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Abstract

Manganese (Mn) is a neurotoxicant that, due to its paramagnetic property, also functions as a 

magnetic resonance imaging (MRI) T1 contrast agent. Previous studies in Mn toxicity have shown 

that Mn accumulates in the brain, which may lead to parkinsonian symptoms. In this article, we 

trained support vector machines (SVM) using whole-brain R1 (R1 = 1/T1) maps from 57 welders 

and 32 controls to classify subjects based on their air Mn concentration ([Mn]Air), Mn brain 

accumulation (ExMnBrain), gross motor dysfunction (UPDRS), thalamic GABA concentration 

(GABAThal), and total years welding. R1 was highly predictive of [Mn]Air above a threshold of 

0.20 mg/m3 with an accuracy of 88.8% and recall of 88.9%. R1 was also predictive of subjects 

with GABAThal having less than or equal to 2.6 mM with an accuracy of 82% and recall of 78.9%. 

Finally, we used an SVM to predict age as a method of verifying that the results could be 

attributed to Mn exposure. We found that R1 was predictive of age below 48 years of age with 

accuracies ranging between 75% and 82% with recall between 94.7% and 76.9% but was not 

predictive above 48 years of age. Together, this suggests that lower levels of exposure (< 0.20 

mg/m3 and < 18 years of welding on the job) do not produce discernable signatures whereas 

higher air exposures and subjects with more total years welding produce signatures in the brain 

that are readily identifiable using SVM.
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2. INTRODUCTION

Manganese (Mn) is a neurotoxic metal that is a common constituent of welding fume which 

thousands of welders inhale every day in the manufacturing industry. Symptoms of excessive 

Mn exposure include bradykinesia, dystonia, postural tremor and rigidity (Guilarte and 

Gonzales, 2015; Racette et al., 2012; Tsuboi et al., 2007). These symptoms do not recede 

upon cessation of exposure (Guilarte, 2013), nor are symptoms alleviated with the standard 

treatment for Parkinson’s disease, levodopa (Olanow, 2004). Therefore, preventing 

symptoms is the primary goal when it comes to risk assessment. The primary method of risk 

assessment comes from exposure monitoring through air sampling where 0.02 mg/m3 was 

recommended by the American Conference of Governmental Industrial Hygienists as the 

threshold limit value for Mn (Ward et al., 2017). However, much debate continues to 

surround at what level the limit should be placed. While having a low limit is a conservative 

method of minimizing risk, it is unknown whether this level is low enough to prevent 

symptoms from eventually occurring or too low thus creating financial hardship for industry 

with little to no benefit to workers. Bailey et al. (2018) suggest a possible occupational 

exposure level of 0.1 up to 0.14 mg/m3 for respirable Mn based on studies that they 

considered adequately accounted for exposure levels in the workplace (Bailey et al., 2018).

Since Mn toxicity symptoms are neurological, understanding how Mn affects the brain is of 

vital importance. Therefore, knowing how much Mn accumulates in the brain after a given 

exposure would be ideal. When Mn is inhaled into the lungs, it is readily absorbed into the 

bloodstream (Leggett, 2011) and into the pulmonary veins. Inhaled Mn therefore bypasses 

the first pass effect of the liver and thus the majority of inhaled Mn is available for transport 

into the brain. There are two primary barriers that Mn must then pass before entering the 

brain, the blood brain barrier (BBB) and the blood CSF (cerebral spinal fluid) barrier (BCB). 

Mn can cross the BBB while bound to transferrin via transferrin transporters and ZIP8 

transporters (Aschner and Aschner, 1991). Mn can also penetrate the BCB via divalent metal 

transporter 1 (DMT1) (Yokel, 2009). Mn competes with Iron (Fe) for DMT1, but it has been 

found that there is preferential uptake for Mn (versus Fe) in the choroid plexus, site of the 

BCB (Bornhorst et al., 2012).

Once Mn crosses a barrier into the brain, it disperses throughout via a variety of physical 

and molecular interactions (Bock et al., 2008). It can be taken into glial cells through 

transporters and into neurons through Ca2+ voltage-gated transporters (Bedenk et al., 2018; 

Leuze et al., 2012). Once in cells, Mn tends to be taken into endosomes or the mitochondria 

(Borg and Cotzias, 1958). Mn can also travel anterograde along axons, a feature that has 

been utilized to great effect for neuronal tracing using Mn-enhanced MRI, or MEMRI. 

Similarly, we can use the MRI relaxation rate R1, which is proportional to Mn in the region, 

to measure Mn uptake, accumulation, and dispersion in the brain (Yeh et al., 2016). This has 

been done in studies involving rats (Lehallier et al., 2012), monkeys (Dorman, 2006; Park et 

al., 2007; Shinotoh et al., 1995), and humans (Edmondson et al., 2019; Lee et al., 2018, 

2015; Lewis et al., 2016; Long et al., 2015; Ma et al., 2018), but understanding the 

relationship between exposure and uptake is still ongoing. For instance, in monkeys, there 

was a strong correlation and linear relationship between R1 and Mn accumulation in the 

various regions of the brain (Dorman, 2006). However, in humans, R1 has been found to be 
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higher in subjects with higher exposure versus controls with lower exposure, but the 

relationship between R1 and exposure is non-linear relationship (Lee et al., 2015; Ma et al., 

2018) and may suggest an exposure threshold below which Mn may not impact R1, in other 

words: a detection limit. Together, this all may suggest that a direct measure of Mn content 

in the brain, rather than exposure, may be a better metric for assessing risk. To do this, a 

biological model could be employed to estimate Mn in the brain. Biological modeling is 

used to simulate how a specific xenobiotic will disperse throughout the body. By accounting 

for this, a well-designed model could then estimate how much Mn will be in a part of the 

body at a given time after exposure.

Mn accumulation in the brain may be the direct cause for characteristic motor dysfunction in 

Mn-induced parkinsonism. We have shown that neurotransmitter concentration, specifically 

γ-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the central nervous 

system, is altered with Mn exposure. Specifically, GABA is higher in the thalamus in groups 

exposed to higher levels of Mn (Ma et al., 2018) and changes proportionately with levels of 

Mn exposure (Edmondson et al., 2019).

Because Mn can disperse throughout the brain, we took a whole-brain approach to 

measuring R1. In this study, we employed a support vector machine (SVM) pipeline 

utilizing acquired whole-brain R1 MRI data. This pipeline generates SVM models from R1 

data which can be used to predict classes within different target variables (variables that we 

wish to predict classes within). Each target variable was then binarized based on different 

value thresholds. This method is advantageous because rather than focusing on a priori 
regions within the brain, we can use data from the whole brain to find identifiable patterns 

that are predictive of target variables. These patterns may then provide further insight into 

the effects of low-level Mn exposure that would otherwise be missed.

We hypothesize that whole-brain R1 will be predictive of air Mn exposure ([Mn]Air, the 

amount of respirable Mn particulate in the air at the welder’s workplace measured using 

personal air sampling equipment) and excess brain Mn (ExMnBrain, the amount of Mn 

accumulated in the brain due to exposure calculated from [Mn]Air, hours worked per day, 

breaths per hour, and amount of air breathed). Additionally, we hypothesize that whole-brain 

R1 can predict biological outcomes such as thalamic GABA (GABAThal) concentration and 

motor dysfunction, as measured by the Unified Parkinson’s Disease Rating Scale (UPDRS). 

Finally, to account for commonly used covariates, we will also focus on total years welding 

and age as target variables in order to compare performance of these models to other models 

predicting Mn exposure and biological outcome models.

3. METHODS

3.1. Data Acquisition

The hypotheses were tested by re-analyzing data previously collected in our laboratory at 

Purdue University (Ma et al., 2018; Ward et al., 2017). Specifically, eighty-nine subjects (57 

welders, 32 controls) had been recruited in previous studies directly from a local 

manufacturing plant. All subjects were male. All subjects gave informed consent at that 

time. The methods used for data acquisition (Relaxometry, Spectroscopy, UPDRS, and 
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Exposure Assessment) from these studies is briefly summarized below. Details can be 

obtained in the original articles cited above. Methods specific to this study are elaborated 

below.

3.2. Whole-Brain R1 Mapping

Magnetic resonance imaging (MRI) was performed on a 3T GE Signa MRI scanner using an 

8-channel head coil. A high-resolution 3D T1-weighted structural image (FSPGR, TR/TE = 

6.26/2.67 ms, resolution: 1 x 1 x 1 mm3) was taken for use in segmentation. Segmentation of 

the brain was performed using Freesurfer (surfer.nmr.mgh.harvard.edu) which parsed the 

brain into 192 separate regions of interest (ROI) as masks. Each ROI consists of volume 

pixels, or voxels, which denote a 3D volume in the images. Two of the ROIs included 

unlabeled voxels and were thus removed from analysis, leaving 190 ROIs. To produce T1 

relaxation time maps, we acquired a spoiled gradient echo imaging sequence (SPGR, TR/TE 

= 6.36/1.76 ms, resolution: 1 x 1 x 2 mm3) using two different flip angles (3°, 17°). A 3D T1 

relaxation time map was generated using the images from these two flip angles (Christensen 

et al., 1974). To correct for inhomogeneity in the radiofrequency field, we acquired an 

inversion recovery SPGR with the same parameters as the SPGR images (Deoni, 2007). R1 

in each voxel was then calculated as inverse T1 relaxation time where R1 = 1/T1. We used 

the segmented masks to extract R1 values for each voxel within each ROI. To best describe 

the distribution of R1 within each ROI, five statistics were selected: median, variance, skew, 

10-percentile, and 90-percentile.

3.3. Target Variables

3.3.1. Air Mn Concentration—Air Mn concentration ([Mn]Air) in units of mg/m3 was 

determined by performing personal air sampling of respirable Mn on subjects in the 

workplace, as detailed in Ma et al., 2018 and Ward et al., 2017. Personal air sampling was 

obtained over 8-hour workdays and averaged to create an 8-hr time-weighted average of 

[Mn]Air. [Mn]Air only consisted of the respirable Mn component and was averaged per 

worksite in the factory. Air filters on SKC aluminum cyclones with a cut-point of 4 μm were 

used for sampling. Filters were placed inside the welding helmet for welders and over the 

shoulder for control subjects.

3.3.2. Excess Brain Mn—A biokinetic model (Figure 1) was used to determine the 

amount of Mn accumulation due to occupational exposure in the brain above normal 

amounts, termed Excess Brain Mn (ExMnBrain). The model was based on a previously 

published model (Leggett, 2011) and implemented with in-house Python 3 scripts using the 

SciPy module for calculating ordinary differential equations, odeint, with [Mn]Air as the 

input. To determine how much Mn was inhaled each day, the [Mn]Air was used to calculate 

the total amount of Mn inhaled over the 8-hour workday using mean values for breaths per 

hour and amount of air breathed (U.S. EPA, 2011). To simplify the model, we assumed that 

all respirable Mn that entered the lungs was absorbed into the blood. Hence, this amount of 

Mn was assumed to be 100% taken into the blood compartment. Using each subject’s work-

history, a timeline of Mn accumulation was created with the final data point representing the 

amount of Mn in the brain on the day of scanning. We calculated Mn intake based on an 8-hr 

per day, 7-day workweek because the welders in our cohort were known to work more than 
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the typical 40-hour work week, sometimes up to 7 days a week and 10 hours a day. These 

values were then used as inputs to the biokinetic model. Specifically, excess brain Mn was 

then extracted according to the differential equation:

dN
dt = λBlood Brain ∗ NBlood − λBrain Blood ∗ NBrain

where N is the amount of Mn in the compartment and λ is the rate of transfer from one 

compartment to the other. For any given time, this equation allows us to calculate the 

amount of Mn in the brain accounting for the amount of Mn entering the brain 

(λBlood→Brain*NBlood) and the amount leaving (-λBrain→Blood*NBrain). Based on the 

Leggett 2011 model, we used λBlood→Brain = 1 d−1 and λBrain→Blood = 0.00462 d−1. These 

values correspond to half-lives of 0.693 days and 150 days, respectively.

3.3.3. Thalamic GABA—Prior studies (Edmondson et al., 2019; Long et al., 2014; Ma 

et al., 2018) have shown that thalamic GABA (GABAThal) concentrations are correlated 

with Mn exposure. Therefore, we included GABAThal as a target variable. GABAThal 

concentrations were obtained from magnetic resonance spectroscopy (MRS) performed in 

previous studies. MEGA-PRESS localization (TR/TE = 2000/68 ms, 256 Averages) (Mullins 

et al., 2014) was used on a volume of interest (VOI) placed over the right thalamus (25mm x 

30mm x 25mm) in each subject. Spectra were quantified using LCModel V6.3-1B 

(Provencher, 1993) with a basis set generated by density matrix simulation using GABA 

coupling constants from Kaiser et al. (2007). Spectra were phase and frequency corrected 

using a water reference. GABA concentrations are CSF-corrected and are reported in units 

of mM. To obtain CSF-corrected values, segmentation was performed using SPM8 

(Wellcome Department of Imaging Neuroscience, London, United Kingdom). The VOI was 

segmented into its tissue components, specifically white matter, gray matter, and CSF.

3.3.4. UPDRS—One method to assess motor dysfunction is with the Unified Parkinson’s 

Disease Rating Scale Part III (UPDRS) (Goetz et al., 2008), a scale commonly used to 

measure Parkinson’s disease progression. To assess whether R1 can predict motor 

dysfunction, we included UPDRS as a target variable. During participation in a prior study, a 

certified neurologist tested each subject and rated them based on their motor performance in 

tasks measuring symptoms such as tremor and bradykinesia. Higher scores represented 

worse performances.

3.3.5. Age and Total Years Welding—During their participation in prior studies, both 

welders and controls filled out a comprehensive work history which included their age as 

well as any welding experience they had. Values for age and total years welding came from 

these self-reported answers. Welders and controls were classified as such based on their 

current job position and whether their occupation required any welding or not. Total welding 

years is a proxy for lifetime exposure while age is included as a target variable to account for 

variability in our dbata not due to Mn exposure.

3.3.6. Correlation Tests—To assess directional relationships and collinearity between 

target variables, correlation tests between all target variables were performed using R. 

Edmondson et al. Page 5

Arch Toxicol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Spearman’s correlation was used for comparisons with ordinal variables (UPDRS Score) 

while Pearson’s correlation was used for comparisons between continuous variables 

(GABAThal, [Mn]Air, age, years welding, and ExMnBrain). We adjusted for multiple 

comparisons using Benjamini-Hochberg correction, or the false discovery rate (FDR). An 

adjusted p-value of 0.05 was considered statistically significant.

3.4. Machine Learning

In this study, target variables included: air Mn exposure ([Mn]Air), excess brain Mn 

(ExMnBrain), total welding years, age, thalamic GABA (GABAThal), and UPDRS score. For 

each target variable, models were run across thresholds that were equally distributed and 

selected based on the range of values while ensuring that at least one subject was in the 

minority group. Performance of each model was then evaluated using leave one-out cross-

validation.

3.4.1. Model Development—A support vector machine (SVM) was created for each 

target variable, threshold, and statistic. Briefly, SVM models estimate a hyperplane 

boundary created by maximizing the distance between the data points that are nearest to the 

hyperplane (support vectors) and the hyperplane. Due to the relatively low sample size, a 

linear kernel was chosen to avoid overfitting the data and to ensure results remain readily 

interpretable.

All models were built using the Python machine learning package, Scikit-Learn (Pedregosa 

et al., 2012). First, missing R1 values due to improper segmentation were imputed with 

median values using SimpleImputer followed by standardization using StandardScaler. This 

method removes the mean and scales to unit variance on each feature (ROI) where each 

sample score is calculated as a z-score:

z = x − u
s

where x is the sample, s is the standard deviation of all samples, and u is the mean of all 

samples.

Principle component analysis (PCA) was then performed on the standardized R1 values in 

each of the 190 brain ROIs to reduce dimensionality and prevent random and structured 

noise from biasing the results. PCA is performed by calculating the covariance matrix of the 

data and then extracting the eigenvalues and eigenvectors that explain up to a set threshold 

of variance in the data. Each eigenvector contains the weights to produce a linear 

combination of each ROI while the normalized eigenvalues are the percent of total variance 

explained by the eigenvector. For this study, we chose 90% variance as the cut-off for 

number of PCs used to then transform the R1 data, removing much of the noise in the data.

SVM was implemented using the Scikit-Learn module LinearSVC which utilizes the 

LIBLINEAR library (Fan, Rong-En, 2008). Without appropriate precautions, an SVM 

model will be biased towards the majority class to maximize accuracy of the model 

potentially leading to always predicting the majority class. To measure how far away from 
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equal distribution of classes, a 95% confidence interval was calculated using a test of 

proportions. We accounted for unequal distribution of groups by implementing a penalty 

term, C, that adjusts for the imbalance of the classes:

C = n
m ∗ q

where n is the number of samples, m is the number of classes and q is the number of 

subjects in the class.

3.4.2. Model Testing & Scoring—For each SVM model created for a target variable, 

statistic, and threshold, leave one-out cross validation (LOO-CV) was used to measure 

model performance. LOO-CV is performed by creating the model with N-1 subjects, and 

then using the model to predict the left-out subject. Classes were determined by the 

threshold where Class 0 was less than or equal to the threshold and Class 1 was greater than 

the threshold. A confusion matrix for each model was created by calculating the true 

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). All models 

were then combined in a process called “bagging” where multiple machine learning models 

are combined to improve overall performance. In this case, class predictions from all five 

statistic SVM models are determined and then the overall prediction is chosen based on a 

majority rule. We call this our “combined” model.

SVM models were scored using CV accuracy TP + TN
TP + TN + FP + FN  and recall TP

TP + FN . 

Accuracy was chosen because it accounts for all correct class 0 predictions, whereas the 

other metrics do not. Recall was chosen to therefore account for how well the model can 

identify class 1 subjects out of all class 1 subjects available. Superior model performance is 

considered from a combination of high accuracy with high recall. Accuracy depicts the total 

number of correct predictions and describes how correct the model is when accounting for 

all possible outcomes while recall focuses on the total number of correct predictions for 

class 1 out of all possible class 1 available (i.e. the proportion of subjects with Mn levels 

above threshold that are correctly identified) and only measures how well a model can 

identify one group, in our case, subjects with high Mn exposure. Finally, due to the inherent 

class imbalance with different thresholds used, we performed a test of proportions to assess 

the distribution of errors between FP and FN.

4. RESULTS AND DISCUSSION

4.1. Demographics

As detailed earlier, data for this study was acquired from previous studies. We used data 

from 52 welders and 37 controls. Welders and controls were approximately age-matched at 

41 years old. On average, welders worked in environments with 0.14 mg/m3 Mn whereas 

controls worked in environments with 0.004 mg/m3. All target variables are summarized in 

Table 1.
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4.2. Principle Component Analysis

We used PCA to reduce the number of features needed to perform later analyses and 

effectively eliminate noise in the data. With the assumption that variability in our R1 data is 

due to Mn deposition changing the R1 (Dorman, 2006), PCA provides insight as to which 

regions of the brain had the most variation across all subjects. PCA results are summarized 

in Table 2. Calculated statistics from R1 distributions in ROIs (median, 10-percentile, and 

90-percentile) went from using all 190 ROIs as features to only needing less than 7% total 

features to represent 90% of the variance in the data.

The principle components (PCs) generated by PCA are linear combinations of each ROI 

with a weight assigned based on the amount of total data variability that can be explained by 

the ROI. Some ROIs were more prevalent amongst the different statistics than others within 

the top 3 PCs. The superior temporal sulcus was a heavily weighted feature in both the 10-

percentile and median whereas the parietal-occipital sulcus was heavily weighing in the 10-

percentile and 90-percentile. White matter, including the corpus collosum and cerebral white 

matter, were also prominently featured in the second PC for median, variance, skew, and 90-

percentile.

Conceptually, higher Mn accumulation results in more voxels with high values of R1, 

leading to a shift in the voxel distribution of R1 to the right. Therefore, the structures with 

greater variance in R1 could be due to greater differences in Mn uptake in these regions 

across all subjects. Noticeably, the nuclei of the basal ganglia are absent, the region of the 

brain commonly mentioned as susceptible to Mn accumulation. However, R1 in the basal 

ganglia has been found either to not be associated with Mn exposure (Edmondson et al., 

2019; Ma et al., 2018), or it is after a threshold level of exposure is taken into account (Lee 

et al., 2018, 2015). Therefore, at lower levels of exposure, the overall variability between 

subjects in the basal ganglia may be low, thus these regions not having high weightings in 

PCA. So, while the basal ganglia may be a susceptible region of the brain to Mn, it might 

not be the best location to obtain an exposure biomarker. Rather, in our study, we found 

cortical regions and white matter in the brain to have more variability across all subjects, 

thus possibly having more information about Mn accumulation in the brain.

4.3. Predicting Measures of Mn Exposure

We tested a series of SVM models to measure how well R1 predicts groups of different 

target variables: air Mn concentration ([Mn]Air), excess brain Mn (ExMnBrain), total years 

welding, age, UPDRS score, and thalamic GABA (GABAThal). All SVM model 

performances are summarized in Figure 2. SVM models with accuracy (A) and recall (R) 

greater than or equal to 75% are presented in Table 3.

A combined SVM model predicting whether a subject is welder or control was 59.6% 

accurate and had recall (56.1%) slightly better than chance. However, three of the individual 

statistic models were more accurate and had higher recall: skew (A: 68.5%, R: 71.2%), 

variance (A: 69.7%, R: 79.2%) and 90-percentile (A: 57.3%, R: 69.6%). The combined 

model likely underperformed due to the median model’s performance (A: 40.4%, R: 55%). 

The higher performing recall shows that while the model was predicting welders 
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appropriately, the sufficiently lower accuracy suggests the model still had trouble 

differentiating between controls and welders, which may be due to the wide disparity in Mn 

exposure levels amongst welders.

In the models predicting [Mn]Air, we see that Mn exposure levels may influence how 

accurate the models can be. Especially at higher exposure levels, the model performs 

remarkably well where the combined models predicting [Mn]Air performed best with 

thresholds between 0.20 and 0.24 mg/m3. In this range, accuracy was 88.8% while recall 

ranged from 88.9% to 75%. While the classes were imbalanced at these higher threshold 

(Figure 3) the prediction errors were distributed evenly (Figure 4).

We hypothesized that R1 would be more predictive of an estimate of Mn accumulation in the 

brain using a biokinetic model, ExMnBrain. Contrary to our hypothesis, the combined models 

predicting ExMnBrain did not outperform the models predicting [Mn]Air. ExMnBrain models 

performed best with thresholds between 6.5 and 8.5 mg/m3, however while accuracy 

approached 80%, recall hovered around 60%. Therefore, it could be concluded that air Mn 

exposure at levels around 0.20 mg/m3 provide stronger, identifiable signatures of R1 that 

differentiate above and below that threshold. While the SVM model predicting ExMnBrain 

was relatively accurate with accuracies greater than 70% above levels of 4mg, recall was 

around 40%, suggesting that the model was reasonably good at identifying subjects below 

the threshold, but could only get 2 out of 5 subjects greater than the threshold.

According to the biokinetic model used in this study, if a new welder breathed in a time-

weighted average of 0.20 mg/m3 of Mn every day for 365 days, they would have 

approximately 5 mg ExMnBrain, whereas a welder exposed to 0.16 mg/m3 would have 

approximately 4 mg ExMnBrain. Because the biokinetic model takes into account previous 

exposures, these levels vary, which may be why accuracies and recall are different at these 

levels between the two models.

However, the biokinetic model may not be detailed enough to cover all the complexities of 

how Mn disperses through the brain. Mn which is bound to a protein or stored in an 

endosome will impact R1 significantly less than Mn that is free (Troughton et al., 2004). 

Therefore, a biological model may need to take this into account and only calculate for the 

free Mn in the brain. A physiologically-based pharmacokinetic model (PBPK) has been 

developed that accounts for the different states of Mn, but only in select regions of the brain 

(Schroeter et al., 2011). Therefore, when performing this study, it was determined that this 

may not be representative of the whole brain and so we chose to use a less complicated 

model that considered the brain as one compartment.

Because other Mn toxicity studies using MRI have used some metric of time spent welding 

as a proxy for exposure (Lee et al., 2015; Lewis et al., 2016), we trained a model to see if we 

could predict total years welding as well. Amongst our welders, total years welding was not 

correlated with [Mn]Air (Pearson’s r = 0.11, adj. p > 0.05) or ExMnBrain (Pearson’s r = 0.24, 

adj. p > 0.05). However, the combined models predicting total years welding had high 

accuracy and recall at the later thresholds of 19 (A: 85.4%, R: 84.6%) and 20 years (A: 

85.4%, R: 84.6%). Total years welding was strongly correlated with age in welders 

Edmondson et al. Page 9

Arch Toxicol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Pearson’s r = 0.75, adj. p < 0.0001). The combined model targeting age performed well 

with accuracy approaching 80% with recall greater than 80% between thresholds of 42 and 

48 years. Once the threshold reached 50, recall dropped drastically until it reached 0% at 56 

years, meaning all errors were false negatives. This may be because the majority of the older 

subjects were welders (16 out of 21) with higher levels of cumulative Mn exposure that 

influenced R1 and thus affected the predictability of their ages. This was an opposite 

response compared to the total welding years models where accuracy and recall improved 

substantially as the threshold was raised to higher levels. This indicates that R1 may be a 

better predictor of age for subjects that do not have enough Mn exposure to differentiate 

them from others in the same age class. However, cumulative Mn exposure may impose 

variability that the age model cannot classify correctly.

4.4. Predicting Measures of Biological Effect

We also looked at how whole-brain R1 might be able to predict biological effects from Mn 

exposure, focusing on two endpoints: neurochemical changes and motor dysfunction. As 

stated before, thalamic GABA (GABAThal) was chosen based on previous studies indicating 

that GABA levels changed based on Mn exposure while UPDRS Scores were chosen 

because they are the standard for assessing motor dysfunction in parkinsonian patients.

The combined models targeting GABAThal performed reasonably consistent across all 

thresholds with accuracies ranging between 63% and 81%, however a few of the thresholds 

performed remarkably strong. While the model appears to perform strongly at 0.8 mM, the 

groups were heavily weighted towards those above 0.8 mM and the model performed many 

Type I errors as depicted in figure 4. Nonetheless, the model did perform well at higher 

thresholds, specifically 2.1 mM (A: 80.9%, R: 79.2 %) and 2.6 mM (A: 82%, R: 78.9%). A 

careful look at the plot (Figure 2) shows that the model had consistent accuracy and recall 

between 2.0 mM and 2.6 mM. While at this range there were more subjects that fell below 

the threshold, the model did err consistently between the two groups.

UPDRS scores were correlated with age (Spearman’s = 0.45, p = 0.002), so it is not 

surprising that these models performed similarly to the age models, where recall dropped to 

0% as the higher thresholds were tested. However, unlike the age models, UPDRS did not 

have strong prediction values at the lower scores, with the exception of the initial thresholds 

of 0 and 1. At these thresholds, though, the classes were significantly unbalanced as were the 

prediction errors, suggesting that the high accuracy and recall were artificially inflated by 

class proportion. Therefore, in this cohort, R1 can safely be presumed to not be predictive of 

UPDRS scores.

5. CONCLUSION

The whole-brain approach to data analysis used in this study elucidated how Mn 

accumulates in the entire brain, including white matter, cortical regions and the basal 

ganglia. Our study shows that R1 may be a viable predictor for assessing current Mn 

exposure and the resulting effects in neurochemistry as shown by GABAThal. R1 was 

reasonably predictive of GABAThal above chance across all levels of GABAThal. Because of 

the relationship between GABAThal and [Mn]Air (Pearson’s r = 0.38, p < 0.05), GABAThal 
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might be considered a candidate biomarker for determining whether someone had recent Mn 

exposure. However, a relatively low correlation does not readily suggest predictability of 

GABAThal from [Mn]Air, or vice-versa. Future work may also want to look at using similar 

models to predict other symptomatic outcomes, such as cognitive and fine motor 

dysfunction.

We have also shown that whole-brain R1 might only predict exposures greater than 0.20 

mg/m3, which is about 10x higher than the current threshold limit value of 0.02 mg/m3, 

suggesting that R1 may not be sensitive enough to predict changes in the brain at lower 

exposure levels. We also showed that there is a divergence of predictability between age and 

total years welding. Even though both target variables were correlated with one another, R1 

was more predictive of welders with more total years welding than age. This study shows 

that there is a difference between older subjects and older subjects with many years of 

welding experience. Therefore, it is likely Mn alters the brain in a signature way that is 

identified using machine learning.

As discussed earlier, R1 did not sufficiently predict ExMnBrain as calculated from the 

biokinetic model used in this study, which may be due to our model’s incomplete accounting 

of bound and free Mn. Therefore, further efforts should be made using a model that 

incorporates these states. However, current models do not take into account cortical regions 

of the brain, which we have shown are predictive of [Mn]Air. So, while the Schroeter et al. 

2011 model would be ideal, it may need to be modified to include other regions of the brain. 

Additionally, while not tested here, it is possible that whole-brain R1 may be able to predict 

the amount of Mn accumulation in one specific location in the brain, as could be simulated 

in the Schroeter et al. 2011 model.

While our study was largely successful, it was also limited by a couple factors. First, all 

subjects in the study cohort were male. While this is representative of the locations where 

members of the cohort worked, this limits generalizability to the general population. Second, 

for a study using machine learning, while 89 subjects are enough for a reliable model, more 

subjects would potentially allow for more generalizable models. Additionally, due to the 

number of subjects we had, we were limited by the machine learning algorithms available 

for use thus potentially preventing us from achieving higher model accuracy and recall.

In conclusion, this study employed machine learning to assess the effects of Mn on the 

whole brain and could be easily adapted to measuring the effects of other toxicants. Even 

though the imaging preprocessing tools we used are brain-specific (e.g. freesurfer), other 

tools could be used to assess the effects of toxicants on the liver using a similar data analysis 

method we used here. However, as can be seen in our results, groups can become 

significantly unequal. Because sample sizes are much smaller at higher thresholds, more 

data is needed to further improve these models.
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Figure 1. Mn Biokinetic Model.
A) This model is derived from a previously published model. Respirable Mn was assumed to 

be transported into the plasma compartment with 100% efficiency. The model then describes 

through a series of compartments how Mn disperses itself throughout the body. This study 

used values of excess brain Mn that was calculated from the brain compartment. B) Shows 

the trend of Mn accumulation in 6 regions of the body: brain, cortical bone surface, cortical 

bone volume, trabecular bone surface, trabecular bone volume, and blood plasma. This 

welder worked for 2 years with an average air Mn exposure concentration of 0.088 mg/m3. 

C) Another welder worked in three jobs over 10 years. The first job was for 5 years with an 

air concentration of 0.14 mg/m3. The second job was welding aluminum, and thus no Mn 

exposure. The third job lasted for 3 years prior to his participation in our study with an 

exposure level of 0.24 mg/m3. As can be seen by the R1 images on the right, taken from the 

same location and with the same contrast, the subject in C has much brighter white matter – 

indicative of higher R1 due to Mn accumulation.
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Figure 2. SVM Model Performance.
For each target variable, accuracy (top row) and recall (bottom row) are presented across all 

thresholds. The combined (solid line) model represents the model performance combining 

predictions from the other five statistics and using a majority rule to determine its prediction.
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Figure 3. Proportionality of Observed Class Distributions.
The dotted-line represents the difference in proportions between both classes being used in a 

model at a specific threshold. When the proportion is negative, there are more subjects in the 

class representing greater than the threshold while when the proportion is positive, there are 

more subjects in the class representing less than or equal to the threshold. The grey region 

represents the 95% confidence interval for classes that are equally split. In general, the 

thresholds move from having greater numbers in the class representing greater than the 

threshold to having greater numbers in the class less than or equal to the threshold.
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Figure 4. Proportionality of Combined Prediction Errors.
Wald confident intervals were calculated for each threshold and is depicted in grey. The 

dotted line is the difference in proportion of combined model prediction errors. A negative 

difference in proportion represents the model incorrectly predicting less in the class less than 

or equal to the threshold, thus more false positive predictions. A positive difference in 

proportions represents more false negative predictions.
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Table 1

Demographics and Statistics (Mean [SD], Range)

Welders Controls

N 52 37

[Mn]Air (mg/m3) 0.137 [0.134], 0 – 0.716 0.004 [0.005], 0 – 0.0252

ExMnBrain (mg) 3.86 [3.84], 0.018 – 20.60 0

GABAThal (mM) 1.55 [0.60], 0.66 – 3.42 1.37 [0.56], 0.693 – 2.63

UPDRS 8.4 [5.2], 0 – 22 7.2 [5.9], 0 – 28

Age (Years) 41 [10], 21 – 61 41 [11], 20 – 61

Total Welding Years (Years) 12.85 [8.6], 1.66 – 37 0

Abbreviations: [Mn]Air: amount of respirable Mn particulate in the air at the welder’s workplace; ExMnBrain: amount of Mn accumulated in the 

brain; GABAThal: concentration of GABA in the Thalamus; UPDRS: Unified Parkinson’s Disease Rating Scale.
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Table 3

Summary of high performing SVM models ( 0.75 Accuracy, Recall)

THRESHOLD STATISTIC ACCURACY RECALL

[MN]AIR (mg/m^3)

0.2 Combined 0.888 0.889

0.22 Combined 0.888 0.889

0.24 Combined 0.888 0.75

GABATHAL (mM)

0.8 Median 0.764 0.944

0.8 Variance 0.82 0.947

0.8 Skew 0.787 0.958

0.8 Combined 0.82 0.869

0.9 Variance 0.764 0.929

2.1 Combined 0.809 0.792

2.6 Combined 0.82 0.789

UPDRS SCORE (score)

0 Variance 0.933 0.976

0 Skew 0.854 0.974

0 10% 0.831 0.974

0 90% 0.775 0.972

0 Combined 0.921 0.943

1 Variance 0.787 0.932

1 Skew 0.775 0.944

1 90% 0.82 0.947

1 Combined 0.831 0.88

AGE (years)

24 10% 0.753 0.917

28 Skew 0.753 0.947

32 Skew 0.798 0.926

36 10% 0.753 0.849

40 Skew 0.787 0.854

42 Skew 0.787 0.8

42 10% 0.753 0.761

42 Combined 0.775 0.804

44 Skew 0.787 0.756

44 Combined 0.764 0.81

46 Combined 0.82 0.844

48 Combined 0.775 0.769

TOTAL WELDING YEARS (years)

19 Combined 0.854 0.846

20 Combined 0.854 0.846
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