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Abstract

There has been a recent surge in the use of cryo and/or vacuum specimen preparation and transfer 

systems to broaden the scope of research enabled by the microscopy technique of atom probe 

tomography. This is driven by the fact that, as for many microscopes, the application of atom 

probes to air- and temperature-sensitive materials or wet biological specimens has previously been 

limited by transfer through air at room temperature. Here we provide an overview of areas of 

research that benefit from these new transfer and analysis protocols, as well as a review of current 

advances in transfer devices, environmental cells, and glove boxes for controlled specimen 

manipulation. This includes the study of catalysis and corrosion, biological samples, liquid-solid 

interfaces, natural aging, and the distribution of hydrogen in materials.
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1. Introduction

The continued advancement of many disciplines of science relies heavily on advanced 

microscopy, especially medical, soft matter, plant, materials, and geological science. 
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However, many of the highest resolution microscopes require high-vacuum environments, 

limiting their application to materials that remain stable in a vacuum and ruling out hydrated 

samples such as soft biological matter unless it is fixed or cryogenically prepared. Moreover, 

modern microscopy workflows typically involve the examination of a specimen in several 

different microscopes, or the preparation of a specimen in one type of instrument and 

analysis in another. Transfer through air thus creates further challenges for the study of air-

sensitive or cryo-frozen materials.

Atom probe tomography (APT) is a powerful microscopy technique that provides detailed 

three-dimensional (3D) maps showing the arrangement of atoms within nanoscale volumes 

of matter. APT has contributed to major advances in materials science, from alloy design [1] 

to the development of semiconductors [2],the dating of geological materials [3] and has even 

provided new information about the structure of hard biological samples such as teeth and 

bone [4]. As for many microscopes, the application of the atom probe to air- and 

temperature-sensitive materials or wet biological specimens has been limited by through-air, 

room-temperature specimen transfer.

Recently, there has been major development in cryogenic preparation processes to enable 

electron microscopy of biological samples [5]. The use of cryogenic stages enables focused 

ion beam (FIB) preparation of cryogenically frozen specimens for analysis in scanning 

electron microscopes (SEM) and transmission electron microscopes (TEM). In 2006, Marko 

et al. [6] provided direct evidence that vitrified specimens prepared by FIB could be 

transferred, without contamination, to a TEM, where it was confirmed by analysis of the 

crystal State that no significant warming had occurred during transfer. In a follow-up study, 

the same group was able to show that this technique could be applied to whole frozen-

hydrated cells such as Escherichia coli (E. coli) [7]. Over the last decade, advanced 

cryogenic-based fabrication methods have evolved, becoming more standardized, and many 

options are now commercially available for the biological electron microscopy community 

[8].

Owing to the unique shape of an atom probe sample, the specific sample holder required, 

and the time-consuming insertion process through three vacuum chambers (required to 

ensure that the analysis chamber remains at ultrahigh vacuum (UHV), the developments 

within the biological sciences community are not directly transferrable to APT. Researchers 

hoping to use APT for air-and temperature-sensitive samples require transfer systems 

capable of transferring atom probe samples between the atom probe analysis chamber and 

another experimental platform, either under vacuum or under both vacuum and cryogenic 

conditions. Here we provide some background on recent atom probe work that has been 

conducted in the research areas that are benefiting from the development of vacuum and 

cryo transfer systems. This is followed by a review of the new technologies and the impact/

potential impact they are having in these fields.

2. Key research drivers

There are a number of research areas that have been driving the development of 

environmentally controlled transfer between the atom probe and sample preparation and 
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analysis platforms. Most prominent are catalysis, hydrogen embrittlement, and the study of 

biological matter. Substantial research has already been conducted in each of these areas 

using traditional non-cryo and non-vacuum transfer. We start by reviewing this background 

work before introducing the new technologies and the new projects that they have enabled.

2.1. Catalysis

Catalysis is an essential part of the world's manufacturing processes. Understanding the 

composition of surfaces and the reactions that take place at these surfaces in different 

chemical environments is essential for research into catalytic processes. The geometry of 

field ion microscopy (FIM) and APT samples is particularly advantageous for catalytic 

studies, exposing multiple crystallographic faces on a curved surface, providing a convenient 

close approximation for the multifaceted surfaces of catalyst nano-particles. This is in 

contrast to the more traditional surface-sensitive science studies that use single crystals, 

which do not permit examination of interplane diffusion or the role of highly stepped 

surfaces. This benefit has been exploited by FIM studies designed to investigate fundamental 

surface diffusion behavior, as well as how different gaseous/temperature exposures can 

cause reconstruction and/or segregation at the surface. The extensive literature on thermally 

activated diffusion kinetics of various individual adatoms within single crystallographic 

regions was reviewed by Kellogg in 1993 [9]. In related studies, researchers have also used 

APT to examine the mechanisms and kinetics of oxidation within the bulk of catalytically 

important alloys [10–14]. More recently, a study related to the stability of catalysts during 

the oxygen evolution reaction was undertaken using APT as the working electrode in an 

electrolytic cell [15].

In the late 1970s, Tsong et al. [16, 17] produced seminal works on catalytic materials by 

demonstrating the suitability of one-dimensional (1D) atom probe to carefully examine the 

surface and near-surface layers of individual crystallographic planes in various Pt-group 

alloys. These studies were greatly enhanced by the added capability to anneal specimens in 

vacuo or in the presence of trace gases such as oxygen and sulfur dioxide. They 

demonstrated very clearly that pronounced surface segregation can occur in binary and 

higher order alloys, with oscillations or monotonic fluctuations in composition visible within 

discrete atomic layers, highly dependent on environmental exposure conditions such as time, 

temperature, and the presence of even trace (parts per million) levels of chemisorbing 

species such as sulfur [18]. These works still stand as striking proof as to the need for 

nanoscale characterization of catalyst surfaces, where often the active surface layers have 

compositions that greatly deviate from bulk measurements or theorized values. The 

sensitivity of the surface chemistry to the environment underlines the need for the use of 

specialized reaction cell systems for controlled exposures.

2.2. Hydrogen

Understanding hydrogen in materials is extremely important to a number of industries. For 

example, the development of hydrogen as a clean energy source requires the development of 

hydrogen storage materials and fuel cells. Hydrogen plays an important role in catalysis and 

corrosion. Hydrogen also wreaks havoc in many alloy systems, leading to embrittlement that 

can cause catastrophic failure. For a comprehensive review of microstructural hydrogen 
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mapping (with a focus on steels), the reader is referred to a 2017 review article by Koyama 

et al. [19].

However, understanding the distribution of hydrogen within material structures is an 

enormous challenge for materials scientists. Because the hydrogen atom is so light and 

mobile, it is almost impossible to observe directly with conventional microscopy techniques. 

Hydrogen is readily detected by APT, however, it is challenging to determine whether its 

origin arises from the specimen itself or from background hydrogen that is known to be 

present in the UHV chamber. To provide certainty about the origin of the hydrogen, samples 

can be charged with deuterium, the less common stable isotope of hydrogen (0.015% natural 

abundance). This approach allows the deuterium to serve as a marker for hydrogen, so that 

the location of the hydrogen atoms relating to the experiment can be determined 

unambiguously, noting that the chemical properties of hydrogen and deuterium are nearly 

the same, with a difference in the diffusion coefficient of deuterium in most materials being 

slightly lower due to its larger mass. This approach was first demonstrated in 2002 by 

Kesten et al. [20], by using APT to identify the location of deuterium in paladium/niobium 

and iron/vanadium multilayers. In this work, a depletion of deuterium in the vanadium and 

niobium layers was identified at the multilayer interface resulting from an intermixing of 

adjacent metal atoms, suggesting that the depletion of deuterium was a result of chemical 

intermixing. More recent research may suggest that this observation was a result of diffusion 

and/or ion trajectory aberrations induced during field evaporation [21–23]. Again in 2009, 

Gemma et al. [24] used APT to observe a high concentration of deuterium atoms in the 

vanadium layers of a deuterium-loaded iron/vanadium multilayer specimen. Haley et al. [25] 

were also able to show that a deuterium signal could be identified in two hydride-forming 

systems, palladium/rhodium and vanadium, by ex situ deuterium gas charging. However, the 

amount of deuterium detected differed significantly from theoretically predicted values and 

the specimens oxidized during transfer to the atom probe. They concluded that an in situ 
approach could reduce transfer times and would limit, if not eliminate, the possibility of 

oxidation.

2.3. Bioorganic and organic materials

2.3.1. Hard biological matter—Although solid/hard biological materials, such as teeth, 

bone, and even certain proteins, do not commonly require special environmental or 

cryogenic transfer tools for atom probe analysis, two major developments were required to 

enable APT of these types of materials. First, the use of laser-assisted field evaporation, 

which allows for the study of non-conductive specimen [26], and second, the application of 

FIB methods for specimen preparation [27, 28], which make it possible to prepare needle-

shaped specimen from solid biological samples with minimal damage.

A number of biomineralized materials, such as human and animal tooth enamel [29–32], 

chiton tooth [4], elephant tusk dentin [33], bone [34], fish scales [35], and marine 

foraminiferal calcite [36], have been successfully examined by APT. It has been possible to 

provide valuable insights into compositional heterogeneities at a nanoscale spatial 

resolution. For example, APT has revealed that dental enamel (rodent and human) contains a 

magnesium-rich amorphous calcium phosphate phase between the nanowires that make up 
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the enamel structure [31]. Dental decay/caries has been shown to progress along 

magnesium-rich regions, mainly in the center of enamel nanocrystals [32]. APT has also 

helped decipher the microstructure-mechanical property relationships and proposed growth 

mechanisms within mouse incisor enamel, where the mechanical behavior was attributed to 

the presence of the magnesium-rich phase at grain boundaries, rather than organic phases 

[30]. Analysis of biological samples has provided new information about the arrangement of 

collagen fibrils as well as segregation of key elements such as sodium-to-organic calcite 

interfaces in marine foraminiferal calcite (i.e., the shells of marine organisms), as 

highlighted in Fig. 1 [34, 36]. More recently, APT was shown to be a promising method to 

examine the distribution of atoms in the hard biomaterials that are found in certain parts of 

insects such as the legs, jaw, teeth, claws, and stings of arthropods [37]. These structures are 

not biomineralized; instead, they are predominantly organic but enriched in heavy elements 

(e.g. zinc, manganese, and copper). It was shown that the zinc in ant teeth is evenly 

distributed and that the Zn is incorporated gradually over the life of the species, with more 

zinc being observed in adults than in juveniles.

2.3.2. Polymers—Prosa et al. [38] studied conducting poly(3-alkylthiophene) polymers 

deposited on presharpened Al tips. The purpose of this study was to better understand the 

applicability of APT to organic materials, and it was suggested that these polymers might be 

able to act as host materials for embedding other materials (organic/ biological materials or 

nanoparticles). Two methods were developed for application of the polymer film on the tip. 

In the first, a tip was dipped in a polymer solution and the solution was allowed to evaporate 

leaving behind a coating of polymer. The second utilized electrospray ionization deposition. 

In both cases, molecular fragments were detected, rather than single atoms. In order of 

typical relative abundance, these fragments were identified as C2H5
+, CH3

+, C2H4
+, followed 

by C3H7, 8
+ /SC+ and SCH+.

2.3.3. Cellular structures—Most soft biological materials (e.g., cellular organelles, 

proteins, etc) exist within a hydrated environment, making their preparation and analysis in 

the high to ultrahigh vacuum environment of the FIB/SEM and the atom probe challenging. 

Literature relating to the examination of soft, organic matter is thus currently limited. In 

2012, researchers explored the potential of APT to map the structure of unstained, freeze-

dried mammalian cells [39]. Peaks corresponding to C, Na, and K ions showed distinct 

patterns of spatial distribution within the cells, indicating the potential of APT for mapping 

the subcellular distribution of atomic species, such as labeled metabolites. In 2016, Adineh 

et al. [40] examined a polymyxin-susceptible strain of Acinetobacter baumannii gram-

negative bacteria, a so-called ‘superbug’. After culturing, the bacterial cells were fixed in 4 

% paraformaldehyde in phosphate-buffered saline (PBS) and air-dried on silicon nitride 

membranes. Needle-shaped specimens were prepared by FIB at room temperature and a 

silver coating was applied. Data presented was identified as being from the intracellular 

domain and cell envelope regions of the bacterial cell. Although the emphasis of this work 

was on the demonstration of the methods for atom probe examination, the distinct mass 

spectra from drug-susceptible and drug-resistant strains, primarily at the cell envelope, were 

able to shed light on the compositional changes involved in the development of drug-
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resistant mechanisms. The work by Adineh et al. relied on fixed biological samples to create 

a bulk solid specimen using conventional FIB. Chemical fixation is a common process to 

preserve the structure of biological samples in resin for imaging slices (histology).

The chemical fixation of biological samples in organic resins is not ideal [41]. Firstly, 

chemical fixation can alter the sample on a molecular level and can create artifacts that 

interfere with interpretation of the cellular ultrastructure and destroy the distribution of ionic 

species. Secondly, the organic resin matrix of the chemical fixative is difficult to distinguish 

from the bioorganic specimen because the resin and biomaterial are made of the same 

elements. These issues have been a driving factor in the development of cryo-based 

specimen preparation methods for electron microscopy analysis of bioorganic structures 

‘frozen’ in their native state. By retaining water ice, instead of replacing it with the chemical 

fixative organic resin, it may be possible to distinguish the bioorganic materials, potentially 

opening up the technique of APT to direct mapping of the macromolecular structure and 

ionic gradients in native biological systems.

To minimize or eliminate structural artifacts in cryo-prepared specimens in water ice, great 

care must be taken to properly freeze specimens. In specimens of sufficiently small volume, 

rapid plunge freezing of aqueous solutions causes them to transform directly to a vitreous 

ice phase that preserves the original structure, avoiding the damage that normally occurs 

during volume expansion when crystalline ice forms during conventional freezing. The first 

thermally assisted field ionization and time-of-flight studies on aqueous KCl in a vitreous 

state on tungsten and gold surfaces were carried out by Stintz and Panitz in 1991 [42]. 

Images of the desorbing ions showed no order in the ice layer on a nanometer length scale, 

and it was concluded that the ice was vitreous. They achieved the rapid cooling of the fluid 

to cryogenic temperatures by plunging the specimen tip into a container of liquid propane. 

Once cooled, the tip was transferred to the atom probe using a cooled anode assembly that 

completely encapsulated the tip[43, 44].

More recently, Adineh et al. developed a unique approach to sandwich biological materials 

(e.g., metal nanoparticles and bacterial cell culture) between a tungsten needle tip and a 

graphene coating [45]. This was accomplished by lowering a small-diameter metal ring with 

a suspended droplet of biomaterial sample with a graphene film floating on top, over a 

tungsten needle tip. Importantly, they report that the mass resolving power is significantly 

enhanced by the graphene coating, due to the improvement in the tip conductivity, which led 

to improved compositional accuracy upon analysis of the 3D data. This method was used to 

sandwich a water nanomembrane (WNM) onto the apex of a tip. The presence of such a 

layer was confirmed by transmission electron microscopy. The impermeability of the 

graphene prevents the water from evaporating or subliming in the vacuum. It is possible that 

such a sample could be host to biological (or other) specimens for analysis. Despite the 

graphene preventing the desiccation of the specimen under the high to ultrahigh vacuum 

conditions of the SEM, TEM, and APT tools, it is unknown how the slow freezing of the 

specimen in the APT analysis chamber would affect the specimen (i.e. vitreous or crystalline 

ice formation). We envision that a possible addition to the workflow would be to rapidly 

cryogenically freeze the graphene-encased sample ex situ followed by environmentally 

protected transfer to the atom probe analysis chamber.
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2.3.4. Biomolecules—The field of structural biology is dedicated to revealing the 3D 

structure of proteins and how they relate to their function in cells. This information helps to 

understand how certain proteins interact with each other, with the ultimate goal of using the 

knowledge of the 3D structure of critical proteins to develop new treatments for disease. 

Until recently, x-ray crystallography was the primary method for determining 3D structures, 

however, cryo electron microscopy is rapidly becoming the tool of choice for these studies 

[46]. Single-particle cryo TEM can be used to determine the 3D structure of individual 

molecules, such as proteins in solution, but these structures can vary when the proteins are in 

their native state within tissue. Cryo tomography techniques such as TEM tomography and 

sequential cross-sectioning methods that use a FIB or a microtome, provide 3D structural 

information and can even be correlated with data from light and optical microscopy 

techniques to identify the location of specific biomolecules [47]. However, these techniques 

do not provide the resolution of the single-particle methods. To be able to identify the 

structure of proteins (or other molecules) with APT would be revolutionary, but the mass 

spectral resolution of APT coupled with a relatively low analysis yield are issues that pose 

major challenges, even if cryo samples were successfully prepared, transferred, and 

analyzed.

Early attempts to image individual biological molecules by field emission technologies [48–

50], motivated by the high image contrast, magnification, and resolution of field emission 

techniques, have been reviewed by Kelly et al. [51] and were largely unsuccessful. The first 

correlated, and thus verifiable, images of biomolecules were made in the early 1980s [52–

55] in afield desorption point projection microscope. Ferritin molecules on a tungsten tip, 

identified in a TEM by their iron-rich center, were correlated to the point projection images 

[52]. Following on from the initial success of the ferritin studies, this research was expanded 

to include the successful study of unstained nucleic acids [56]. Although this visualization 

method was able to provide the expected high contrast, magnification, and resolution, it was 

not able to provide any new information relating to the composition of the molecules.

More recently, Perea et al. and Sundell et al. have separately reported on atom probe analysis 

of individual protein molecules embedded in a solid organic and inorganic matrix, 

respectively. Perea et al. reported on the composition of individual ferritin protein molecules 

providing an average radial composition to reveal an Fe-rich mineral core, surrounded by a 

bilayer rich in P followed by a layer rich in Na [57]. The results are consistent with previous 

indirect determinations of P-enriched surfaces of mammalian ferritins. The results 

demonstrated a viable application of APT to study complex biological interfaces. Although 

this was the first report of APT being used to directly measure the 3D composition of an 

ensemble of individual proteins, the composition of the organic resin matrix prevented the 

unambiguous distinction from the proteins. Similarly, Sundell et al. [58] examined a well-

characterized antibody, rabbit immunoglobulin G (IgG), by using a sol-gel method to embed 

individual proteins in an amorphous solid silica matrix, followed by a standard FIB liftout to 

prepare the required needle-shaped specimen. The resulting data did not contain the 

characteristic peaks of water at 17, 18, and 19 Da, suggesting that the hydration shell around 

the molecule was completely replaced with silica during the condensation process (H and O 

were present throughout the analysis, attributed to contamination, meaning that the presence 
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of water could not be ruled out). By importing the reported structural data for IgG into the 

atom probe data analysis software, it was possible to prepare comparison heat map images 

of the atomic density of carbon between the reported structure and the atom probe data set 

(Fig. 2). Even with the use of an atom probe limited to a detection efficiency limit of 37 %, 

the 3D reconstructions showed good agreement with the protein databank IgG crystal 

structure, with key structural details of the protein visible.

3. Technology development

It is clear that APT is useful for research related to catalysis, hydrogen embrittlement and 

organic materials. However, it has also been established that to harness its full potential 

within these research fields, advances to sample preparation and sample transfer are 

required. Over the years, significant technological advances have been made in advanced 

sample preparation and transfer, and new applications of APT are now being explored [61]. 

Two classes of transfer devices have emerged: 1) coupled devices and 2) shuttle transfer 

systems. Coupled devices refer to direct adaptations affixed to the atom probe, i.e. where 

specimen are directly transferred from an experimental device, such as a gas-phase reaction 

cell, to the atom probe. Such coupled/in situ devices provide a conceptually simple and rapid 

transfer solution, providing ease of use and minimization of surface contamination during 

transfer. However, they limit the analysis to within the confines of the system (i.e., the 

experimental device and the atom probe itself). Shuttle systems refer to the integration of 

various microscopy techniques and experimental platforms through the use of a specimen 

shuttle/suitcase-style transfer device, which can be held under vacuum and/or cryogenic 

conditions. Recent technological developments and the studies enabled at each stage of 

development will be reviewed in this section.

3.1. Developments in coupled transfer systems

Following on from the early catalytic studies, Kruse et al. led an ongoing effort in the 

application of APT to catalysis. Over a number of years, Kruse group et al carried out 

unique studies that involved imaging Pt-group metal specimens by FIM, while 

simultaneously exposing them to low pressures (~10−3 Pa) of reactive gases, such as nitric 

oxide, at elevated temperatures (~500 K) [62–65]. FIM studies, exploring the hydrogenation 

of NO and NO2 over Pt and Pd surfaces using field emission techniques, continue to be 

carried out by the Brussels-based group [66]. Direct exposure of the analysis chamber to 

high temperature/pressure is not suited to modern instruments, which require UHV 

environments to collect data. Research in the field of catalysis has therefore shifted to ‘post-

mortem’ studies, where specimens are exposed to specific environments in a separate 

reaction cell system, physically connected to the atom probe (i.e. a coupled device). After 

specimens are exposed to reactant gases under controlled pressure and temperature, the 

reactor is evacuated to high vacuum (HV) or UHV and the specimens are transferred to the 

analysis chamber for analysis. The catalytic atom probe (CAP), developed at Oxford 

University by Bagot et al. [67] in 2006, was the first example of a postmortem-style system, 

consisting of a reaction cell attached to a 3D atom probe (3DAP). The CAP better 

approximated real-world exposures of heterogeneous catalytic materials by allowing 

exposure to gaseous atmospheres at greater pressures (≤1 bar) and at higher temperatures 
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(≤873 K). The CAP enabled a number of studies on surface segregation trends in binary [68] 

and ternary [69] Pt-group alloys, as well as Au and Ag alloys [70, 71]. Through studying the 

Pt-group alloys by using the CAP, it was determined that the influence of Ru or Ir additions 

on the surface behavior was dependent on which crystal faces were exposed to the NO gas. 

This indicated that controlling which crystal faces are exposed to the reaction gases could 

improve the efficiency of the catalyst particles. The study of Au-Pd alloys revealed that 

exposure of these systems to NO gases at temperatures >300 K induced segregation of Pd 

towards the surface of the alloy. No segregation was observed on alloys prior to gas and 

temperature exposure, contrary to predictions made by Metropolis Monte Carlo simulations, 

which predicted Au segregation at thermal equilibrium. This study revealed that the surface 

concentration of Pd could be controlled through exposure of Au-Pd alloys to NO gases 

under appropriate thermal conditions.

The application of CAP was not limited to catalysis studies. In 2010, Takahashi et al. [72] at 

Nippon Steel in Japan were the first to use this same approach to provide direct observation 

of deuterium, as an indicator for hydrogen, at trapping sites in alloys (i.e. precipitates in 

steels). They achieved this by attaching a ‘deuterium charge cell’ to the storage chamber of a 

3DAP. Incorporated into this particular transfer system was a liquid nitrogen cooled cold 

finger, capable of cooling specimens to <173 K within seconds. Direct charging of 

electropolished needles was performed in a deuterium gas atmosphere of 0.8 atm. Because 

the solubility of hydrogen at 1 atm is very low at room temperature (<0.1 wt%) and there are 

high-potential barriers (~100 kJ/mol) at the steel surface, the tip of the specimen was locally 

heated to 523–573 K to increase the hydrogen solubility and overcome surface barriers. 

Specimens were charged for 5–10 min, and then the heater was removed from the tip 

position and the gas pumped out of the cell. The specimen was rapidly cooled (within a few 

seconds) and kept below 173 K while it was transferred to the analysis chamber (below 70 

K). It was less than 3 min between the heater removal and the insertion to the analysis 

chamber. Using this approach, Takahashi et al. [72] were able to show that hydrogen 

becomes trapped at titanium carbide precipitates in steel. This same approach was later used 

to demonstrate that vanadium carbides also act as hydrogen-trapping sites [73, 74].

To build on the capabilities of the early CAPs, researchers at Iowa State University, in 

collaboration with researchers from Oxford University, developed the first reaction cell to be 

attached to a local electrode atom probe (LEAP) instrument [75]. Initial experiments using 

the 3DAP were limited to voltage-pulsed acquisition and provided only a small field of view. 

By attaching the new reaction cell to a LEAP instrument, experiments could utilise advances 

in APT including laser pulsing mode and a wider field of view [76, 77]. The ability to apply 

a laser pulse to reaction experiments in the new instrumentation expanded the field of 

research from catalytic surface reactions to include the study of non-conductive materials, 

such as materials that had developed large oxidation layers during more aggressive gas 

exposures. Initial results generated from the reaction cell included studies of the early stages 

of oxidation of an Al alloy and surface reactions on Pt alloys, demonstrating the capacity for 

this technique to capture the onset of oxidation on multiple materials [75].

Recently, a gas-phase reaction cell was designed at Oxford University to interface with a 

LEAP 3000X-HR [78] (Fig. 3). This system combined the capabilities of the CAP and the 
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‘deuterium charge cell,’ including the capacity to expose a tip to a variety of gases at or 

below atmospheric pressures and the capacity for gaseous deuterium charging followed 

immediately by cryogenic quenching. The stage assembly is equipped with an electrically 

resistant cartridge heater capable of heating a specimen up to a temperature of 723 K. The 

main chamber used for gas exposure is connected via an isolation valve to a residual gas 

analyzer, providing confirmation as to the quality of the vacuum before gas exposure. This 

system was designed primarily for the analysis of H uptake in various metal systems, and its 

effectiveness for the analysis of H uptake was validated using near-pure Pd (99.95%) under 

deuterium gas exposure. This system was also used to study the onset of oxidation of an Mg 

alloy [79]. Mg alloys were electropolished into needle-shaped specimens, they were then 

directly transferred to the atom probe vacuum system. All specimens were initially analyzed 

by APT to remove any oxide that may have developed during sample preparation. After 

initial removal of the oxide, specimens were transferred to the reaction cell where they were 

exposed to O2. The results indicated that the onset of oxidation of the Mg alloy was affected 

by the presence of H within the sample prior to gas exposure, validating a theory related to 

the mechanisms of Mg oxidation that had been almost disregarded owing to the lack of 

supporting evidence [79].

3.2. Developments in shuttle transfer systems

Coupled/in situ devices provide a simple and rapid transfer solution, providing ease of use 

and minimization of surface contamination during transfer. However, these systems are 

limited in their application as they cannot be used in correlative microscopy studies, and no 

systems of this kind were designed that were able to be applied to the preparation of tips 

from soft matter. These studies require new hardware technology and protocol workflows 

that enable the transfer of specimen between different devices, e.g. between a glove box and 

an atom probe, or a FIB and an atom probe, under controlled conditions. In 2015, Gerstl and 

Wepf [80] developed the first APT-specific cryogenic shuttle transfer system at ETH-Zurich. 

Their transfer system enabled vacuum-cryo-transfer (VCT) between a cryo-modified 

FIB/SEM and a LEAP.

3.2.1. Materials science applications—An early application of the ETH Zürich 

shuttle system was to investigate precipitate formation during natural aging of Al-Mg-Si 

alloys [81]. Natural aging processes that occur in Al alloys before artificial aging are thought 

to negatively impact the mechanical properties of the final alloy. Unfortunately, these 

processes occur rapidly, sometimes in a matter of minutes, and require cryogenic cooling to 

literally freeze the natural aging processes at a given time to explore the evolution of the 

microstructure as the natural aging cycle progresses. In a conventional experiment, the time 

required for the specimen to be transferred from the sample preparation environment to the 

UHV analysis chamber (which is cryogenically cooled) is on the order of an hour or more, 

well beyond the time required for natural aging to occur. Through use of the VCT, 

Dumitraschkewitz et al. were able to reduce the time spent at room temperature to 

approximately one minute [81]. As a result, they were able to experimentally verify that 

clusters of Si are the first to form during the natural aging process. In a later study, the same 

team also used the same approach to demonstrate that specimen size–dependent diffusion in 
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atom probe tips affect the aging and clustering processes, an important consideration for the 

study of microstructural changes via microscopy techniques [82].

The VCT at ETH has also been utilised in studying the role of precipitates in resisting the 

effects of hydrogen embrittlement in steels. In a study by Chen et al. [83], a ferritic steel 

with dispersed V-Mo-Nb carbides was electrochemically charged with deuterium using a 

solution of 0.1 M NaOD in heavy water (D2O). After charging, the specimen was rapidly 

cooled to cryogenic temperatures and transferred via the VCT to the atom probe for analysis. 

The results of this study clearly showed a concentration of deuterium at the V-Mo-Nb 

precipitates, providing direct evidence that hydrogen is trapped within these carbides.

In an initial attempt to develop controlled transfer of atom probe samples at the University of 

Sydney, Eder et al. developed a glove bag transfer system for application to the study of self-

assembled monolayers (SAMs) [84]. SAMs are attractive materials in the field of 

nanofabrication and nanotechnology owing to their surface modification capacity [85]. Gault 

et al. [86] had previously used atom probes to study whether adsorbed species were 

randomly adsorbed molecules or whether these molecules represented an organized SAM. 

This initial research also provided evidence as to the state of disassociated S-H bonds during 

formation of the SAM. Earlier, similar research had been undertaken by Zhang and Hillier 

[87] to show the applicability of APT to the study of adsorbed monolayers. Zhang and 

Hillier used a gold substrate due to its naturally inert nature, enabling the adsorption to occur 

without concern for surface changes induced by oxidation during specimen transfer. 

However, gold does not run well in the atom probe, creating uncertainties in the 

reconstructed data. Similar issues with gold substrates were observed by Stoffers et al. [88]. 

The study by Eder et al. [84] explored the adsorption of thiophene on various substrates, 

including aluminum, platinum and tungsten. The results indicated a substantial variation in 

the way thiophene adsorbs to the substrate surface. It was also noted that an oxide which 

formed on the surface of the tungsten had a strong effect on the adsorption behavior. To 

make a comparison between the three non-oxidized surfaces, it was necessary to use the 

glove bag transfer system to enable dipping and transfer of the tip in an inert environment, 

preventing oxidation. A comparison between ambient air transfer and glove bag transfer for 

a tungsten specimen proved the efficacy of the glove bag system by demonstrating the 

development of a layer of tungsten oxide on the surface during the ambient air transfer and 

an oxide-free surface for the specimen transferred via the glove bag. Results from a variety 

of substrates, Al, Pt, W, and WO, indicated a substantial variation in the way the thiophene 

was adsorbed, providing valuable information about the distribution, density, and even 

desorption energy of thiophene molecules on these different surfaces.

Motivated by the need for inert transfer of specimens to study SAMs, a purpose-built glove 

box for environmentally controlled exposures was installed at the University of Sydney. The 

glove box operates under a dry nitrogen environment with relative humidity levels 

approaching zero. It is designed to be compatible with the Ferrovac VCT system [89] and 

has the capacity to facilitate specimen exchange between the VCT and a TEM holder 

without breaking the cryo chain. The VCT system currently links the glove box with a Ga-

ion FIB/SEM and a LEAP 4000X Si under UHV and cryogenic conditions. The transfer 

system is actively pumped using an ion pump capable of reaching vacuum levels of 10−10 
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mbar and actively cooled by a dewar filled with liquid nitrogen, reaching a stage temperature 

of 185 °C. The FIB/SEM is equipped with a cryo-cooled stage, reaching stable temperatures 

of <145 °C, with full tilt capacity and ~180 ° of rotation.

The first application of this integrated cryo-suite was to investigate deuterated alloys to 

better understand hydrogen embrittlement [90]. Presharpened steel tips were 

electrochemically deuterated, cooled to cryogenic temperatures, and transferred to the atom 

probe for analysis of the deuterium distribution, without frost accumulating on the tip. 

Deuterium was observed at different microstructural features within the steel specimen. For 

the first time, hydrogen was observed at dislocations in a martensitic steel, supporting the 

theory of hydrogen-enhanced dislocation mobility as a mechanism of hydrogen 

embrittlement. Observations of hydrogen at an incoherent interface between niobium 

carbides and the surrounding steel provided the first direct evidence that these incoherent 

boundaries can act as trapping sites. Attempts at transferring deuterated martensitic steels 

via alternative methods, i.e. non-cryo-integrated, failed to maintain the deuterium at trapping 

sites, further validating the need for cryo-integrated systems in the study of hydrogen 

embrittlement.

Researchers at the Max-Planck-Institut für Eisenforschung in Dusseldorf also used a 

Ferrovac VCT system to transfer environmentally sensitive samples between an LEAP 5000 

XS and XR, a Xeplasma FIB/SEM, and a Syletec glove box modified to enable specimen 

transfer to the VCT system [91]. To highlight the relevance of a cryo-integrated equipment 

suite, Stephenson et al. [91] compared the MgO, Mg2O, and O distribution on pure Mg with 

various transfer combinations: room temperature FIB and transfer, cryo FIB and room 

temperature transfer, cryo FIB and cryo transfer. They found that surface oxidation was 

suppressed by using an entirely cryogenic protocol, confirming the importance of using cryo 

transfer to eliminate oxidation of the tip during transfer from the FIB to the atom probe. 

Previously it has been shown that the use of FIB preparation methods can induce the 

formation of hydrides in Ti alloys [92]. Chang et al. [93] compared APT and TEM 

specimens prepared at room temperature and under cryogenic conditions. Both APT and 

TEM results confirmed that the formation of hydrides caused by FIB sample preparation 

could be eliminated by cryo preparation.

For energy storage materials, specifically Li-, Na-, or Mg-ion battery electrode materials, it 

is critical to be able to analyze the distribution of the light elements. Vacuum transfer 

capabilities at the Pacific Northwest National Laboratory (PNNL), USA, have been used to 

allow visualization of the Li distribution in battery electrode materials and provide 

information about the degradation pathways through examination at different extents of 

cycling [94, 95]. The cycled electrodes are highly reactive with atmosphere, and to ensure 

accurate analysis of such materials, cryogenic specimen preparation in FIB and transfer to 

APT using VCT will be required to avoid any unintentional environmentally induced 

modifications.

3.2.2. Organic material applications—At the PNNL, Perea and Evans have 

developed a custom UHV chamber system, which they call the environmental transfer hub, 

or ETH (not to be confused with the ETH-Zurich institution in Switzerland). They have also 
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modified the cryo-stage and specimen shuttle suitcase of a Quorum PT2010 cryo-FIB/SEM 

specimen preparation station to accept atom probe sample holders (pucks) (Fig. 4)[96, 97].

Using the ETH, Schreiber et al. [97] have developed a method to prepare APT needles from 

a cryogenically frozen, hydrated, corroded glass sample, with the innovation being the 

ability to target a buried water/solid interface, as described in Fig. 5-top. The subsequent 

analysis enabled by the environmentally protected transfer of the FIB-prepared specimens 

shown in Fig. 5 – bottom [98] reveals the tomographic compositional distribution of 

dissolved ions within the corroding water solution and the corroded glass network, as well as 

the 3D structure of the water-filled nanoporous corroded glass network. Although the results 

demonstrate a rational means to prepare, environmentally transfer, and analyze site-targeted 

cryogenically frozen specimens by APT, there are many challenges that inhibit the wider 

application of this approach. Some of these challenges are 1) preventing the sublimation of 

water ice when exposed to a high-energy Ga-ion beam and 2) lack of a reliable means to 

attach the FIB-prepared liftout to micro-posts under a cryogenic environment, where the 

currently available organic and metalorganic vapors fail to provide a means to controllably 

deposit thin films. Ultimately, continued advancements in the preparation and analysis of 

cryogenically prepared APT specimens is expected to lay the foundation for APT to impact 

our understanding of hydrated materials systems related to materials science, geochemistry, 

and biology.

Other environmentally protected specimen transfer systems exist at a number of different 

universities, including at Erlangen/ Nurnberg [99], University of Michigan, and the 

University of Oxford, and work from these institutions is forthcoming. All are configured for 

environmentally controlled atom probe experiments that require the manipulation, handling, 

and transfer of specimens using the puck carrier that is compatible with LEAP instruments. 

Notably, the Erlangen system is also compatible with a home-built atom probe system that is 

currently in development.

4. Outlook

Vacuum and cryogenic preparation and transfer tools for microscopy are evolving rapidly 

and it is now possible to apply these methods to the preparation of specimen for APT. This 

has the potential to allow a number of exciting new experiments that were not previously 

possible:

• The composition of surfaces during chemical interactions or reactions

• Measurement of the arrangement of molecules at hydrated surfaces (ligands)

• Compositional mapping across liquid-solid interfaces

• Observation of the position of hydrogen atoms by using deuterium as a tracer

• Atomic-scale mapping of ions or molecules in vitrified biological materials

• Direct observation of the arrangement of ions in vitrified liquids

• The analysis of highly reactive samples that are sensitive to air, such as battery or 

nuclear materials
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• In some cases, successful FIB preparation of specimen that are affected by the 

ion beam at room temperature

For many of these examples, successful experiments will require substantial developments in 

both the experimental setup and the available tools for data treatment and analysis. The 

workflows required will involve the following:

a. Effective protocols for cryogenic specimen preparation, gas exposure, 

deuteration, and/or vitrification and fabrication into the required needle-shaped 

samples

b. Reliable transfer tools to ensure the pressure and temperature requirements are 

maintained throughout all steps from specimen preparation, transfer, and analysis

c. Optimization of atom probe acquisition parameters and an understanding of how 

they affect the data, especially in systems that contain materials of vastly 

different evaporation fields

d. Protocols for the interpretation of atom probe data from materials with little 

existing literature (e.g. organic materials)

e. New reconstruction algorithms that can account for molecular ions (i.e. 

fragments)

In materials science, considering current interest in the field, it is reasonable to expect that 

deuterium labeling might become a standard method for measuring the distribution of 

hydrogen within materials. Hydrogen-free instruments, if successfully developed, may still 

require cryogenic transfer systems to ensure that hydrogen from charging remains within 

alloys. Cryo FIB instruments may prove useful to minimize FIB-induced damage and 

vacuum/cryo transfer to both atom probe and TEM is highly likely to become commonplace 

to avoid exposure of specimen to air.

We are likely to see the continued use of ancillary environmental chambers to study 

corrosion and catalysis. These are sociogenically important problems. Corrosion has an 

enormous economic impact. Evolving cryogenic specimen preparation and environmental 

transfer strategies will continue to allow APT analysis of corrosion product and across the 

liquid-solid interface [100], allowing for the design of corrosion mitigation strategies. 

Catalyst design for the conversion of biomass-based feedstocks to liquid fuels is one of the 

most promising alternatives to our dwindling fossil fuel reserves. Understanding the 

reactions at surfaces in different chemical environments is essential for this work.

There is scope for vacuum-based transfer methods to enable transformational research into 

battery materials, such as Li-based anode materials [101], and early results are indicating 

that cryo-stages will enable successful FIB preparation from materials that are sensitive to 

the ion beam, such as aluminum and unstable alloys systems.

It is difficult to predict the impact that atomic-scale imaging may have on life sciences. FIB-

based site-specific specimen preparation and correlative light electron microscopy [102] 

might allow specific regions to be identified within biological structures, allowing the study 

of the distribution of biologically important elements such as Ca, Fe, N, Se, or foreign 
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species such as heavy metals in relation to certain sub-cellular components. Staining or 

isotopic labeling might help to identify regions of interest. These approaches are well 

established for correlative light and electron microscopy. The wider impact of the technique 

will depend on whether biomolecules can be identified from the fragments that form during 

field ionization and/or the effectiveness of methods to label specific regions of interest. If it 

is possible to identify specific biomolecules, it would open up a whole new field of 

nanoscale analytical imaging in structural and molecular biology with applications ranging 

from plant science, to drug discovery, bioengineering, and medicine. Successfully applied, 

these new methods have the potential to lead to radical new discoveries in fields such as 

medicine, chemical processing, and agriculture, with flow-on benefits related to health, the 

economy, the environment, and our quality of life.
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Fig. 1. 
Atomic map of mineral-organic interfaces in (a—d) marine foraminiferal calcite showing the 

compositional portioning in segregation of Na to the interface [36] and (e—h) correlative 

microscopy of human bone [34]. (e) STEM image of the APT needle, (f) 2D map of the 

distribution of Ca in the specimen, (g) the overlay of STEM image and APT reconstruction, 

and (h) compositional profile showing the heterogenous distribution of minerals, organic 

components, and associated Na segregation. STEM, Scanning transmission electron 

microscopy.
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Fig. 2. 
a) TEM micrograph showing the IgG within the solid silica matrix and b) APT 

reconstruction of a single IgG molecule showing the spatial distribution of CNH2
+ and CO2

+ c) 

carbon isodensity heat maps derived from two different techniques 1 and 2: human IgG 

derived from X-ray diffraction [59] and 3 and 4 rabbit IgG derived from APT [60].
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Fig. 3. 
Modern reaction cell integrated onto a LEAP 3000X-HR, adapted from the study by Haley 

et al. [78].
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Fig. 4. 
Custom hardware technology to enable FIB-based preparation and specimen-protected 

transfer of environmentally sensitive materials between a FIB/SEM and the LEAP at the 

Pacific Northwest National Laboratory (PNNL; WA, USA). (a) CAD-rendered image of the 

environmental transfer hub (ETH) main parts as (1) main vacuum chamber hub, (2), docking 

port for specimen transfer shuttle, (3) high-temperature ambient pressure reactor chamber, 

and (4) manipulator to transfer specimens between the ETH and the LEAP. (b) Photograph 

of the ETH system connected to the atom probe at PNNL. (c) Puck carousel with a modified 

APT puck slot made from thermally insulating material. (d—e) Modified environmental 

shuttle suitcase and FIB/SEM cold stage, respectively. Modifications were made to handle 

the transfer and manipulation of (f) the specific pucks used for APT analysis. Panels (a—b) 

and (d—e) are reproduced with permission from Perea et al. [96]. Panels (c) and (f) are 

reproduced with permission from Schreiber et al. [97]. PEEK, Poly-etheretherketone; CAD, 

computer aided design.
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Fig. 5. 
Top: FIB-based site-targeted preparation of a cryogenically frozen-hydrated corroded glass 

specimen. (a—b) SEM image of a trenched liftout bar and subsequent attachment of the 

micromanipulator. (c) Extracted bar after release cut. (d—f) Preparation, attachment, and 

release of a piece of the liftout bar onto Si micropost. (g) Cross section of a mounted 

specimen showing relevant layers. (h) Final specimen needle geometry with targeted water/

solid interface highlighted. Bottom: APT analysis of water/solid interface of a corroded 

glass. (a) 3D APT atom map and composition profiles across (b) the alkali-rich/alkali-poor 

interface in water and (c) across the water/corroded glass interface. (d) Experimental and (e) 

simulated 3D network of water (blue) interpenetrating the silica nanoporous network (gray) 

in the corroded glass region. All figures reprinted with author permission: Top (a—h) and 
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bottom from (a—c) the study by Schreiber et al. [97] and bottom (d—e) from the study by 

Perea et al. [98].
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