Table 2.
Dynamic Arrelano-Bond panel data model estimation of corruption and risks on stock returns.
VARIABLES | (1) |
(2) |
(3) |
(4) |
(5) |
(6) |
---|---|---|---|---|---|---|
CORR_AB | CORRDA_AB | CORRLO_AB | CORRBQg_AB | CORRBQ_AB | CORRINS_AB | |
L.SR | −0.0898∗∗ (0.0382) |
−0.0917∗∗ (0.0381) |
−0.0920∗∗ (0.0382) |
−0.0868∗∗ (0.0384) |
−0.0926∗∗ (0.0381) |
−0.0924∗∗ (0.0382) |
CORR | −0.0103∗ (0.00553) |
−0.0165 (0.0102) |
−0.0351∗∗∗ (0.0131) |
|||
LO | 0.0173∗ (0.00947) |
0.0176∗ (0.00945) |
0.0239∗∗ (0.0101) |
0.0177∗ (0.00947) |
0.0240∗∗ (0.0101) |
0.0334∗∗∗ (0.0112) |
BQ | 0.0313∗∗ (0.0151) |
0.0314∗∗ (0.0150) |
0.0317∗∗ (0.0151) |
0.0316∗∗ (0.0150) |
||
CORRDA | 0.00151 (0.00220) |
−0.00239 (0.00196) |
||||
CORRLO | −0.00328∗ (0.00171) |
−0.00329∗ (0.00171) |
−0.00812∗∗ (0.00347) |
|||
CORRBQ | 0.0113∗∗ (0.00556) |
0.0110∗ (0.00609) |
||||
LYP | 0.0512 (0.0519) |
|||||
YP | 3.48e-06 (9.26e-06) |
|||||
GYP | 0.000471 (0.000861) |
|||||
EM | 0.201∗∗∗ (0.0247) |
0.200∗∗∗ (0.0247) |
0.200∗∗∗ (0.0247) |
0.201∗∗∗ (0.0247) |
0.200∗∗∗ (0.0247) |
0.200∗∗∗ (0.0247) |
GM | −0.0997∗∗∗ (0.0336) |
−0.0994∗∗∗ (0.0336) |
−0.0993∗∗∗ (0.0336) |
−0.0999∗∗∗ (0.0336) |
−0.0991∗∗∗ (0.0336) |
−0.0993∗∗∗ (0.0336) |
Constant | −0.524 (0.433) |
−0.101∗∗ (0.0442) |
−0.142∗∗ (0.0691) |
−0.0391 (0.0359) |
−0.123∗∗∗ (0.0428) |
−0.0861∗∗ (0.0374) |
Observations | 884 | 884 | 884 | 884 | 884 | 884 |
Number of ID | 4 | 4 | 4 | 4 | 4 | 4 |
Note: Standard errors in parentheses; ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1 Sargan test of overidentifying restrictions; H0: overidentifying restrictions are valid Chi2(220) = 370.7 (0.0000); CORRBQg denotes estimation of the interaction effect of CORR and BQ with economic growth (GYP) as control variable; YP demotes per capita income.