discussed earlier, multi-contrast images reconstructed from fully sampled k-space data 

are difficult to obtain in parameter mapping applications. Therefore, the target image Mt was 

obtained via a subspace constrained compressed sensing method, as a surrogate, using the 

same undersampled k-space data and estimated coil sensitivity maps. As comparison, the 

network using fully sampled reference images as label was also evaluated. The input and 

target image pair Mi and Mt have complex values. Training networks with complex valued 

input and weights is non-trivial and an active area of research [40–44] and T1/T2 

applications were found to be insensitive to image phase in our experiments. Thus, we have 

opted to take the magnitudes of the input and target images. To reduce training data 

requirements, patch-scale training was employed for data augmentation. For data 

normalization, we subtract the mean and divide by the standard deviation of all the training 

image magnitudes at each contrast (see Supplementary Material Fig. S5).

The testing/deployment procedure is illustrated in Figure 1(b). Input images with 

undersampling artifacts were obtained in the same manner as was done during the training 

phase (Eq. 5). It should be noted that our MS-ResNet trained in patch scale could work in 

image scale during inference time since MS-ResNet does not contain fully connected layers 

that are restricted to have fixed input size. The convolutional or pooling layers that process 

inputs in a sliding window manner can cope with varying input sizes [45]. The output multi-

contrast images were fitted in a pixel-by-pixel manner to the corresponding signal models 

[38, 46] to obtain the parameter maps.

2.3. Data acquisition

To validate the proposed DL-based parameter mapping approach, in vivo T1 and T2 mapping 

experiments were conducted on different anatomies. All data were acquired on a 3T MRI 

scanner (Skyra, Siemens Healthcare, Erlangen, Germany) in compliance with the human 

research subject guidelines and the institutional review board.

For T2 mapping of the knee, fully sampled data were acquired from 12 healthy subjects 

using a 2D radial turbo spin echo (RADTSE) pulse sequence [47] in the sagittal plane with 

sequence parameters: TR = 3000 ms, TE = 11 ms, echo train length (ETL) = 8, in plane 

resolution = 0.50 mm × 0.50 mm, slice thickness = 3 mm, 20 slices, and 512 lines/TE with 

320 readout points/line.

For T2 mapping of the brain, undersampled data (R = 31.4) were acquired in the axial plane 

from 5 healthy subjects using a 2D RADTSE pulse sequence with sequence parameters: TR 

= 3800 ms, TE = 10.1 ms, echo train length (ETL) = 16, in plane resolution = 0.69 mm × 

0.69 mm, slice thickness = 3 mm, 40 slices, and 16 lines/TE with 320 readout points/line. In 

these acquisitions, a 16-channel head coil and bit-reversed view ordering [47] were used. To 

evaluate the sensitivity of our proposed approach to variable undersampling patterns, a 6 th 
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subject was scanned first with bit-reversed view ordering and then with â€œpseudoâ€• 

golden angle view ordering [48] at the same undersampling rate. To evaluate the robustness 

of the proposed method to changes in coil sensitivity maps, a 7 th subject was imaged using 

the 16-channel head coil and a 32-channel head coil during two scan sessions.

For T1 mapping of the brain, undersampled data (R = 31.4) were acquired in the axial plane 

from 11 healthy subjects using a 2D IR-radSSFP pulse sequence [19] with sequence 

parameters: TR = 4.92 ms, TE = 2.4 ms, 32 inversion times (TI), in plane resolution = 0.69 

mm × 0.69 mm, slice thickness = 3 mm, 40 slices, and 16 lines/TI with 320 readout points/

line.

For T1 mapping of the abdomen, undersampled data (R = 37.7) were acquired in the axial 

plane from 8 healthy subjects using a 2D IR-radSSFP pulse sequence with sequence 

parameters TR = 4.40 ms, TE = 2.15 ms, 32 inversion time (TI), in plane resolution = 0.83 

mm × 0.83 mm, slice thickness = 3 mm, 10 slices, and 16 lines/TI with 384 readout points/

line. For this application, an additional dataset was acquired with the same sequence 

parameters on a subject with pathology for evaluating the generalization ability of MS-

ResNet.

2.4. Network Implementation

The network was implemented in PyTorch [49] with CUDA backend and CUDNN support 

and trained on a NVIDIA GeForce GTX 1080 Ti graphics card. Depending on the training 

data size, the network training took about 35 hours on average. All model-based 

reconstructions were implemented in MATLAB and processed on an Intel Xeon CPU E5–

2630 v4 @ 2.20GHz, with GPU support for NUFFT operations.

For each anatomy and relaxation parameter, an individual network was trained. In each 

experiment, one healthy subject was randomly selected for validation and at least 4 subjects 

(see Supplementary Material Fig. S6) were randomly selected for training. The remaining 

healthy subjects were used for testing. Patches of size 32 × 32 were randomly extracted on 

the fly during training. Patch pairs were further augmented 8 times by flipping and/or 

rotating. The networks were initialized randomly and trained with loss, using ADAM 

optimization [50] with standard parameters (β1 = 0.9, β2 = 0.999, and ε = 10−8). The 

learning rate was initialized to 10−4 and halved every 2 × 105 iterations. Each network was 

trained with a mini-batch size of 4 for 100 epochs. The model with lowest validation loss 

was selected for testing. During inference, a geometric self-ensemble strategy was used [51, 

52]. The input images were flipped and/or rotated in the same manner as the training phase 

augmentation. The 8 transformed input images, including the original, were processed using 

the trained network followed by corresponding inverse transforms. The transformed outputs 

were averaged to obtain the self-ensemble result. T2 maps were calculated from the resulting 

TE images using the VARPRO [53] approach whereas T1 maps were calculated from the 

resulting TI images using the reduced dimension non-linear least squares approach [46].

2.5. Experimental setup

Reconstruction time of MS-ResNet was analyzed and compared to iterative CS methods. We 

used a popular MR image reconstruction package, Gadgetron [54]. The package provides a 
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GPU implementation of the nonlinear conjugate gradient (NLCG) algorithm with Total 

Variation (TV) regularization for dynamic image reconstruction. Timing comparison were 

performed on a workstation with an NVIDIA GeForce GTX 1080 Ti GPU using CUDA 10.1 

library. We used a default gridding kernel width of 5.5 and ran the NLCG algorithm for 100 

iterations. Running time was obtained by averaging five runs of multi-slice reconstructions.

A quantitative analysis of the network performance was conducted using the in vivo T2 knee 

data. The reference images were obtained by applying NUFFT to fully sampled k-space at 

each echo time followed by coil sensitivity weighted summation. The fully sampled k-space 

data was retrospectively undersampled 8, 12, and 16 times to obtain the undersampled k-

space data. At each acceleration, MS-ResNet was separately trained using the fully sampled 

references (FR) or using the NLR3D [16, 17] references reconstructed from the accelerated 

data (AR). We refer to these two networks as MS-ResNet-FR and MS-ResNet-AR, 

respectively. In addition, the proposed MS-ResNet approach was compared to NLR3D as 

well as another compressed sensing approach, Joint l1, 2 [9]. T2 maps were evaluated using 

Normalized Mean Square Error (NMSE), ROI analysis, and T2 error histogram. The NMSE 

metric was computed as the ratio of mean squared error to mean squared reference image. 

Muscle and cartilage ROIs of a knee slice were manually segmented using the first TE 

image and reference T2 map. The T2 error histogram of a subject is accumulated on the 

foreground pixels of all the sagittal slices. To quantify the error spread, Cauchy distributions 

were fitted to the long-tailed T2 error data to obtain the maximum likelihood estimate for the 

scale parameter γ of a Cauchy distribution. The full width at half maximum (FWHM) of the 

T2 error histogram is then computed as 2γ. In addition, area under the curve (AUC) of the 

T2 error histogram within [−5, 5] ms interval was computed per test subject. These two 

metrics (FWHM and AUC) were also calculated on a per slice basis for all slices in the test 

cohort and a statistical analysis was performed to compare them for MS-ResNet-FR and 

MS-ResNet-AR, as described in the Supplementary Material - Statistical Analysis.

The performance of our MS-ResNet was also evaluated for T2 and T1 mapping of the brain 

and T1 mapping of the abdomen qualitatively, where fully sampled data is not available. An 

ROI analysis was performed to compare MS-ResNet and NLR3D reconstructions on T2 /T1 

brain and T1 abdomen datasets. The generalization ability to pathology of the proposed 

approach was evaluated using the network trained with data from healthy subjects only in T1 

mapping of the abdomen. In T2 mapping of the brain, the sensitivity to variable sampling 

patterns was evaluated by testing the network using data acquired with a radial sampling 

trajectory different than the one used during training. Similarly, the robustness to changes in 

sensitivity maps was also evaluated by testing the network using data acquired with a 

different head coil than the one used to obtain the training data.

3. Results

3.1. Reconstruction time comparison

Table 1 presents the reconstruction time of the Gadgetron NLCG algorithm and MS-ResNet 

for four sets of data with various sizes. These k-space data differ in number of readouts, 

number of views per contrast, number of coils, and number of contrasts. From small size 
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data, such as T2 knee, to large size data, such as T1 abdomen, the reconstruction time of 

NLCG increases considerably, whereas MS-ResNet runs roughly two orders of magnitude 

faster than NLCG despite the datasets. Note that the Gadgetron NLCG implementation only 

includes the TV constraint. Iterative methods with complex priors, e.g. NLR3D, have 

significantly higher computational requirements. In our MATLAB implementations of 

NLR3D and Joint l1, 2, we observed that NLR3D is typically 6–10 times slower than Joint 

l1, 2.

3.2. Evaluation of knee reconstruction

Figure 2 shows representative TE images (top) and T2 maps (bottom) reconstructed using 

different methods at R = 8. A muscle region illustrated by the rectangular box is enlarged for 

closer inspection. Conventional NUFFT generates images with streaking artifacts and noise 

amplification due to undersampling. Joint l1, 2 suppresses the artifacts and noise but blurs 

the reconstructions as a result of the local spatial sparsity constraint in this highly 

accelerated dataset. NLR3D yields a substantially improved reconstruction in comparison to 

the Joint l1, 2 approach, but the non-ideal patch matching at this high acceleration rate leads 

to an over-smoothed region within the muscle ROI. In contrast, the two MS-ResNets trained 

using either NLR3D or fully sampled reference images retain the fine structures and 

textures. However, the MS-ResNet trained using fully sampled reference images presents 

better image sharpness and better image contrast to noise. Figure 5 shows the reconstructed 

TE images (top) and T2 maps (bottom) at (a) R = 12 and (b) R = 16. At these higher 

acceleration rates, constrained methods cannot fully remove the streaking artifacts as 

indicated by the yellow arrows on the TE images. These remaining streaks result in artifacts 

in the T2 maps as indicated by the yellow arrows. In contrast, the proposed MS-ResNets can 

still suppress streaking artifacts and resolve many of the finer structures in the muscle 

region, whereas these structures are either corrupted by residual noise or overly smoothed by 

the constrained reconstruction methods as pointed to by the red arrows on the TE images 

and T2 maps. Figure 1 shows the T2 error histograms (from −50 ms to 50 ms) of different 

reconstruction methods for three healthy test subjects at varying acceleration rates. 

Observing the peak probability of these histograms, MS-ResNet-FR performed the best 

followed by MS-ResNet-AR, NLR3D, Joint l1, 2, and NUFFT. Table 3 quantifies the 

reconstruction performances using AUC [−5,5] and FWHM. These two metrics show that 

MS-ResNet-AR performed slightly worse than MS-ResNet-FR at most acceleration rates, 

but was superior to (larger AUC [−5,5] and smaller FWHM) the CS approaches and the 

conventional NUFFT approach. It is interesting to note that the performance gap between 

MS-ResNet-AR and MS-ResNet-FR decreases as the acceleration factor increases. This is 

consistent with the statistical analysis (e.g. the p-values of the Kruskal-Wallis test) shown in 

Supplementary Material Table S2.

3.3. Evaluation of brain and abdomen reconstruction

Figure 5(a) illustrates MS-ResNet T2 mapping results on the brain of a healthy test subject. 

Input TE images and T2 maps are heavily corrupted by undersampling artifacts and noise. 

MS-ResNet removes these undersampling artifacts and suppresses the noise. Figure 5(b) 

shows MS-ResNet T1 mapping performance on the brain of a healthy test subject. Although 
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the input images are heavily corrupted by noise and undersampling artifacts, MS-ResNet 

outputs TI images and generates T1 maps comparable to NLR3D. Results of T1 mapping 

experiments in the abdomen are shown in Figure 7 for (a) a healthy volunteer and (b) a 

subject with liver lesions. Due to the extremely high acceleration rate (R = 37.7), input 

images reconstructed with NUFFT are dominated by streaking artifacts and noise. MS-

ResNet is able to process these images to yield high quality TI images and T1 maps. In Fig. 

6(a), T1 maps from MS-ResNet reveal sharp delineation of the structures of the kidneys. In 

Fig. 6(b), a lesion within the liver is clearly depicted in the MS-ResNet T1 map. It is worth 

emphasizing that although MS-ResNet was trained using only data from healthy subjects, it 

is able to yield high quality TE images and T2 maps on subjects with pathology as illustrated 

in this case. Table 3 provides the results of an ROI analysis, which compares MS-ResNet 

and NLR3D reconstructions on T2 and T1 brain, and T1 abdomen datasets. The largest mean 

T2 deviation between MS-ResNet and NLR3D was 5.2 ms or 5.4% (ROI 6). The largest 

mean T1 deviation between MS-ResNet and NLR3D was 38 ms or (ROI 6 in T1 abdomen).

3.4. Evaluation of network generalization

Figure 7(a) shows the reconstructed T2 maps from data acquired with bit-reversed view 

ordering and pseudo golden angle view ordering, respectively. Although MS-ResNet was 

trained only using data acquired with bit-reversed view ordering, Fig. 7(a) illustrates that 

MS-ResNet is relatively insensitive to the view ordering in radial acquisitions. Figure 7(b) 

shows the reconstructed T2 maps from data acquired with a 16-channel head coil and a 32-

channel head coil, respectively. It can be observed that although MS-ResNet was trained 

only using data acquired with the 16-channel head coil, MS-ResNet reconstruction of the 

32-channel data is comparable to the T2 map obtained using the 16-channel data.

4. Discussion

In this study, we presented a DL-based MR parameter mapping approach which does not 

require fully sampled data for training. The proposed approach yields high quality contrast-

weighted images and accurate parameter maps using training images obtained from 

accelerated acquisitions. It is interesting to observe that the proposed MS-ResNet supervised 

with NLR3D reconstructions outperforms NLR3D itself. There are inherent similarities as 

well as significant differences between the model-based CS techniques such as NLR3D and 

the proposed DL-based reconstruction: NLR3D identifies similar patches around a given 

patch using block matching and enforces low-rankness on the 3D (spatial and temporal) 

patch group. An important parameter in NLR3D is the search window size, which defines 

the region where similar patches are found. If the search window size is too small, the 

number of similar patches will be limited, limiting the ability of NLR3D to exploit non-local 

low-rank constraints. However, increasing the search window size beyond a limit does not 

necessarily improve performance, although it leads to a significant increase in the 

complexity of the block matching step. MS-ResNet is trained using patches which are 

analogous to the search window in NLR3D. Rather than explicitly enforcing a low-rank 

representation of patches within the search window, MS-ResNet learns complex nonlinear 

features that provide a compact representation of the patch data through training. Overall, 

NLR3D can be seen as a more traditional approach where the compact representations (i.e. 
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low-rankness of patches) are predetermined through expert guidance, whereas MS-ResNet 

learns its representations directly from the training dataset. Importantly, while NLR3D only 

considers non-local low-rankness within the image of a single data, MS-ResNet is able to 

learn compact representations across the entire training data.

A major advantage of the proposed approach over the model-based CS techniques is its 

computational time. Long reconstruction times required by CS methods impede their 

widespread adoption in the clinic. The proposed approach eliminates this barrier by shifting 

the major computational burden to an off-line training phase. Another important advantage 

of the proposed approach is that it utilizes lightweight network architecture and patch scale 

training and can yield good performance even with small amount of training data (see the 

Supplementary Material for details). This is particularly useful in applications where large 

training data sets are difficult to obtain. It should be noted that image scale training may lead 

to enhanced performance compared to patch scale training in some applications but requires 

larger training sets. We have demonstrated that the use of images reconstructed with model-

based CS techniques as labels enables the use of CNN-based image reconstruction methods 

in applications where fully sampled reference images are difficult to obtain.

There is growing interest in using DL methods for MR parameter mapping. Recently, the use 

of DL for T2 mapping in overlapping-echo detachment planar imaging was proposed by Cai 

et al. [29]. The authors used the ResNet architecture from He et al. [55] to learn the mapping 

between the overlapping echo images and T2 maps using simulated training data. In 

comparison, we proposed a novel multi-scale ResNet architecture, which aims to increase 

the receptive field of the network through multi-scale processing. This larger receptive field 

can be effective in eliminating the globally distributed streaking artifacts which occur due to 

radial undersampling. We have also chosen to exclude batch normalization layers from our 

network. The original ResNet architecture with batch normalization layers was proposed for 

high-level computer vision tasks such as image classification or object detection. Recent 

works [51, 56] suggest that batch normalization of features may restrict the flexibility of the 

networks and/or decrease the network performance in image reconstruction or estimation 

problems. Our MS-ResNet is also significantly deeper than the network used by Cai et al. 
[29] (32 ResBlocks vs. 4 ResBlocks). This is relevant because the performance gains 

between conventional CNNs and ResNet architectures are particularly significant in deeper 

networks [55]. In addition, we have trained our network directly using in vivo data instead of 

simulated training data, eliminating the need to simulate imperfections that may occur 

during in vivo imaging. Finally, our network was designed to work with data obtained from 

RADTSE [47] and IR-radSSFP [19] sequences which yield significantly higher resolution 

(T2 mapping: 0.50 mm × 0.50 mm knee/0.69 mm × 0.69 mm brain, T1 mapping: 0.83 mm × 

0.83 mm abdomen/0.69 mm × 0.69 mm brain) in comparison to the resolution (1.72 mm × 

1.72 mm) of the OLED imaging used by Cai et al. [29].

It is also worth noting that Liu et al. [30] developed a direct CNN mapping from the 

undersampled images to T2 parameter maps with model-augmented data consistency for 

accelerated T2 mapping of the knee. The authors acquired non-accelerated knee data for 

supervised training using a Cartesian multi-echo spin echo T2 mapping sequence. In 

contrast, we used highly efficient and motion robust radial sequences in both T1 mapping 
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and T2 mapping, which allow for much higher acceleration rates (up to R = 37.7 vs. up to R 
= 8.0). In addition, we use constrained reconstructions as reference for network training, 

which eliminates the need for fully-sampled reference data. Our approach enables 

supervised learning in applications where a fully-sampled reference is difficult to acquire in 
vivo.

This study has several limitations which may present opportunities for future research. 

While deciding on the architecture of MS-ResNet (see Supplementary Material Fig. S2), we 

have made empirical choices on architectural parameters such as the number of layers, 

number of filters per layer, and filter sizes. Although these parameter values yield good 

results as shown in this study, they may not be optimal. We have also shown that the MS-

ResNet trained using data from healthy subjects is able to provide high quality contrast-

weighted images and parameter maps on subjects with pathology. Although this example 

illustrates the network’s ability to generalize, we are not strictly restricted to training the 

network using data from healthy subjects. This limitation is due to the relatively small 

number of subjects recruited for this proof of concept study. A larger study with both healthy 

subjects and subjects with disease would be beneficial to further evaluate the proposed 

technique in a clinical setting.

In future work, architectural refinement such as replacement of the ResNet blocks with 

DenseNet [57] blocks, which have been shown to have compelling advantages over earlier 

DNN architectures, may further improve the performance of the network. The proposed 

approach was designed to work with magnitude data. However, since MRI data is in general 

complex valued, changes to the network architecture and training procedure to enable the 

network to work with complex valued data may yield enhanced performance. This is an 

active area of research [40–44]. We have chosen l1 loss over l2 loss for network training as 

l2 loss is more prone to losing high resolution textures of images [51, 58]. Recent works 

[59–63] suggest that use of adversarial loss functions can further improve preservation of 

high frequency details. Incorporation of these loss functions into the proposed framework 

may result in further improvements in image quality. Our proposed network produces multi-

contrast images which are then used to fit to the corresponding signal models to produce the 

parameter maps. Liu et al. [30] recently evaluated the performance of such two-step fitting 

vs. direct parameter mapping approaches. Their study found that the two methods perform 

similarly except when the SNR is low, in which case, the two-step approach may amplify 

noise. Thus, an extension of the proposed method to direct parameter mapping warrants 

further investigation and may yield improved reconstruction performance in low SNR 

applications.

5. Conclusion

Magnetic resonance parameter mapping enables quantification of tissue relaxation 

parameters. However, conventional parameter mapping approaches require long data 

acquisition times. Although accelerated data acquisition methods were proposed in 

parameter mapping applications, many of these methods require constrained reconstruction 

techniques which are computationally intensive, and, thus, impractical for routine clinical 

use. In this work, we presented an MR parameter mapping framework, which combines 
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accelerated radial data acquisition with a multi-scale ResNet reconstruction. The 

performance of the proposed approach was evaluated on T1 and T2 mapping applications. 

The results suggest that the proposed DL-based approach yields more accurate parameter 

maps than model-based CS approaches using undersampled acquisitions. The proposed 

framework can potentially enable deep learning driven image reconstruction for parameter 

mapping applications, where fully sampled training data is unavailable.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Network reconstruction pipeline. (a) The proposed training strategy involves creation of 

input and target patches from training data. For input data, undersampled k-space data at 

each TE is processed using NUFFT followed by coil sensitivity weighted combine and 

subspace filtering using pre-estimated subspace basis. For target data, the radial k-space data 

is processed using a model-based CS reconstruction. Patches are extracted from the resulting 

magnitude images and used for supervised learning. In addition, estimated subspace basis 

and statistics of training data are used during pre-processing and post-processing. (b) For 

testing/deployment, undersampled k-space data at each contrast is processed using NUFFT 

and the coil images are combined using coil sensitivity weighted combination. Note that 

during the testing phase patch extraction is unnecessary since the convolutional kernels can 

be applied to images.
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Figure 2: 
Representative TE images and T2 maps of a test subject. Reference images on the right were 

obtained using fully sampled k-space data. The fully sampled k-space data were 

retrospectively undersampled (R=8) and reconstructed by the other methods for comparison. 

The bounding box on the reference image indicates the enlarged muscle region.
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Figure 3: 
Representative TE images and T2 maps of a test subject at (a) R = 12 and (b) R = 16. 

Reference images on the right were obtained using fully sampled k-space data. The fully 

sampled k-space data were retrospectively undersampled and reconstructed by the other 

methods for comparison. The bounding box on the reference image indicates the enlarged 

muscle region.
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Figure 4: 
The T2 error histograms of NUFFT, Joint l1, 2, NRL3D, and the proposed MS-ResNets (MS-

ResNet-AR and MS-ResNet-FR) for the retrospectively undersampled (R=8, 12, and 16) 

knee data of test subject 1, 2, and 3.
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Figure 5: 
T2 mapping and (b) T1 mapping comparison on the brain data of a healthy subject. NUFFT, 

MS-ResNet, and NLR3D constitute the input, output, and target images, respectively, of the 

proposed network. Early-contrast images, late-contrast images, and parameter maps 

reconstructed by the three methods are presented.
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Figure 6: 
T1 mapping comparison on the abdomen data (R=37.7) of a (a) healthy subject (b) a subject 

with a liver lesion. NUFFT, MS-ResNet, and NLR3D constitute the input, output, and target 

images, respectively, of the proposed network. Early TI images, late TI images, and T1 maps 

reconstructed by the three methods are presented.
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Figure 7: 
The generalization of proposed approach to (a) variable undersampling patterns and (b) 

varying sensitivity maps on T2 mapping of the brain. (a) T2 maps were reconstructed from 

data acquired with bit reversed and golden angle view ordering (at the same undersampling 

rate) respectively, using the same network trained on the data acquired with bit reversed 

view ordering only. The resulting T2 maps together with the T2 maps obtained using NLR3D 

method are shown. (b) T2 map were reconstructed from data acquired with a 16-channel coil 

and a 32-channel coil respectively, using the same network trained on the data acquired with 

the 16-channel coil only. The resulting T2 maps together with the T2 maps obtained using 

NLR3D method are shown.
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Table 1:

Reconstruction time analysis of MS-ResNet and Gadgetron nonlinear conjugate gradient (NLCG) algorithm. 

Non-uniform Fast Fourier transform (NUFFT) is the major computation for non-Cartesian k-space data 

reconstruction using NLCG. Oversampling ratio is a critical factor of NUFFT that can be used to trade 

accuracy for computational time reductions as shown in the table.

Time (ms/slice)

Data Dimensions
a Gadgetron NLCG MS-ResNet

os = 1.2 os = 2.0 os = 1.2 os = 2.0

T2 knee 320,512,15,8 6601.4 9212.5 82.3 95.3

T2 brain 320,256,16,16 9697.2 14438.3 102.2 125.7

T1 brain 320,512,16,32 18740.0 25914.0 158.8 194.3

T1 abdomen 384,512,20,32 29181.8 73756.3 265.7 486.4

a
From left to right, the values denote number of readout points, number of total radial lines, number of coils, and number of contrasts.
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Table 2:

The full width at half maximum (FWHM) and area under the curve within [−5,5] ms (AUC [−5,5]) of the T2 

error histogram shown in Figure 1 for three test subjects. Smaller FWHM and larger AUC [−5,5] are better. 

“MS-ResNet-AR” and “MS-ResNet-FR” represent the proposed MS-ResNet trained using accelerated 

reference and fully sampled reference, respectively.

Test Subject 1 Test Subject 2 TestSubject3

R = 8 R = 12 R = 16 R = 8 R = 12 R = 16 R = 8 R = 12 R = 16

FWHM (ms)

NUFFT 30.71 39.01 46.06 27.17 34.06 40.34 30.21 38.87 46.24

Joint l1, 2 17.46 18.14 18.42 16.34 17.24 17.86 17.59 18.29 18.52

NLR3D 15.39 15.71 15.43 14.71 15.46 15.56 15.72 16.14 15.83

MS-ResNet-AR 14.21 14.46 14.57 13.62 14.21 14.59 14.04 14.32 14.38

MS-ResNet-FR 13.34 14.13 14.86 12.76 13.69 14.49 13.10 13.91 14.48

aAUC[−5,5]

NUFFT 0.212 0.167 0.142 0.219 0.180 0.158 0.217 0.173 0.151

Joint l1, 2 0.344 0.326 0.314 0.343 0.333 0.328 0.341 0.329 0.331

NLR3D 0.385 0.370 0.366 0.378 0.371 0.372 0.381 0.371 0.380

MS-ResNet-AR 0.409 0.395 0.382 0.401 0.398 0.392 0.413 0.406 0.408

MS-ResNet-FR 0.431 0.405 0.381 0.429 0.417 0.401 0.436 0.417 0.409

a
AUC [−5,5] denotes the normalized area under the curve within the interval [−5,5] ms.
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Table 3:

ROI mean and standard deviation of parameter values of NLR3D and MS-ResNet methods for three parameter 

mapping applications are compared.

Data ROI NLR3D (ms) MS-ResNet (ms) Parameter Map

T2 brain 1 74.1 ±1.6 74.5 ±1.0

2 71.1 ±1.3 70.5 ±1.3

3 66.9 ±1.3 65.4 ± 0.9

4 158.7 ± 29.4 154.9 ± 27.6

5 117.6 ± 34.4 116.1 ± 32.4

6 98.5 ± 29.3 93.3 ± 26.7

T1 brain 1 889 ± 44 877 ± 33

2 852 ± 53 856 ± 37

3 869 ± 52 850 ± 35

4 1575±306 1550±293

5 2168 ± 571 2282 ± 563

6 2072 ± 480 2053±464

T1 abdomen 1 692 ± 58 690 ± 50

2 741± 76 738 ± 54

3 1470±243 1467±255

4 1261 ±197 1286±200

5 1236±76 1240 ±89

6 1201±110 1239 ±104
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