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Abstract

In this study, we investigated the significance of a conserved five-amino acid motif ‘AELPR’

in the C-terminal region of helper component–proteinase (HCPro) for potato virus A (PVA;

genus Potyvirus) infection. This motif is a putative interaction site for WD40 domain-contain-

ing proteins, including VARICOSE (VCS). We abolished the interaction site in HCPro by

replacing glutamic acid (E) and arginine (R) with alanines (A) to generate HCProWD. These

mutations partially eliminated HCPro-VCS co-localization in cells. We have earlier described

potyvirus-induced RNA granules (PGs) in which HCPro and VCS co-localize and proposed

that they have a role in RNA silencing suppression. We now demonstrate that the ability of

HCProWD to induce PGs, introduce VCS into PGs, and suppress RNA silencing was

impaired. Accordingly, PVA carrying HCProWD (PVAWD) infected Nicotiana benthamiana

less efficiently than wild-type PVA (PVAWT) and HCProWD complemented the lack of HCPro

in PVA gene expression only partially. HCPro was purified from PVA-infected leaves as part

of high molecular weight (HMW) ribonucleoprotein (RNP) complexes. These complexes

were more stable when associated with wild-type HCPro than with HCProWD. Moreover,

VCS and two viral components of the HMW-complexes, viral protein genome-linked and

cylindrical inclusion protein were specifically decreased in HCProWD-containing HMW-com-

plexes. A VPg-mediated boost in translation of replication-deficient PVA (PVAΔGDD) was

observed only if viral RNA expressed wild-type HCPro. The role of VCS-VPg-HCPro coordi-

nation in PVA translation was further supported by results from VCS silencing and overex-

pression experiments and by significantly elevated PVA-derived Renilla luciferase vs PVA

RNA ratio upon VPg-VCS co-expression. Finally, we found that PVAWD was unable to form

virus particles or to spread systemically in the infected plant. We highlight the role of HCPro-

VCS containing multiprotein assemblies associated with PVA RNA in protecting it from deg-

radation, ensuring efficient translation, formation of stable virions and establishment of sys-

temic infection.
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Author summary

This study revealed that the potyviral helper component proteinase (HCPro) and the host

protein VARICOSE (VCS) are linked in a manner that is important for suppression of

RNA silencing, formation of potyvirus-induced RNA granules, translation of viral pro-

teins, stability of virions, and development of systemic potato virus A (PVA) infection.

The results suggest that HCPro and VCS belong to the core components of large RNP

complexes regulating PVA infection. We suggest that these complexes protect viral RNAs

in the cytoplasm after release from the replication complex and direct them to translation

and intact to the viral particles.

Introduction

The host-virus relationship is a quintessential example of the evolutionary ‘arms race’. The

most intriguing aspect of this molecular struggle is that while the hosts have large genomes

with a huge range of defences, viral genomes in comparison are minuscule. Yet they success-

fully manage to hijack host cellular machineries to serve their propagation. In order to cope

with the constant selection pressure and to include all the essential genetic information within

a tiny genome, viruses encode proteins which are multifunctional in nature.

For example potyviral helper component-proteinase (HCPro) is involved in interactions

with multiple host proteins. It carries out many essential functions during the viral infection

cycle. Albeit best known for its role as an RNA silencing suppressor, HCPro’s primary func-

tions include polyprotein processing [1,2] and viral plant-to-plant transmission [3]. Moreover,

it is involved in viral genome replication and movement [4–7], particle encapsidation [8],

interactions with proteasome [9], the formation of RNA granules (PGs) and translational regu-

lation [10]. In recent years, many independent studies have established HCPro as an interact-

ing partner for a wide array of host factors involved in different cellular pathways. These

include but are not limited to S-adenosyl methionine synthetase (SAMS) and S-adenosyl

homocysteine hydrolyse (SAHH) [11,12], eukaryotic initiation factor 4E and (iso)4E (eIF4E/

(iso)4E) [13], microtubule-associated proteins HIP1[14] and HIP2 [15], ARGONAUTE 1

(AGO1) [12] and a calmodulin-like protein rgs-CaM [16]. Many HCPro-induced transcrip-

tional changes in infected plants occur via the RAV2 transcription factor [17]. Furthermore,

HCPro interacts with ribosomes in PVA-infected plants [12,18]. In Ivanov et al. [12], we sug-

gested that polysome-associated high molecular weight complexes including HCPro and

ARGONAUTE 1 (AGO1) may function in translational regulation [12,18].

Here we show that the C-terminal region of HCPro contains a highly conserved five amino

acid motif. This motif has the potential to interact with WD40 domain proteins, a large family

of eukaryotic proteins [19,20]. The defining feature of this protein family is the presence of

WD40 domains, which are tandemly repeated stretches of approximately 40–60 amino acids

beginning with Gly-His (GH) and ending with Trp-Asp (WD) [20,21]. WD40 repeat domains

commonly fold into a multiple beta-propeller structure with an overall doughnut or open-

ended cylinder shape (reviewed by [22,23]; also see S1 Fig). These domains provide a platform

for the reversible assembly of multiprotein complexes [24,25]. WD40 domain proteins serve

often as hubs of cellular networks and are therefore key players in many biological processes

[21,22,26]. In Hafrén et al. [10], we proposed that potyvirus-induced RNA granules (PGs) are

structures involved in the protection of viral RNAs (vRNAs) against the host’s RNA silencing

machinery. A WD40 domain protein VARICOSE (VCS) localizes in PGs [10]. In host cells
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VCS is involved in the assembly of protein complexes associated with RNA metabolism and it

is crucial for seedling development [27]. In the context of PVA infection VCS is an important

infectivity factor [10]. In this study, we designed an HCPro mutant in which a potential inter-

action site for WD40 domain proteins was abolished. Interestingly, this mutation impaired

HCPro-VCS co-localization in planta and negatively affected the assembly and stability of

HCPro-VCS-associated multiprotein complexes. Furthermore, the virus carrying this muta-

tion demonstrated major defects in multiple stages of infection. Cumulatively he results advo-

cate the biological significance of the HCPro-VCS interaction in the PVA infection cycle. In

addition, this study illuminates the formation and function of large RNA-protein assemblies in

the regulation of infection.

Results

Identification of a conserved binding site for WD40-domain proteins in

PVA HCPro

The C-terminal region of PVA HCPro contains a five amino acid motif ‘AELPR’. This

sequence is highly conserved in the genus Potyvirus (Fig 1A and S1A Fig). The percentage of

conservation of the individual residues in the AELPR motif ranges from 86.6 to 100% in the

HCPro sequences of the 119 potyvirus species we compared. Alanine, glutamic acid and pro-

line were the most conserved residues (Fig 1A). This motif falls within the known crystal struc-

ture of the C-terminal cysteine proteinase domain of HCPro of turnip mosaic virus (TuMV;

genus Potyvirus) [28] (Fig 1B). The catalytically active residues surround the motif as visible

from the sequence comparison presented in (S1A Fig; marked by arrows). It is an inherently

linear region between an α-coil and a β-sheet (highlighted in red) on the HCPro surface (Fig

1C) thus enabling direct interactions with possible binding partners. Based on predictions

(with P< 0.05) by the Eukaryotic Linear Motif (ELM) Resource for Functional Sites in Pro-

teins (http://elm.eu.org/), there are three motifs overlapping with ‘AELPR’ between amino

acids 398–406 ‘TSAAEL’, ‘SAAELPRI’ and ‘ELPRI’, which have the potential to act as a short

linear motif capable of interacting with WD40 domain-containing proteins. In the stretch 5 in

the alignment of S1A Fig at least one of these motifs is retained leading to 100% conservation

in the 119 potyvirus sequences. A molecular docking model (created using ClusPro online

server: https://cluspro.bu.edu/) between TuMV HCPro and VCS suggested the presence of the

‘AELPR’ motif at the site of interaction (S1B–S1F Fig). Because of the properties described

above, we hypothesized that this sequence could be the binding site to host proteins containing

WD40 domains. The AELPR motif was mutated by replacing the charged residues glutamic

acid and arginine with alanines. These mutations disrupted all the three possible forms,

‘TSAAEL’, ‘SAAELPRI’ and ‘ELPRI’, of WD40 domain- interacting motifs. The mutated virus

and protein were named PVAWD and HCProWD, respectively. Fig 1D and 1E depicts the PVA

and HCPro constructs that were prepared for this study. All constructs used in this study are

described in the S1 Table (see also S1 Reference).

Infection profile of PVAWD

In order to investigate the effects of the mutation in HCProWD on PVA infection we measured

viral expression levels from local and systemic leaves. Expression of the viral polyprotein was

assessed from the activity levels of the RLUC reporter gene incorporated between the NIb and CP

cistrons [29]. In local leaves, PVAWD accumulated with approximately five-fold lower efficiency

than PVAWT (Fig 2A). As the mutated motif lies in close vicinity to the cysteine protease domain

of HCPro, it was necessary to confirm that this mutation did not hamper its autocatalytic activity.
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Fig 1. AELRP sequence in HCPro is predicted to bind to proteins containing a WD40-domain. (A) Percentage of amino acid conservation within the

AELPR motif in 119 potyviral HCPro sequences. This motif was identified by scanning the PVA HCPro sequence for short linear motifs (SLiMs) via ELM

server (http://elm.eu.org/). The AELPR motif was predicted to be a putative WD40 -domain-interacting motif. (B) Ribbon diagram of X-ray crystallographic

structure of the cysteine protease domain of TuMV HCPro (PDB ID: 3RNV). Secondary structure of the ‘AELPR’ motif has been highlighted in red. (C)

Surface diagram of 3RNV showing the accessibility of the WD40-domain -interacting motif in HCPro (highlighted in red). (D—F) Schematic representation of

the constructs prepared for this study (not in scale): (D) HCPro overexpression constructs. (E) icDNAs of the full length PVA constructs. (F) VCS

overexpression constructs.

https://doi.org/10.1371/journal.ppat.1008956.g001
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A western blot analysis of the same samples was carried out with an α-HCPro antibody (lower

panel Fig 2A). HCProWD accumulation level was lower than that of wild-type HCPro (HCProWT)

in the blot, which was in line with the difference in the polyprotein expression levels of PVAWD

and PVAWT. The presence of monomeric HCProWD derived from PVAWD infection (Fig 2A)

confirmed that HCProWD had retained its polyprotein processing ability.

Additionally, we compared the complementation efficiency of HCProWD with respect to

HCProWT and two other HCPro mutants, the RNA silencing suppression-deficient HCPro

(HCProSDM) and eIF(iso)4E binding-deficient HCPro (HCPro4EBM) [10]. For this, we infil-

trated the plants with PVAΔHCPro and complemented the infection with GUS (OD600 = 1),

HCProSDM (OD600 = 1), HCPro4EBM (OD600 = 1), HCProWD (OD600 = 0.3), or HCProWT

(OD600 = 0.3). Neither HCProSDM nor HCPro4EBM could elevate RLUC expression from

PVAΔHCPro showing no sign of complementation. HCProWD on the other hand promoted

PVAΔHCPro gene expression significantly (Fig 2B) and HCProWT complemented PVAΔHCPro

most efficiently. Interestingly, the complementation efficiencies of HCProWD and HCProWT

also exhibited approximately a five-fold difference, which was similar to differences in the

gene expression efficiency of PVAWD and PVAWT (Fig 2A). Infiltration ODs of all the HCPros

were adjusted to achieve equal expression (lower panel of Fig 2B). Notably, same infiltration

ODs of HCProWD/WT resulted in similar level of HCPro expression (lower panel of Fig 2B;

also see S2 Fig for the expression levels of their Strep-RFP tagged versions). Therefore, the

defective infection in PVAWD is not because of the lower expression level of HCProWD, rather

it is something related to its functional aspects.

An interesting difference in the viral gene expression was noticed while monitoring the infec-

tion level of PVAWD and PVAWT in systemically infected leaves. There was more than a 1000-fold

reduction in the RLUC activity in PVAWD compared to PVAWT (Fig 2C) indicating that the sys-

temic spread of PVAWD was severely compromised. Despite the difference, the low level of

PVAWD expression was detectable in the systemic leaves already at 5 dpi. We followed the devel-

opment of RLUC activity at 6 and 7 dpi, but did not see any signs that the mutant would reach

wild-type expression levels. Since HCPro can affect the potyviral infection cycle at multiple levels

we next assessed the effect of the HCProWD mutation on further known properties of HCPro.

The silencing suppression capacity of the HCProWD mutant is

compromised

Ability to suppress RNA silencing is undoubtedly one of the most studied properties of

HCPro. To assess whether the HCProWD mutation affected the silencing suppression capacity

Fig 2. HCProWD mutation reduces local and prevents systemic PVA infection without affecting its autocatalytic

proteinase activity. (A) Virus-derived RLUC activity levels of PVAWT and PVAWD to evaluate the effect of the

mutation in WD40-domain -interacting motif of HCPro on PVA gene expression. PVAWD exhibits a ~5 fold lower

expression level than PVAWT. All the constructs were infiltrated at OD600 = 0.01, and the samples were collected at 5

dpi. A western blot analysis with α-HCPro antibody of the same samples is presented in the lower panel. The presence

of monomeric HCProWD derived from PVAWD confirms the preservation of the autocatalytic activity of HCProWD’s

cysteine protease domain. Statistically significant difference between the samples is denoted by an asterisk (�P< 0.05;

n = 3). (B) Complementation of PVAΔHCPro infectivity by various HCPro mutants. Agrobacterium carrying different

HCPro variants were infiltrated as follows: silencing-deficient HCProSDM and eIF4E binding-deficient HCPro4EBM

mutants at OD600 = 1, HCProWD and HCProWT at OD600 = 0.3. PVAΔHCPro was infiltrated at OD600 = 0.1. GUS was

used as the control, as well as to equalize infiltrated Agrobacterium cell numbers among all the sets. Firefly luciferase

(FLUC) at OD600 = 0.01 was added as internal control for normalization of RLUC activity. Samples were collected at 3

dpi. A western blot analysis (lower panel) with α-HCPro antibodies demonstrates comparative expression levels of all

HCPro variants from their corresponding expression constructs. Different letters above the bars indicate a statistically

significant difference (student’s t-test P< 0.05; n = 4). (C) A time course experiment of systemic infection by PVAWD.

N. benthamiana leaves were infiltrated with Agrobacterium carrying PVAWD / PVAWT constructs (OD600 = 0.01).

Samples were collected from newly emerging systemic leaves at 5, 6, 7 dpi, respectively and RLUC activity was

measured. Statistical significance was assessed using student’s t-test (�P< 0.05; n = 3).

https://doi.org/10.1371/journal.ppat.1008956.g002
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of HCPro we used a dsRNA-triggered silencing assay based on the simultaneous transient

expression of a transgene and a hairpin targeting it (Fig 3A). We tested the ability of HCPro to

rescue the expression of the silenced transgene. The study was carried out in three different

contexts. In the first case, RLUC was expressed along with a hairpin-RLUC (pHG-RLUC) con-

struct and either HCProWD or HCProWT was expressed to rescue RLUC expression (Fig 3B).

Secondly, YFP and a hairpin targeting it (pHG-GFP) were expressed in the presence of

HCProWD / HCProWT and PVAΔHCPro. PVAΔHCPro was included to see if other PVA proteins

could contribute to the silencing suppression process (Fig 3C). Finally, pHG-RLUC was

employed to target RLUC expressed from PVAΔHCPro RNA and either HCProWD or HCProWT

was expressed to rescue viral gene expression (Fig 3D). In all cases, HCProWT successfully

recovered the transgene and viral expression while HCProWD did not. These experiments

clearly demonstrated that HCProWD is deficient in dsRNA-triggered RNA silencing

suppression.

In our earlier work, we proposed a role for HCPro in formation of PVA induced granules

(PGs), and we suggested PGs have a role in suppression of RNA silencing [10]. Since

HCProWD was unable to suppress RNA silencing, we next compared its PG formation effi-

ciency to that of HCProWT. For this we co-infiltrated leaves with either HCProWD or

HCProWT and P0YFP, which is a visual marker for PGs [10], all at OD600 = 0.1. The extent of

PG induction by the HCPro variants was calculated at 3 dpi. The amount of PGs was reduced

by almost five-fold in the presence of HCProWD as compared to HCProWT (Fig 3E–3G), which

showed that the impaired ability of HCProWD to act as a suppressor of RNA silencing corre-

lated with its capacity to induce PG formation. Increasing the OD of infiltration (to OD600 =

0.3) did not increase granule count either for HCProWD or HCProWT. Rather, a reduction in

the granule count was noticed in the case of HCProWT, indicating that the potency of the PG-

inducing property of HCPro does not necessarily correlate with the increased protein amount

(Fig 3G). No granules were detected in the control images where P0YFP was expressed alone

with 35S-GUS (S3 Fig).

HCProWD is defective in forming PVA infection-associated high molecular

weight (HMW) complexes

Previously we reported the formation of highly stable HMW complexes during PVA infection

[12]. These complexes need HCPro to form and they contain several infection-associated host

and viral proteins. We also suggested that these complexes play a role in PVA translation [12].

In this study, we tested if the HCProWD mutation changed HCPro’s ability to form these HMW

complexes. For this, we adopted a similar strategy reported in Ivanov et al. [12] with minor

modifications. N. benthamiana plants were infected with PVAWD-Strep-RFP or PVAWT-Strep-RFP at

OD600 = 0.1. Since PVAWD gene expression in systemic leaves was low (Fig 2C), samples were

collected from the local leaves at 3 dpi. The affinity purification of HCProWD/WT-Strep-RFP was

performed following the method described in [30]. The purified samples were analysed by prob-

ing the protein gel blots with antibodies recognizing some of the previously identified HCProWT

interactors including S–adenosyl-L–methionine synthase (SAMS), VPg and CI [12]. The HMW

bands detected in the immunoblots had a similar electrophoretic mobility as those in the silver

stained gel (Fig 3H). Based on visual inspection the amounts of SAMS, CI, and VPg were

reduced in the HCProWD samples compared to HCProWT (Fig 3H). LC-MS/MS analysis of the

same samples confirmed the western blot results (S2 Table). Interestingly, the silver stained gel

showed an overall enrichment of complexes in the HMW region in HCProWT samples com-

pared to HCProWD. Equivalent loading of the samples is demonstrated by the equal intensity of

a 55 kDa band in the silver stained gel (left panel Fig 3H).
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HCProWD is unable to sequester WD40 domain-containing host protein

VCS into PGs

Earlier, Hafrén et al. [10] established VCS as a component of HCPro-induced PGs and an

important factor in PVA infection. Furthermore, systemic infection, PVA translation, and coat

protein (CP) accumulation were all affected by VCS knockdown [10]. Since VCS is a WD40

repeat-containing protein and the effects of low VCS levels on infection were parallel with the

defects observed in PVAWD infection, we decided to assess whether the HCProWD -binding site

is needed to connect it to VCS. To this end, we tested whether VCS localized to PG structures in

the presence of HCProWD. For this experiment, we first generated VCS expression constructs.

N. benthamiana annotated transcript data available on the Sol Genomics Network (http://

solgenomics.net) document different variants of VCS. We used BLAST searches to identify

three genes in the N. benthamiana genome with circa 50% identity to the Arabidopsis thaliana
VARICOSE (Q9LTT8): VCS-A (Niben101Scf00654g02003.1), VCS-B (Niben101Scf39216

g00007.1) and VCS-C (Niben101Scf21107g00015.1). We generated expression constructs of

these three N. benthamiana genes along with their tagged versions (see Fig 1F).

Next we infiltrated N. benthamiana leaves with either RFP-tagged HCPro or the mutated

version (HCProWT-Strep-RFP / HCProWD-Strep-RFP at OD600 = 0.1) to induce PGs, YFP-tagged

VCS (VCS-AYFP, VCS-BYFP and VCS-CYFP each at OD600 = 0.1 cumulatively denoted by

VCSYFP), and another PG marker P0CFP (OD600 = 0.1). Their localization was monitored via

confocal microscopy at 3 dpi. The results reveal that HCProWT was able to sequester VCS into

the PGs. Co-localization of the PG marker P0CFP [10] in the same spot validated them as bona
fide PGs. Unless the threshold effect prevented the detection of an overlap, HCProWD-Strep-RFP

-induced cytoplasmic foci did not co-localize with either VCSYFP or P0CFP (Fig 4A–4F). Pair-

wise overlaps of the fluorescence signals corresponding to Fig 4A–4F are shown in S4 Fig, and

the accumulations of HCProWD/WT-Strep-RFP and VCSYFP related to the Fig 3A–3F is shown in

the S5 Fig. Although a small difference could be detected in the accumulation levels of

HCProWT and HCProWD, they were still comparable.

Fig 3. HCProWD is defective in suppressing hairpin-triggered RNA silencing, inducing PGs and forming infection

associated HMW complexes. (A) A schematic representation of the constructs used to study the suppression of hairpin-

triggered RNA silencing. The hairpin RNAs (pHG-RLUC and pHG-GFP) targeting monocistronic RLUC, YFP, and

RLUC-expressing PVA RNA were expressed to trigger RNA silencing. HCProWD and HCProWT were expressed to test

their capacity to suppress RNA silencing. (B) The capacity of HCProWD to suppress RNA silencing. N. benthamiana
plants were agroinfiltrated with the RLUC expression construct (OD600 = 0.01), pHG-RLUC construct (OD600 = 0.4) and

HCProWD / HCProWT constructs (OD600 = 0.3) as indicated. Empty pHG-CTRL and GUS were expressed as the

controls. All constructs were co-infiltrated and the samples were analyzed for RLUC activity at 3 dpi. (C) The effect of

other PVA proteins on HCProWD’s capacity to suppress RNA silencing. Agrobacterium carrying YFP expression

construct (OD600 = 0.01) and pHG-GFP (OD600 = 0.4) were co-infiltrated as in (B) with HCProWD / HCProWT and

PVAΔHCPro (OD600 = 0.1). YFP fluorescence was quantitated from leaf discs collected at 4 dpi using a 96-well plate reader

at Ex/Em 500/530 nm [51]. (D) Suppression of RNA silencing targeting PVA RNA-derived RLUC expression. The

experimental setup was similar to that of (B). Agrobacterium carrying PVAΔHCPro was infiltrated at OD600 = 0.05. RLUC

activities were measured from samples collected at 3dpi. The number of plants equals 4 (n = 4) in (B), n = 9 in (C) and

n = 6 in (D). Different letters above the bars indicate a statistically significant difference (student’s t-test �P< 0.05). (E, F)

Variation in the amount of PGs during transient expression of HCProWD (E) and HCProWT (F) infiltrated at OD600 =

0.1. P0YFP was co-expressed at OD600 = 0.1 to visualize PGs. Samples collected at 3 dpi were examined with an

epifluorescence microscope under an FITC filter. (G) Amount of PGs induced by HCProWD / HCProWT overexpression.

HCProWD / HCProWT were agroinfiltrated at OD600 = 0.1 and 0.3 as indicated, while P0YFP was agroinfiltrated at OD600

= 0.1. The number of PGs per mm2 was calculated from nine independent areas. Asterisks denote statistical significance

between the sample sets (student’s t-test �P< 0.05, ���P< 0.001). (H) TwinStrep tag-affinity purifications were carried

out from leaf samples collected at 3 dpi from plants infiltrated with either PVAWD-Strep-RFP or PVAWT-Strep-RFP (OD600 =

0.1). The purification resulted in the pulldown of HCPro along with its in vivo binding partners. Purified proteins were

analyzed by western blotting using α-HCPro, α-CI, α-SAMS and α-VPg antibodies, respectively. All the blots were made

from the same gel by cutting the PVDF membrane into strips after the transfer. In addition, two lanes of the same gel

were silver-stained. The low molecular weight bands marked with asterisk demonstrates equal loading of the

HCProWD-Strep-RFP and HCProWT-Strep-RFP samples.

https://doi.org/10.1371/journal.ppat.1008956.g003
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HCProWD mutation impairs HCPro-VCS co-localization

Next, we compared the extent of VCS co-localization with HCProWD and HCProWT. For this

we used similar experimental setup as Fig 4A–4F, except that P0CFP was omitted. Confocal

microscopy images from 3 dpi samples clearly show that HCProWT-Strep-RFP and VCSYFP accu-

mulated together to distinct foci with near perfect co-localization between these proteins (Fig

4G–4I). On the other hand, while HCProWD-Strep-RFP accumulated in distinct foci (Fig 4J),

VCSYFP remained diffuse in the cytoplasm (Fig 4K). The overlay image (Fig 4L) shows reduced

co-localization between VCSYFP and HCProWD-Strep-RFP. The amount of co-localization with

VCSYFP was calculated from the confocal image data for both HCProWT-Strep-RFP and

HCProWD-Strep-RFP (S6 Fig). Approximately a 48% reduction was observed with the HCProWD

mutant. The relative expression levels corresponding to Fig 4G–4L of HCProWD-Strep-RFP and

HCProWT-Strep-RFP and that of VSCYFP in the presence of both HCPro versions were compara-

ble (S7 Fig). These data along with Fig 4A–4F advocate the importance of the WD40 domain-

binding motif in HCPro-VCS co-localization in planta.

HCProWD mutation impairs HCPro’s ability to induce functional PGs

The low level of co-localization between VCS and HCProWD was an interesting finding espe-

cially since we still observed plenty of HCProWD-Strep-RFP in PG-like foci (Fig 4F–4J). Epifluor-

escence microscopy revealed a more than 75% coincidence of HCProWT with PG marker

P0YFP (S8A Fig, Fig 4M–4O). The amount of co-localization between HCProWD and P0YFP

was ten-fold lower (S8A Fig). This shows that only a marginal portion of HCProWD-Strep-RFP

containing foci were PGs, which typically contain P0YFPas found in Hafrén et al.[10]. To show

the lack of co-localization of HCProWD and P0YFP in detail, an image of a single intact cell is

provided in (S8B–S8D Fig). A reference PG induced by HCProWT is shown in (S8E–S8G Fig).

Cumulatively the confocal and epifluorescence microscopy results indicate that the WD

domain-interacting motif in HCPro is required for HCPro’s ability to recruit vital granule

components to form functional PGs.

HCPro-VCS association in HMW complexes is affected by the HCProWD

mutation

In order to demonstrate the association of HCPro and VCS in HMW complexes formed dur-

ing PVA infection in N. benthamiana, we affinity purified Strep-tagged HCPro and tested the

samples for the co-immunoprecipitation of VCS. In the affinity purification experiment, the

Fig 4. HCProWD is defective in recruiting VCS to PGs. (A-F) Localization of Strep-RFP-tagged -HCPro, YFP

-tagged-VCS and CFP tagged -P0 in N. benthamiana epidermal cells. Agrobacterium carrying either HCProWT-Strep-RFP

or HCProWD-Strep-RFP was infiltrated at OD600 = 0.1, while Agrobacteria harboring VCS-AYFP, VCS-BYFP and

VCS-CYFP were each infiltrated at OD600 = 0.1 (together denoted as VCSYFP). Agrobacterium harboring P0CFP,

infiltrated at OD600 = 0.1, was expressed as another marker for PGs. Samples were analyzed at 3 dpi by confocal laser

scanning microscopy in sequential scanning mode. (A) P0CFP, (B) VCSYFP, (C) HCProWT-Strep-RFP, (D) P0CFP, (E)

VCS-YFP and (F) HCProWD-Strep-RFP. (G-L) Localization of HCProWT/WD-Strep-RFP and VCSYFP and their overlays in N.

benthamiana epidermal cells. Experimental details are otherwise the same as in Fig 4A–4F, except for the absence of

P0CFP. (G) HCProWT-Strep-RFP, (H) VCS-YFP and (I) Overlay of HCProWT-Strep-RFP and VCSYFP. (J) HCProWD-Strep-RFP,

(K) VCSYFP and (L) Overlay of HCProWD-Strep-RFP and VCSYFP. Degree of co-localization between HCProWT-Strep-RFP /

HCProWD-Strep-RFP and VCSYFP is calculated from representative images and presented in S6 Fig. (M-R)

Epifluorescence microscopy showing the distribution of HCProWT/WD-Strep-RFP and P0YFP within a representative area

of examination. HCPro and P0YFP, which both typically co-localize in PGs, were co-infiltrated to visualize the PGs. The

experiment was conducted similarly as Fig 3E and 3F. The only exception was that HCProWT/WD-Strep-RFP was used

instead of HCProWT/WD. Images were acquired at 3 dpi with a 10X objective. HCProWT/WD-Strep-RFP was visualized

under an RFP filter (M, P respectively). P0YFP from the corresponding sample sets was visualized under the FITC filter

(N, Q respectively), and their overlays are presented in (O, R), respectively.

https://doi.org/10.1371/journal.ppat.1008956.g004
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plants were infected with PVAWD-Strep-RFP or PVAWT-Strep-RFP at OD600 = 0.1. Samples were

collected from local leaves at 3 dpi and the affinity purification of HCProWD/WT-Strep-RFP was

performed following the method described in [30]. The presence of HCPro and VCS in the

purified samples was investigated by immunoblotting with α-HCPro and α-VCS antibodies

(Fig 5A). Equivalent loading of the purified HCProWD-Strep-RFP and HCProWT-Strep-RFP samples

is demonstrated by the equal intensities of low molecular weight bands, the major one marked

with an arrow at the ~70 kDa region in the silver stained gel. The lack of any prominent bands

in the GUS control indicated a negligible amount of non-specific interactions with Strep-Tac-

tin matrix during purification. Both HCPro and VCS bands were detected in the HMW-

region (>250 kDa). In contrast to the HCProWT-Strep-RFP, top-most band containing VCS

(marked with an asterisk) was missing in HCProWD-Strep-RFP samples. Interestingly, the top-

most band was also absent in the silver stained gel and drastically reduced in the α-HCPro

immunoblot in the HCProWD-Strep-RFP pull-down samples. A comparison between the input

and the eluted samples indicated specific enrichment of HMW complexes upon purification

(S9 Fig). Additionally, it further validated the specificity of disappearance of the top-most VCS

band from HCProWD-Strep-RFP purified samples. Nevertheless, HMW complexes approxi-

mately 250 kDa in size were still present in HCProWD-Strep-RFP samples. This suggests that the

mutation in the WD40 domain-interacting motif of HCPro affected but did not completely

abolish the formation of HCPro- and VCS-containing HMW-complexes during PVA

infection.

HMW complexes formed during PVAWD Strep-RFP infection are sensitive to

RNase treatment

Results presented in Fig 3H and Fig 5A indicated compositional differences between

HCProWD and HCProWT -containing HMW complexes. Several HMW components such as

CI, VPg, SAMS and VCS were specifically reduced in HCProWD samples. Next, we probed

into the stability of the HMW complexes. For this, we treated the affinity-purified samples

with DNase, proteinase K or RNase A followed by SDS-PAGE analysis. Both HCProWD and

HCProWT–containing HMW complexes resisted DNase treatment whereas proteinase K

degraded them completely (Fig 5B). Intriguingly, RNase A affected HCProWD-HMW com-

plexes, while it did not affect the HCProWT ones (Fig 5B). A bulk reduction of the HCProWD-

HMW complexes upon RNase A treatment suggested that they are ribonucleoprotein (RNP)

complexes. To probe into this phenomenon further, we ran the RNase A degraded complexes

longer in the gel and optimized the loading quantity to get a better look on the degraded com-

plexes (Fig 5C). Smearing of the bands rather than the presence of individual low-molecular

weight proteins suggests the existence of loosely bound multiprotein complexes migrating at

the HMW region even when the RNA fraction exposed to RNase treatment had been degraded

(Fig 5C). The data suggest that the impaired assembly of HCProWD and the other HMW com-

ponents compromised the stability of these complexes rendering the RNA prone to degrada-

tion by RNase A.

VCS knockdown reduces PVAWT gene expression and accumulation to the

level of PVAWD

We considered the WD-mutation -mediated defect in HCPro-VCS association could be a pos-

sible reason behind the aberrant behaviour of HCProWD and sub-optimal performance of

PVAWD. To test this idea we characterized the role of HCPro-VCS interaction in PVA infection.

We studied how limited VCS availability affected PVAΔHCPro, PVAWD and PVA WT infection.

For this, we transiently knocked down VCS by infiltrating leaves with a hairpin construct
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targeting VCS (pHG-VCS). PVAΔHCPro, PVAWD and PVA WT expression levels were then mea-

sured both in the control and VCS-silenced background. VCS silencing was validated via reverse

transcription-polymerase chain reaction (RT-PCR) (S10 Fig). Following a pattern similar to Fig

2A, PVAWD gene expression level was approximately 5-fold lower than that of PVAWT (Fig 6A)

and approximately 20-fold higher than that of PVAΔHCPro in the control plants. On the other

hand, in VCS knock-down experiments PVAWT gene expression decreased to the level of

PVAWD, while that of PVAWD remained unaffected. Interestingly, gene expression of PVAΔHCPro

increased upon VCS downregulation (Fig 6A), showing that in the absence of HCPro, VCS is an

antiviral protein. vRNA levels followed the same pattern as RLUC expression throughout this

experiment (Fig 6B). In contrast to the replicating viruses, RLUC and vRNA were expressed at

similar levels from the replication-deficient variants of PVA (PVAΔGDD-ΔHCPro, PVAΔGDD-HC-

ProWD and PVAΔGDD- HCProWT) and did not change upon VCS silencing (Fig 6C and 6D). Thus,

the VCS-HCPro interaction is especially important for the functions of the replicating PVA

RNA. Interestingly, VCS seemed to promote PVAWT infection in the presence and restrict it in

the absence of HCPro. PVAWD was insensitive to VCS knockdown while PVAWT decreased to

the level of PVAWD supporting the role of impaired HCPro-VCS interaction in the reduced

PVAWD infection. Our interpretation of this result is that HCPro has the capacity to convert VCS

from an antiviral protein to the support of the PVA infection.

VPg, HCPro and VCS together promote PVA translation

We proposed in our previous paper [12] that the presence of HCPro and AGO1 on polysomes

may indicate that RNA silencing-related translational repression is involved in PVA infection

and HCPro is required to relieve it. Also, we reported a role for VPg and HCPro in PVA transla-

tional regulation, and proposed the possible involvement of VCS in VPg-mediated translational

enhancement [10, 31, 32]. In this study, we probed into the role of VCS in PVA translation by

overexpressing either VPg, VCS or both together with PVAΔGDD-ΔHCPro, PVAΔGDD-HCProWD

and PVAΔGDD-HCProWT. The replication-deficient PVAs were used in this experiment to narrow

down the effects of VCS, VPg and HCPro to aspects pertaining to PVA translation. More vigor-

ous protein production from an unaltered RNA concentration, which affects the ratio of the

protein and its mRNA, has been regarded as an indicator of release from translational repres-

sion [33]. Therefore, we calculated the RLUC/vRNA ratios from PVAΔGDD-ΔHCPro,

PVAΔGDD-HCProWD and PVAΔGDD-HCProWT upon VPg and VCS overexpression. In this experi-

ment, all the constructs were co-infiltrated and samples were collected at 3 dpi. The absolute

Fig 5. The WD mutation weakens VCS association with HCPro in HMW RNP complexes and the stability of the

complexes. (A) HCPro and VCS assemble into HMW complexes during infection. For affinity purification, PVAWD- Strep-

RFP / PVAWT-Strep-RFP constructs were agroinfiltrated at OD600 = 0.1 and the infected local leaves were sampled at 3 dpi. Both

HCPro and VCS antibodies recognized HMW bands with a similar electrophoretic mobility in the purified HCProWT-Strep-

RFP samples. The uppermost HCPro and VCS containing band was missing in HCProWD-Strep-RFP samples (marked with

asterisks) both in the silver-stained gel and in the western blots. Equal loading is demonstrated in the silver-stained gel by the

low molecular weight bands present in the samples (marked with an arrow). All the samples were run in the same gel. (B)

Validation of the HCProWD-Strep-RFP / HCProWT-Strep-RFP affinity purification procedure by SDS PAGE and silver staining.

HMW complexes are visible in the HCProWD/WT-Strep-RFP eluates. The purified products were treated with DNase,

Proteinase K and RNase A and subsequently subjected to SDS-PAGE. The silver-stained gels demonstrate the stability of the

purified HMW complexes. (C) RNase degradation of HCPro-associated HMW RNP complexes. To achieve maximum

separation of the HMW RNP complexes, samples similar to those in A) were loaded in varying quantities and run for a

longer time in a 10% SDS-PAGE gel. In all the cases, PVAWD-Strep-RFP and PVAWT-Strep-RFP samples were loaded equally

similarly as in A). Samples presented in the right panel are similar to those shown in the adjacent left panel except that three

folds more was loaded to visualize the effect of RNase A treatment on complexes in PVAWD-Strep-RFP samples. All the

samples in C) were part of the same gel but the right panel was developed for a longer time than the left panel during silver

staining.

https://doi.org/10.1371/journal.ppat.1008956.g005
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values for RLUC activities and RNA levels were quantitated and are presented in S11A and

S11B Fig. Overexpression of VCS was validated via qPCR (S11C and S11D Fig).

Irrespective of which HCPro variant was present, VPg enhanced the RLUC/vRNA ratio

similarly for all of the replication-deficient PVAs (Fig 7A). The absolute RLUC activity mea-

surements show that both PVAΔGDD-HCProWD and PVAΔGDD-HCProWT are equally enhanced by

VPg (S11A Fig). This suggests that VPg-mediated enhancement of translation does not require

an intactWD40 domain-binding motif in HCPro. We further validated this by supplementing

non-replicating PVAΔGDD-ΔHCPro with VPg together with either GUS (OD600 = 1), HCProSDM

(OD600 = 1), HCPro4EBM (OD600 = 1), HCProWD (OD600 = 0.3), or HCProWT (OD600 = 0.3).

VPg did not enhance translation in the presence of HCProSDM and HCPro4EBM. However,

in the presence of both HCProWD and HCProWT, VPg caused a similar extent of RLUC

Fig 6. VCS knockdown brings down PVAWT expression level to that of PVAWD. (A, B) N. benthamiana leaves were infiltrated with Agrobacterium carrying a

silencing vector (pHG-VCS) expressing a hairpin RNA targeting VCS (OD600 = 0.4). An empty Hellsgate plasmid (pHG-CTRL) was used as a control. Agrobacterium
carrying PVAΔHCPro, PVAWD and PVAWT constructs were co-infiltrated (OD600 = 0.01) with Agrobacterium carrying 35S-FLUC (OD600 = 0.01) for normalization of the

virus-derived RLUC values. Normalized RLUC (A) and PVA RNA (B) levels were quantitated at 4 dpi. (C) Normalized RLUC and (D) RNA values derived from non-

replicating PVA RNAs: PVAΔGDD-ΔHCPro, PVA ΔGDD-HCProWD and PVA ΔGDD-HCProWT. VCS silencing was done similarly as in (A). Agrobacterium carrying PVAΔGDD-

ΔHCPro, PVA ΔGDD-HCProWD and PVA ΔGDD-HCProWT constructs were co-infiltrated (OD600 = 0.05) with Agrobacterium carrying 35S-FLUC (OD600 = 0.01) for

normalization of the virus-derived RLUC values. Samples were collected at 3 dpi. The number of plants per experiment was 6 in (A, B) and 3 in (C). Statistical

significance was assessed using student’s t-test. Different letters above the bars indicate a statistically significant difference (P< 0.05).

https://doi.org/10.1371/journal.ppat.1008956.g006
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enhancement (S12 Fig), which further confirmed that the HCProWD mutation does not pre-

vent the effect of VPg on PVA translation, whereas HCProSDM and HCPro4EBM mutants do.

Overexpression of VCS alone did not have a significant effect on the RLUC / vRNA ratio of

any replication-deficient PVA. Finally, co-expression of VPg and VCS increased the RLUC/

vRNA ratio of PVAΔGDD-HCProWT significantly more than that of PVAΔGDD-ΔHCPro and

PVAΔGDD-HCProWD. Both PVAΔGDD-ΔHCPro and PVAΔGDD-HCProWD performed similarly in

the simultaneous overexpression of VPg and VCS. In fact, here the addition of VCS did not

change the situation where VPg alone was overexpressed. Taken together, HCPro and VCS

need to interact in order to achieve full translational benefit generated by the combined

effect of VPg and VCS (Fig 7A).

Next we studied the effect of VPg and VCS on the translation of replicating PVAs. The

RLUC/vRNA ratios of PVAΔHCPro, PVAWD and PVAWT were calculated from VCS knock-

down and overexpression experiments. In addition, we included transiently overexpressed

VPg in the experiment to study its contribution to the RLUC/vRNA ratio with and without

VCS. Samples were collected from the infiltrated leaves at 4 dpi. Silencing and overexpression

of VCS were validated via qPCR (S13 Fig). After measuring RLUC activity and vRNA levels

(S14 Fig) we calculated the RLUC/vRNA ratio for each sample. VCS knock-down either in the

presence or in the absence of VPg did not significantly alter the RLUC/vRNA ratio of any PVA

variant (Fig 7B and 7C). A small increase in the RLUC/vRNA ratio was detected upon VCS

overexpression in plants infected with PVAWT (Fig 7D). This ratio increased further when

both VCS and VPg were co-expressed in PVAWT infected plants (Fig 7E). Similar to the repli-

cation-deficient PVAs (S11A and S11B Fig), the change in the ratios caused by simultaneous

overexpression of VPg and VCS were due to reduced vRNA accumulation and unaffected

RLUC. While active PVA translation benefits from the collaboration of VPg, VCS and HCPro,

the reduced RNA amount during VCS overexpression may indicate that other viral processes

become unbalanced.

VCS-HCPro interaction is required for particle formation

The importance of VCS for systemic infection and CP accumulation was proposed in Hafren

et al. [10]. Here we show that in PVAWD viral gene expression remained low in systemic leaves

suggesting that very little of vRNA reached the upper leaves (see Fig 2C). Since systemic move-

ment is often associated with the formation of stable virions [34–38], we next tested the ability

of PVAWD to form particles or virus-like particles (VLPs). For this, we sampled locally infected

leaves at 3 dpi. In order to obtain equivalent infection PVAWD was infiltrated in a higher

amount (OD600 = 1) compared to PVAWT (OD600 = 0.1). Immunocapture (IC)-qRT-PCR was

performed to measure the abundance of vRNA assembled into VLPs or virions. Although

RLUC activities were broadly similar, a drastic reduction in the amount of particles was

Fig 7. Both VPg and VCS-HCPro interaction promote PVA translation. (A) RLUC/vRNA ratio of non-replicating variants of PVA RNA

(PVAΔGDD-ΔHCPro, PVAΔGDD-HCProWD and PVAΔGDD-HCProWT) was quantitated during VPg, VCS and VPg + VCS overexpression. All virus

constructs were infiltrated at OD600 = 0.05 and all overexpression constructs at OD600 = 0.25. VCS overexpression was initiated with a mix of

Agrobacterium carrying VCS-A, VCS-B and VCS-C constructs each at OD600 = 0.25. Samples for the dual luciferase assay and RNA

quantification via qPCR were collected at 3 dpi. Statistical significance was assessed using student’s t-test (�P< 0.05). Different letters above the

bars indicate a statistically significant difference. (B—D) Fold change in the RLUC/vRNA ratio in replicating variants of PVA- (PVAΔHCPro,

PVAWD and PVAWT) upon VCS-silencing (B, C) and overexpression (D, E). The ratios were determined both without (B, D) and with (C, E)

overexpressed VPg. All PVA constructs were infiltrated at OD600 = 0.01. The silencing constructs were infiltrated one day before virus

infiltration at OD600 = 0.4, whereas the overexpression constructs were co-infiltrated with PVA constructs. VPg was infiltrated at OD600 = 0.4.

The VCS overexpression set contained a mix of VCS-A, VCS-B and VCS-C each infiltrated at OD600 = 0.1. All samples were collected at 4 dpi.

The concentration of infiltrated Agrobacterium between different samples in (A-E) was equalized with Agrobacterium carrying either

pHG-CTRL or GUS. The number of plants per experiment was 4 in (A), 6 in (B, C) and 5 in (D, E). Statistical significance between the sets is

denoted by asterisk (student’s t-test �P< 0.05, ��P< 0.01).

https://doi.org/10.1371/journal.ppat.1008956.g007
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noticed in PVAWD-infected plants as compared to PVAWT-infected plants (Fig 8A). CP accu-

mulation was validated via western blotting. A slight reduction in the intensity of the CP band

was observed in PVAWD (Fig 8A). To visually inspect the particles, we extracted the particles

in phosphate buffer and subjected them to transmission electron microscopy. Virus particles

were abundantly detected in PVAWT-infected samples but none were observed in PVAWD-

infected samples. A few short and loose particle-like structures were occasionally detected;

however, they were virtually indistinguishable from imaging artefacts (Fig 8B). Taken together,

IC-qRT-PCR results coupled with the electron microscopy study provided solid evidence that

either PVAWD does not form particles or the particles formed are fundamentally defective.

Finally, in order to probe into the nature of infection in planta we allowed the infection to

spread in local leaves for 9 days, and visualized the leaves under transmission electron micros-

copy. Pinwheel structures characteristic for potyvirus infection were detected in both PVAWT

and PVAWD samples (Fig 8C right panel). PVAWD infected cells were, however, devoid of par-

ticle stacks observed in abundance in PVAWT infected samples (Fig 8C left panel) [39]. While

PVAΔHCPro failed to form pinwheel structures (Fig 9A) typically seen in PVAWT infected cells

(Fig 9B), PVAWD infected cells showed dense aggregations of cylindrical inclusion protein

(CI)-induced pinwheel structures (Fig 9C). Although it is not clear what the abundance of

these pinwheel structures means, it could indicate that the HCProWD mutation disrupts the

homeostasis of CI and pinwheel structures. It also shows that although the expression level of

PVAWD was high the infection was not able to launch robust particle formation.

Discussion

The WD40-domain protein VCS has an important role in PVA infection and it associates with

PGs [10]. In this study, we explored the interplay between HCPro and VCS in planta and its

importance for achieving efficient infection. Using an HCPro mutant with a compromised capac-

ity for sequestering VCS in infection-associated multiprotein complexes, and its lack of sensitivity

to the effects of VCS in PVA infection, we show that this interaction is pivotal for PG formation,

silencing suppression, efficient translation, PVA encapsidation and systemic infection. We pro-

pose a model of the PVA infection cycle highlighting the role of the HCPro-VCS interaction at

various stages of the infection (Fig 10). In this model, we outline that during a successful infection

several multiprotein complexes are formed around replicated PVA RNA. These complexes con-

tain HCPro, VCS and both free and 5’ genome-linked VPg, along with other recruited proteins.

We further propose that these complexes protect the viral RNA from degradation, support it in

its essential functions and follow it all the way to the formation of stable particles.

WD40-domain proteins are known for their regulatory roles. They are involved for example

in cell division, cell fate determination, gene transcription and mRNA modification [22].

According to the sequence analysis carried out using the WDSP web server motif predictor

[20] N. benthamiana VCS-A and VCS-C are WD40-domain proteins that comprise five

WD40 repeats, while VCS-B has six (http://www.wdspdb.com/wdsp/). In processing bodies

VCS acts as an enhancer of mRNA decapping and associates with RNP complexes containing

the decapping proteins DCP-1 and DCP-2 [27,40]. In addition, VCS has a role in miRNA-reg-

ulated translational repression [33]. Similar to its human analogue Ge-1/Hedsl, VCS is pre-

dicted to act as a scaffold for protein-protein interactions [27,41]. Furthermore, VCS and Ge-

1/Hedsl have both been assigned pro-viral roles. Ge-1 is an important host factor in hepatitis C

virus infection and its depletion significantly reduced viral protein and RNA accumulation

[42]. Along the same lines, the down regulation of plant VCS reduced PVA infectivity [10].

The ‘AELPR’ motif of PVA HCPro identified in this study is shared by three WD domain

-binding motifs conforming to the pattern [EDSTY].{0,4}[VIPLA][TSDEKR][ILVA].
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Although there were other stretches of amino acids fulfilling this pattern within the PVA

HCPro sequence, this motif was targeted because it is conserved within 119 potyviral HCPro

sequences. In addition the motif localized to a surface-accessible disordered region (Fig 1B

and 1C and S1 Fig), predicting that this region could participate in protein-protein interac-

tions. Although the mutation site is near the protease domain, HCProWD’s protease function

was unaffected (Fig 2A). Therefore, we believe that a mutation within this loop structure did

not disturb the overall HCPro structure. While the results of this study enable us to propose

that this motif plays a role in the association between HCPro and VCS in planta, one or more

of the other predicted WD-binding sites (see S1A Fig) may still permit weak interactions with

VCS. This would be a possible explanation for the remaining degree of co-localization and co-

purification of VCS with Strep-tagged HCProWD. Moreover, other proteins present in the

HCPro-containing HMW RNP complexes may also carry HCPro and VCS binding sites. In

that case, the complexes would still retain HCPro and VCS, but in a loosely bound form.

The nature of PGs, including protein composition and comparison to processing bodies and

stress granules are discussed in Hafrén et al.[10]. HCProWD overexpression produced abundant

PG-like cytoplasmic foci. This feature was unique to this mutant as neither HCProWT (in this

study and [10]) nor HCProSDM/4EBM [10] produced such aggregates. These aggregates may rep-

resent non-functional forms of PGs as most of them lacked vital PG components like VCS and

P0, which are characteristic of HCProWT-induced PGs as shown in [10], (also in S4 Fig and S8

Fig). This indicates that HCProWD, though still able to form the foci, fails to sequester essential

PG components leading to the accumulation of the non-functional cytoplasmic aggregates. A

similar kind of malfunction was noted for the infection-associated HMW RNP complexes, to

which HCProWD failed to recruit components like VPg and CI (Fig 3H and Fig 5A). Further-

more, the increased sensitivity of complex-bound RNA to RNase treatment (Fig 5B and 5C)

indicated misassembled complexes with possibly loosely bound components. Our hypothesis is

that during PVAWT infection all components involved in the HCPro-induced multiprotein

complexes co-operate to shelter vRNA from degradation. HCPro may provide the molecular

cues while VCS likely forms a physical scaffold for the complex. Pinwheel structures are primar-

ily attributed to CI but it is clear that assistance from other viral and host proteins is required to

form them (reviewed in [43]). HCProWD was unable to recruit CI into HMW RNP complexes

(Fig 3H and S2 Table). Although in PVAWD infected samples CI formed dense patches of pin-

wheel aggregates uncommon to PVAWT infection (Fig 9). Although we are unable to conclude

if impaired HCPro-VCS interaction underlies this phenomenon, it provides another example of

uncharacteristic multiprotein structures in a PVAWD infection.

In our earlier studies we hypothesized that PGs are linked to the silencing suppression

property of HCPro and, in order to achieve efficient infection, vRNA moves from replication

to translation via PGs [10,44]. Active translation does not occur in visible PGs. The amount of

PGs is actually reduced when PVA RNA is actively translated on polysomes [10]. Potyviral

Fig 8. PVAWD is defective in particle formation. (A) PVA particle accumulation in PVAWD and PVAWT infected

local leaves at 3 dpi, as measured by immunocapture qRT-PCR. N. benthamiana plants were agroinfiltrated with

PVAWD (OD600 = 1) and PVAWT (OD600 = 0.1) to ensure comparable RLUC expression level between PVAWD and

PVAWT (upper panel). The corresponding particle numbers and CP accumulation visualized by western blotting with

anti-CP antibodies are presented in the middle and lower panels, respectively. (B) Electron microscopy images from

the same samples as in A) showing normal virus particles formed by PVAWT. No particles were found in PVAWD, only

few deformed particle-like structures were observed (marked by an arrow in the lower electron micrograph). The

number of plants per experiment was 3. Statistical significance was assessed using student’s t-test (�P< 0.05). (C) Both

PVAWT and PVAWD infections were allowed to spread in the local leaves until 9 dpi, and EM images of the infected

tissues were taken.Pinwheel inclusions (marked as ‘CI’) were observed. However, the pinwheels from PVAWT were

associated with stacks of particles (marked as ‘PS’) in vicinity while those from PVAWD were devoid of them.

https://doi.org/10.1371/journal.ppat.1008956.g008
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protein VPg is responsible for this regulation. Our recent data suggest that binding of PVA

VPg to eIF(iso) 4E is a key factor in directing PVA RNA from PGs to active translation on

polysomes [45]. VPg also protects PGs from degradation via autophagy [46]. This study further

supports the hypothesis that PGs have a role in viral gene expression and in the protection of

PVA RNA. First, HCProWD forms approximately five-fold less PGs compared to HCProWT.

Fig 9. Homeostasis of pinwheel inclusions is disrupted in PVAWD infection. (A) PVAΔHCPro infected leaf tissues did

not show any pinwheel inclusions or any other visible symptoms of infection at 9 dpi. (B) PVAWT infected cell showing

characteristic pinwheel inclusions (CI) and associated particle stacks (marked as PS). (C) PVAWD infected cells

showing in several instances dense patches of pinwheel inclusions (marked as CIA). All the images were taken at

8000X magnification.

https://doi.org/10.1371/journal.ppat.1008956.g009

Fig 10. A model for HCPro-VCS interaction in PVA infection. We present here a hypothetical model of a core complex, which contains both HCPro and VCS and

guides PVA RNA through the different stages of infection. We propose that after PVA RNA is released from the viral replication complex it connects with HCPro.

HCPro then recruits VCS to assist in the formation of multiprotein complexes. The composition of these complexes probably varies depending on the infection stage.

Interaction between HCPro and VCS is required for the formation of PGs, which form to suppress RNA silencing and to enable active PVA translation. Finally, the

multiprotein complex formed around HCPro-VCS seals the PVA particles. This is essential for both the stability of PVA RNA within particles and the systemic spread of

PVA infection.

https://doi.org/10.1371/journal.ppat.1008956.g010
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On similar lines PVAWD gene expression is approximately five-fold lower than PVAWT gene

expression. Second, HCProWD is deficient in hairpin-mediated RNA silencing suppression

(Fig 3A–3D) and in recruiting VCS to PGs (Fig 4) VCS knockdown significantly reduces the

amount of PGs induced by HCProWT [10], while in this study we demonstrated that VCS

silencing brings PVAWT expression down to the level of PVAWD (Fig 6A and 6B). Cumula-

tively these results strengthen the argument that HCPro coordinates the recruitment of VCS in

PGs through its WD40 domain-interaction motif.

This study successfully demarcates the role of HCPro in PVA translation from its role in

silencing suppression. Earlier we demonstrated that VPg mediates the enhancement of RLUC

expression from PVA RNA [31]. Furthermore, VPg-mediated translational regulation requires

VCS and HCPro [10] and their interaction to optimally augment protein production from

PVA RNA (Fig 7). PVA HCProSDM [10] is equivalent to the AS9 mutant well-characterized in

TEV and TuMV [5,6,47], and PVA HCPro4EBM is an eIF4E binding-deficient mutant of

HCPro [13]. PVA HCProSDM and PVA HCPro4EBM are both deficient in RNA silencing sup-

pression [10]. Unlike in HCProSDM and HCPro4EBM, complementation was not fully lost in

HCProWD (Fig 2B). Reduction in the complementation efficiency compared to the wild type

HCPro is logical since HCProWD is deficient in silencing suppression. An interesting novel

finding of this study is the demonstration that VPg-mediated translational enhancement could

be complemented by HCProWD but not by HCProSDM and HCPro4EBM (S12 Fig), which pro-

poses that the role of VPg in translational enhancement does not rely on the HCPro-VCS

interaction. Supporting this argument both HCProWD-Strep-RFP and HCProWT-Strep-RFP associ-

ated in monomeric form with polysomes purified from PVAWD-Strep-RFP / PVAWT-Strep-RFP

infected N. benthamiana plants (S15 Fig and S1 Reference). A thorough understanding of

translational regulation by these proteins is a subject of future studies.

Initially RISC-mediated translational repression was thought to be a unique feature of ani-

mal cells but lately it has been shown to be an antiviral mechanism also in planta. Iwakawa and

Tomari [48] achieved strong repression of translation using sRNA with perfect complementar-

ity to TEV 5’ UTR followed by an RLUC ORF. Furthermore, Arabidopsis VCS mutants show

increased protein accumulation without a corresponding increase in mRNA level suggesting

that VCS participates in translational repression [33]. The relevance of HCPro-VPg-VCS

interactions in translational regulation was further supported by a significant upregulation in

the RLUC / RNA ratio upon overexpression of VPg and VCS in PVA infection. Interestingly,

in the PVA infection context, VCS overexpression decreased vRNA accumulation by approxi-

mately three-fold (S14F Fig). Nevertheless, even the reduced amount of PVA vRNA yielded a

similar amount of RLUC as the control (S14E Fig). During VCS and VPg co-expression, even

an eight-fold lower RNA concentration yielded the same amount of RLUC compared to the

control (S14G and S14H Fig). Likewise in the case of replication-deficient PVA RNA VCS and

VPg co-expression yielded similar RLUC expression from approximately 5.5 fold less RNA

(S11A and S11B Fig). Our analysis did not show if the reduction in viral RNA occurred on

polysomes during translation since we measured the total RNA amount. Therefore, more

investigations are required to link this phenomenon to RNA silencing -related relief of transla-

tional repression.

PVAWD infection did not produce detectable virus particles in spite of a substantial level of

viral gene expression in the local leaves (Fig 8). Defective particle assembly process and particle

instability may both explain why particles were not detected. Currently it is not possible to

conclude which of these two alternatives is correct. In an earlier report we found that VCS

knockdown affects the CP accumulation in PVA infection [10]. In the current this study with

PVAWD we also observed reduced CP accumulation compared to PVAWT (Fig 8A). With

expression of the PVA polyprotein, we have shown that RLUC activity from the 3’ side of PVA
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RNA is proportional to CP expression [49]. The reduced CP level in PVAWD may also result

from the degradation of free CP [50] due to defects in particle formation and gives further sup-

port for the role of HCPro-VCS interaction in virion formation. The absence of virions or the

presence of unstable virions both could explain the low PVAWD infection level in the systemic

leaves. We tested this phenomenon also in a TuMV-N. benthamiana pathosystem [51]. As in

PVA infection, the WD mutation in TuMV HCPro caused a defect in virion formation and

impaired systemic movement. (S16 Fig). The complete absence of particles from PVAWD

-infected leaves when observed under transmission electron microscopy proposes that assem-

bly of viable particles was not possible (Fig 8). Potyviral transmission between plants occurs

when aphids absorb virus particles to their stylet during ingestion of leaf material. Therefore,

especially the lack of particle stability in the absence of HCPro-VCS binding may have high

practical relevance for viral resistance breeding.

Taken together, we propose that VCS is by nature an antiviral protein, which viral proteins

HCPro and VPg have co-opted to promote PVA infection. The antiviral RNA silencing

machinery targets viral RNA upon exit from viral replication complexes. We propose that

HCPro recruits VCS, which serves as a scaffolding platform to assemble an RNP complex

around viral RNA. This is a prerequisite not only for the protection of viral RNA from the

host’s defence, but also for the production of viable PVA particles and long-distance transport

of PVA.

Methods

Plants

All experiments were carried out using Nicotiana benthamiana plants as the host. The plants

were grown in an environmentally controlled greenhouse at 18 h light and 6 h dark photope-

riod at 22 oC and 18 oC respectively. Relative humidity was maintained at 50%.

Recombinant viruses and HCPro overexpression constructs

Mutation in the WD40 domain-interacting motif of HCPro was introduced in the wild type

P1-C-terminus-HCPro (or HCProStrep-RFP) P3-N-terminus fragment (P1-HCPro-P3) in the

pGEM-T-Easy vector (Promega) using a two-step site directed mutagenesis described by Edel-

heit et al. [52]. The primer sequences are as follows: forward primer- 5’-CAA GTG CCG CCG

CGC TTC CAG CAA TTT TGG TTG-3’; reverse primer- 5’-CAA CCA AAA TTG CTG GAA

GCG CGG CGG CAC TTG-3’ (changed nucleotides are marked in bold). The mutated frag-

ments (P1-HCProWD-P3 or P1-HCProWD-Strep-RFP-P3) were then used to replace the P1-

HCPro-P3 fragment in PVA or PVAWT-Strep-RFP icDNAs in the pUC18 vector using SexAI and

NruI restriction sites. A non-replicating variant PVAΔGDD-HCProWD was prepared by replacing

the wild-type NIb gene with the mutated ΔGDD version as described in Eskelin et al. [29].

Finally, to enable Agrobacterium mediated transformation the mutated PVA icDNAs were

transferred into the binary vector pRD400 using SalI and KpnI restriction sites.

For HCPro expression constructs, the mutation was introduced similarly in an interim vec-

tor containing 35S promoter-HCPro-nos terminator (pHTT690). The mutated 35S-

HCProWD-nos fragment was cloned into pRD400 using HindIII restriction sites. Expression

constructs for TwinStrep-tagged RFP fusions of HCProWT and HCProWD were generated

from P1-HCProWT-Strep-RFP-P3 or P1-HCProWD-Strep-RFP-P3 fragments by PCR using the fol-

lowing primers: forward- 5’-TCC GCT CGA GAT GAA ATG GTC TCA TCC ACA A-3’,

reverse- 5’-CGC GGA TCC TCA CGA CTC TTT TTC GAA CTG-3’. The primers were

designed to add an Xho1 restriction site at the 5’ end and both a stop codon and a BamH1

restriction site to the 3’ end of the amplified fragment. XhoI-BamHI digested PCR products
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were ligated into similarly double-digested pHTT690H to generate 35S-TwinStrep-

RFP-HCPro-nos and 35S-TwinStrep-RFP-HCProWD-nos. After sequence verification the

expression cassettes were transferred into the pRD400 binary vector using HindIII restriction.

N. benthamiana VARICOSE expression constructs

Genes homologous to the Arabidopsis thaliana VARICOSE (VCS, accession Q9LTT8) were

identified with a BLAST search of the N. benthamiana genome v1.0.1 predicted cDNAs

(https://solgenomics.net/). Three N. benthamiana VCS-like genes: Niben101Scf00654g02003.1

(VCS-A), Niben101Scf39216g00007.1 (VCS-B) and VCSC Niben101Scf21107g00015.1

(VCS-C) were Gateway-cloned into expression vectors. VCS-A and VCS-C were amplified

with gateway-compatible primers from a N. benthamiana cDNA library generated from total

RNA using Superscript III (Invitrogen). VCS-B was synthesized and cloned into the pUC57

vector by BaseClear, Netherlands. The forward primer for VCS-A and -C was 5’-GGG GAC

AAG TTT GTA CAA AAA AGC AGG CTT CAT GGC TTT CTT TGC AGA G-3´ and the

reverse primers were- 5’-GGG GAC CAC TTT GTA CAA GAA AGC TGG GTT TCA TTT

ACT CAT CAA CAT CGA-3’ and 5’-GGG GAC CAC TTT GTA CAA GAA AGC TGG GTT

TCA TTT ACT ACA GGT CAT CAG-3’, respectively. VCS-B was amplified with the forward

primer 5’-GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT CAT GGC TTC TTC TCC

TGG C-3’ and the reverse primer 5’-GGG GAC CAC TTT GTA CAA GAA AGC TGG GTT

TCA TTT ACT CAT CAA CAT CGA AT-3’. The PCR products were cloned into pDONR-

Zeo via a BP-reaction with a BP ClonaseII enzyme mix (Invitrogen). Positive entry clones were

verified by sequencing and LR-cloned into the KpnI-linearized destination vector pMDC32 to

generate native expression constructs. XhoI-linearised pGWB42 [53] was used as the destina-

tion vector to construct N-terminal YFP-fusions.

Agroinfiltration

Preparation of the infiltration mix as well as agroinfiltration was carried out following Ivanov

et al. [12].

Luciferase assay

Samples at designated dpi were collected using a cork borer of internal diameter 5-mm. Leaf

discs were either directly used for luciferase assays using a Dual luciferase kit (Promega) as in

Eskelin et al. [29] or stored at -80 oC for later analysis.

YFP Fluorescence quantification

YFP fluorescence intensity was quantified directly from 5-mm leaf discs using a Tecan Infinite

M200 monochromator-based pate reader following De et al. [54]. Ex/Em wavelength used for

the detection of YFP fluorescence was 500/530 nm.

Epifluorescence and confocal microscopy

The expression and localization of HCProWD-Strep-RFP, HCProWT-Strep-RFP and VCSYFP in N.

benthamiana epidermal cells was examined with confocal laser scanning microscopy using a

Leica TCS SP5II instrument (Leica Microsystems). For imaging, leaf samples were mounted

upside down on an objective slide with a drop of water and placed under a cover glass. All

images were acquired with a 63x water immersion objective and in sequential scanning mode

in order to avoid fluorophore bleed-through. YFP was excited with a 488 nm argon laser

and RFP with a DPSS 561 nm laser. Emissions were detected at 525–555 nm and at 570–630
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nm for YFP and RFP, respectively. CFP was excited with an argon laser at 458 nm and emis-

sion was recorded at 470–500 nm. Line-averaging was adjusted to 4 to improve image qual-

ity. Co-localization analysis of VCSYFP with HCProWT-Strep-RFP and HCProWD-Strep-RFP was

performed with the Fiji (ImageJ) image analysis software package using the co-localization

threshold-function. HCPro-containing granules were selected as ROIs for the co-localiza-

tion and results are given as % intensity of VCSYFP co-localizing with HCProWT-Strep-RFP or

HCProWD-Strep-RFP.

PG visualization and quantification was carried out using epifluorescence microscopy fol-

lowing the method described in Hafrén et al. [10].

Strep-Tag affinity purification of HCPro and identification of co-purified

proteins

HCPro-associated protein complexes were isolated from leaves infected with PVAWT-Strep-RFP

or PVAWD-Strep-RFP infiltrated at OD600 = 0.1. GUS-infiltrated plants were used as negative

controls. Leaves were harvested at 3 dpi and immediately frozen in liquid nitrogen. Subse-

quently, Strep-tag mediated purification of HCProWT-Strep-RFP or HCProWD-Strep-RFP was car-

ried out following Ivanov et al. [30] with minor modifications. 1 g frozen leaf material was

homogenized in 3 mL binding buffer. The homogenate was subsequently filtered through dou-

ble layered miracloth and centrifuged at 5000 ×g for 5 min at 4 oC to remove insoluble debris.

Approximately 2 mL of cleared lysate was mixed with 50 μL resin suspension and incubated

overnight with gentle rotation at 4 oC. The rest of the protocol is same as Ivanov et al. [30].

Final elution volume was 100 μL. Identification of proteins present in the purified fractions

was carried out by western blotting and LC-MS/MS following Ivanov et al. [12].

DNase, RNase and Proteinase K stability assay

Purified products obtained after elution from Strep-Tactin resin were subjected to DNase

(RQ1 RNase-Free DNase, Promega), Proteinase K (Product No. 59895, Invitrogen, Thermo

Fisher Scientific) and RNase A (Fermentas) treatment. Each reaction mix comprised 3 μL elu-

ate and 1 μL DNase (1u/μL), Proteinase K (20 μg/μL) or RNase A (10 μg/μL). Final reaction

volume was made up to 10 μL with recommended buffer / water. Reaction mixes were incu-

bated for 1 h at 37 oC and thereafter subjected to standard SDS-PAGE followed by silver

staining.

Western blotting

Standard western blotting procedures were followed to detect eluted proteins from Strep-affin-

ity purification experiments and from all other overexpression experiments. Western blot for

HCPro was carried out following De et al. [54], while SAMS, AGO1, CI and VPg were detected

similarly to Ivanov et al. [12]. A customised anti-VCS antibody recognizing all three N.

benthamiana VCS proteins used in this study was produced in rabbit (Biomatik) and used at

1 μg/mL dilution. The antibody recognizes peptide sequence ‘TEGPDEEDKPQITGK’ located

near the N-terminal region of all three forms of VCS (S17 Fig).

LC-MS/MS

LC-MS/MS analysis of the purified products were carried out following Ivanov et al. [12].
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RT and ic-qRT-PCR

Omega E.Z.N.A. Plant RNA-purification kit (Product No. R6827-02) along with RNase-free

DNase (Product No. E1091-02) was used to purify RNA from 100 mg of leaf tissues. Standard

protocol [55] for ic-qRT-PCR was followed to quantify PVA particles from 100 mg of leaf tis-

sue. Primary antibody against CP (SASA, UK) at 1:1000 dilution was used for this purpose. All

cDNAs were prepared using the H Minus First Strand cDNA synthesis kit (Product No.

K1632, Thermo Fisher Scientific) with random hexamer primers. qPCR was carried out using

Maxima SYBR Green qPCR Master mix (Thermo Fisher Scientific) and a CFX96 TouchTM

Real-Time PCR Detection System. Amplification of PVA RNA was carried out using primers

targeting the CP region: forward- 5’-CAT GCC CAG GTA TGG TCT TC-3’, reverse- 5’-ATC

GGA GTG GTT GCA GTG AT-3’. The protein phosphatase 2A (PP2A) gene was used as the

reference gene. PP2A was amplified with the following primers: forward- 5’-GAC CCT GAT

GTT GAT GTT CG-3’, reverse- 5’-GAG GGA TTT GAA GAG AGA TTT C-3’.

Electron microscopy

PVA particles were visualized with a Jeol JEM-1400 transmission electron microscope (Jeol

Ltd., Tokyo, Japan). 100 mg leaf tissue was ground in 100 μL 0.06 M phosphate buffer and

incubated on ice for 1 h to let the cell debris settle. Carbon-coated EM-grids were incubated

with the anti-CP antibody (1:100 dilution) for 1 h at room temperature. Excess antibody was

washed with phosphate buffer. Subsequently, the antibody-coated grids were incubated for 5

min with supernatant collected from the leaf extracts after settling down of the debris. Grids

were further washed with 20 drops of phosphate buffer and immediately stained with 2% Ura-

nyl acetate for 15 sec. Excess stain was drained from the grids using filter paper and dried grids

were used for visualization of the particles. EM images of the infected leaf tissues were visual-

ized following Lõhmus et al. [56].

Supporting information

S1 Fig. WD interacting domains in HCPro- conservation and characterization. Identifica-

tion of motifs within the HCPro sequence with potential to interact with WD domain proteins

(A) 119 potyviral HCPro amino acid sequences were aligned and searched for interaction

motifs for WD domain proteins. Six highly conserved, putative WD domain -interacting

motifs were found. These sequences and the percentage of their conservation among poty-

viruses are indicated in (A). ‘C’ and ‘H’ residues that are important for cysteine protease activ-

ity of HCPro are marked with arrow in the alignment shown in (A). Variation in the amino

acids within each motif is presented in the table below. Motif no. 5, the AELPR sequence used

in this study, is the most conserved one. (B) Localization of the motifs 3-5 within the crystal

structure of the C-terminal domain of TuMV HCPro (PDB id-3RNV). Motifs 1 and 2 are out-

side the resolved structure and motif 6 is not conserved in TuMV HCPro. Hence, they could

not be shown. Motifs 3 and 4 were merged and are highlighted with yellow whereas motif 5 is

indicated with red. (C, D) Ribbon diagrams of VCS proteins from Arabidopsis thaliana,

obtained from WDSP database (http://www.wdspdb.com/wdsp/). (C) AT3G13300.1 and (D)

AT3G13300.3. (E) Modelling the molecular docking of HCPro (from (B)) and VCS (from (C))

was carried out using ClusPro online server (https://cluspro.bu.edu/). Similarly, (F) presents

the predicted interaction model between (B) and (D). The docking model in which the AELPR

motif interacts with VCS was among the top predictions.

(TIF)
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S2 Fig. Expression levels of HCProWT-Strep-RFP / HCProWD-Strep-RFP expression constructs

following Agrobacterium infiltration at different ODs. HCProWD-Strep-RFP / HCProWT-Strep-

RFP constructs were Agrobacterium infiltrated at different ODs (OD600 = 0.01; 0.05; 0.1; 0.5).

The RFP fluorescence level at Ex/Em = 555/584 nm was measured from the intact leaf discs

with a microplate reader. Statistically significant differences between the samples are denoted

by asterisks (��P < 0.01; ���P < 0.001; n = 6). In spite of the statistically significant differences

in the HCProWD-Strep-RFP / HCProWT-Strep-RFP accumulation levels, they did not differ drasti-

cally.

(TIF)

S3 Fig. Control images showing the absence of granules in P0YFP overexpression alone.

Control images showing the absence of PG formation by P0YFP overexpression alone (ref. Fig

3E and 3F). GUS is used to balance the Agrobacterium cell count in the absence of HCPro.

(TIF)

S4 Fig. Pairwise overlays: HCProWT-Strep-RFP / HCProWD-Strep-RFP and VCSYFP;

HCProWD-Strep-RFP / HCProWT-Strep-RFP and P0CFP. Presented are the pairwise

overlays between HCProWT-Strep-RFP (A-C) / HCProWD-Strep-RFP (G-I) and VCSYFP and

HCProWT-Strep-RFP (D-F) / HCProWD-Strep-RFP (J-L) and P0CFP to support the result pre-

sented in Fig 4A–4F.

(TIF)

S5 Fig. Expression levels of HCProWT-Strep-RFP, HCProWD-Strep-RFP and VCSYFP in the

experiment presented in (Fig 4A–4F). RFP and YFP fluorescence levels in the intact leaf discs

measured at Ex/Em 555/584 nm and 500/530 nm, respectively, in a microplate reader. Statisti-

cally significant differences between the samples are denoted by an asterisk (��P < 0.01); n = 6
(TIF)

S6 Fig. Degree of co-localization between HCPro and VCS corresponding to experiment

presented in (Fig 4G–4L). HCPro-containing foci (= PGs) were selected as region of interests

(ROIs) for the co-localization and the results are given in terms of % (by intensity) of VCSYFP

co-localizing with HCProWD-Strep-RFP / HCProWT-Strep-RFP. Statistical significance was calcu-

lated from images taken from three independent sets of biological replicates (n = 11; student’s

t-test ���P< 0.001).

(TIF)

S7 Fig. Relative expression levels of HCProWT-Strep-RFP / HCProWD-Strep-RFP and VCSYFP in

Fig 4G–4L. RFP fluorescence was measured at Ex/Em = 555/584 nm while YFP fluorescence

was measured at Ex/Em = 500/530 nm from the intact leaf discs using a microplate reader. Sta-

tistically significant differences between the samples are denoted by asterisks (��P< 0.01; N.S.

stands for non-significant; n = 48).

(TIF)

S8 Fig. Epifluorescence microscopy images showing that HCProWD-Strep-RFP aggregates

and PGs visualized by P0YFP marker are distinct entities. (A) Percentage of HCPro aggre-

gates co-localizing with P0YFP. Significance of the differences between the samples is denoted

by asterisk (���P< 0.001; n = 5). (B-D) HCProWD-Strep-RFP aggregates, P0YFP and their overlay

within a single cell under a 100X water immersion objective. (E-G) Reference PGs with

HCProWT-Strep-RFP and P0YFP shows co-localization. Samples were visualized at 3 dpi. Experi-

mental details are the same as in Fig 4M–4R. HCPro and P0YFP were visualized at 3 dpi with

an epifluorescence microscope using RFP and YFP filters respectively.

(TIF)
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S9 Fig. Validation of enrichment of HCPro-associated HMW complexes during Twin-

Strep-tag affinity purification in samples collected from PVAWT-Strep-RFP / PVAWD-Strep-

RFP infected local leaves at 3 dpi. Both inputs and eluates containing equivalent amount of

total protein (6 μg total protein measured by using Qubit™ Protein Assay Kit), were loaded as

indicated. Left panel shows the silver-stained gel of the inputs and eluates while the right panel

shows the western blots of the same samples as investigated with anti-HCPro and anti-VCS

antibodies (A). While the anti-HCPro western blot indicates strong enrichment of HCPro-

containing HMW complexes, the anti-VCS western blot confirms the absence of the VCS

from the uppermost HMW band from PVAWD-Strep-RFP purified fraction (marked with

arrow). Monomeric HCPro was also detected by the anti-HCPro antibody (marked with aster-

isk). Neither HCPro nor VCS could be detected from the input samples in the western blots.

Therefore their presence in the inputs was studied by loading 40-times higher total protein

amounts than in S9A Fig. (B) Both HCPro and VCS were detected faintly in the respective

input blots.

(TIF)

S10 Fig. Validation of VCS silencing presented in Fig 6A–6C. Validation of VCS silencing

via semi-quantitative RT-PCR. Panel (A) corresponds to the sample sets shown in Fig 6A and

6B while Panel (B) corresponds to those presented in Fig 6C and 6D. Validation of VCS

mRNA silencing was done by comparing band intensities in the agarose gel. Housekeeping

gene PP2A served as a loading control. Both VCS and PP2A fragments were amplified for 27

PCR cycles.

(TIF)

S11 Fig. RLUC expression and RNA accumulation levels used to calculate RLUC/RNA

ratio presented in Fig 7A and validation of VCS overexpression. (A) Amount of RLUC

activity detected from non-replicating variants of PVA, PVA- PVAΔGDD-ΔHCPro,

PVAΔGDD-HCProWD and PVAΔGDD-HCProWT during VPg, VCS and VPg + VCS overexpres-

sion (B) Amount of RNA accumulation detected from non-replicating variants of PVA-

PVAΔGDD-ΔHCPro, PVAΔGDD-HCProWD and PVAΔGDD-HCProWT during VPg, VCS and VPg

+ VCS overexpression (C,D) Validation of VCS overexpression during the experiments dis-

cussed in Fig 7A. For confirmation of VCS overexpression qPCRs were carried out with

primers specific to VCS-A, VCS-B and VCS-C respectively. Different letters above the bars

indicate statistically significant differences (student’s t-test P< 0.05). Significance of the

differences between the compared samples is denoted by asterisk (�P< 0.05, ��P< 0.01,
���P< 0.001).

(TIF)

S12 Fig. Complementation of VPg- mediated translational enhancement of PVAΔGDD-

ΔHCPro by various HCPro mutants. Agrobacterium carrying different HCPro variants were

infiltrated as follows: silencing-deficient HCProSDM and eIF4E binding-deficient HCPro4EBM

mutants at OD600 = 1, HCProWD and HCProWT at OD600 = 0.3. GUS was used as the control,

as well as to balance Agrobacterium counts between the sets. PVAΔGDD-ΔHCPro was infiltrated

at OD600 = 0.05 and VPg infiltrated at OD600 = 0.3. Samples for RLUC quantitation were col-

lected at 3 dpi. The number of plants per experiment was 6. Different letters above the bars

indicate statistically significant differences (student’s t-test P< 0.05).

(TIF)

S13 Fig. Validation of VCS silencing and overexpression during the experiments discussed

in Fig 7. (A, B) For validation of VCS silencing in Fig 7B and 7C, VCS mRNA levels were

PLOS PATHOGENS Significance of HCPro-VCS interplay in potyvirus infection cycle

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008956 October 12, 2020 29 / 34

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008956.s009
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008956.s010
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008956.s011
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008956.s012
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008956.s013
https://doi.org/10.1371/journal.ppat.1008956


detected by qPCR using primer pair recognizing all three forms of VCS. (C, D) For confirma-

tion of VCS overexpression in Fig 7D and 7E, qPCRs were carried out with primers specific to

VCS-A, VCS-B and VCS-C respectively. Significance of the differences between the compared

samples is denoted by asterisk (�P< 0.05, ��P< 0.01, ���P< 0.001).

(TIF)

S14 Fig. RLUC expression and RNA accumulation levels used for calculating RLUC/RNA

ratio presented in Fig 7. (A) Amount of RLUC activity detected from replicating variants of

PVA- PVAΔHCPro, PVAWD and PVAWT upon VCS-silencing (B) Amount of RNA accumulation

detected from replicating variants of PVA- PVAΔHCPro, PVAWD and PVAWT upon VCS-silenc-

ing (C) Amount of RLUC activity detected from replicating variants of PVA- PVAΔHCPro,

PVAWD and PVAWT upon VCS-silencing and VPg overexpression (D) Amount of RNA accu-

mulation detected from replicating variants of PVA- PVAΔHCPro, PVAWD and PVAWT upon

VCS-silencing and VPg overexpression (E) Amount of RLUC activity detected from replicating

variants of PVA- PVAΔHCPro, PVAWD and PVAWT upon VCS overexpression (F) Amount of

RNA accumulation detected from replicating variants of PVA- PVAΔHCPro, PVAWD and

PVAWT upon VCS overexpression (G) Amount of RLUC activity detected from replicating var-

iants of PVA- PVAΔHCPro, PVAWD and PVAWT upon VCS and VPg overexpression (H)

Amount of RNA accumulation detected from replicating variants of PVA- PVAΔHCPro, PVAWD

and PVAWT upon VCS and VPg overexpression. Significance of the differences between the

compared samples is denoted by asterisk (�P< 0.05, ��P< 0.01).

(TIF)

S15 Fig. Both HCProWD and HCProWT are associated with polysomes during infection.

Polysomes were purified from PVAWD-Strep-RFP (OD600 = 0.3) and PVAWT-Strep-RFP (OD600 =

0.1) infected N. benthamiana plants (sampled at 4 dpi), via a Assymetric Field Flow Fraction-

ation (AF4) protocol previously described in Eskelin et al. (2019). (A) Upper panel presents

AF4 elution profiles of representative PVAWD-Strep-RFP infected samples while the lower panel

presents those of representative PVAWT-Strep-RFP infected samples. Polysome fraction from the

eluate (between 15–70 min) were pooled together and concentrated using a 10kDa MW cutoff

centrifugation filter (Amicon). (B) Concentrated eluates were subjected to SDS-PAGE and the

gels were silver stained (upper panel) and subjected to western blotting with anti-HCPro anti-

body (lower panel). Silver stained gel images for concentrated eluates show clear enrichment of

ribosomal proteins (marked in the image between 55-25 kDa). The western blot revealed signals

corresponding to both HCProWD and HCProWT both in the monomeric (marked by ‘�’) and

HMW region (marked by ‘��’). Interestingly, band for HCProWD-Strep-RFP at the HMW region

was visibly lower than that of the HCProWT-Strep-RFP.

(TIF)

S16 Fig. TuMV systemic infection and particle formation are affected by mutation in the

WD-interacting motif of HCPro. Systemic infection and particle abundance are reduced in

TuMVWD compared to the control virus TuMVWT. Student’s t-test was used to calculate satis-

tical significance (Significance of the differences between the compared samples is denoted by

asterisk (�P< 0.05, ��P< 0.01). (A) Abundance of TuMV CP in systemically infected N.

benthamiana at 14 dpi. Plants were infiltrated by TuMVWT and TuMVWD (OD600 = 0.5) and

samples from systemic leaves were analysed by anti-TuMV CP ELISA (Agdia). (B) Relative

TuMV particle abundance in systemically infected N. benthamiana leaves at 12 dpi (OD600 =

0.5). Particle abundance was measured by IC-RT-PCR.

(TIF)
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S17 Fig. α-VCS western blot showing that all three forms of VCS are recognized by the

antibody. α-VCS western blot showing that all three forms of VCS are recognized by the anti-

VCS antibody. For this experiment VCS-AYFP, VCS-BYFP and VCS-CYFP were overexpressed

independently in N. benthamiana (infiltrated at OD600 0.5). Samples were collected at 3 dpi

followed by affinity purification by GFP trap (ChromoTek). The eluates were analyzed by

SDS-PAGE and anti-VCS western blot (antibody dilution 1 μg/ml).

(TIF)

S1 Table. Recombinant constructs used in the study.

(DOCX)

S2 Table. LC-MS/MS identification of proteins present in HMW complexes produced by

HCProWT-Strep-RFP but not in HCProWD-Strep-RFP.
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S1 Data. Excel spreadsheet containing, in separate sheets, the underlying numerical data

and statistical analysis for Figure panels 2A, 2B, 2C, 3B, 3C, 3D, 3G, 6A, 6B, 6C, 6D, 7A,

7B, 7C, 7D, 7E and 8A.
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