Table 1. Study characteristics.
Study | Aim | Endoscopy technique | Machine learning model | Training strategy | Testing strategy | Accuracy | Sensitivity | Specificity | PPV | NPV | Remarks |
Ahmad, 2019 11 | Colorectal adenoma detection | Standard colonoscopy | CNN | Multicenter colonoscopy images and videos of 4664 polyp test frames | 17 video datasets of complete colonoscopy withdrawal with 83 polyps consisting of 83716 frames (14634 polyp & 69082 non-polyp) | 92.5 | 84.5 | 92.5 | NR | NR | Conference abstract |
Byrne, 2019 2 | Colorectal polyp detection in real-time endoscopic video images | NBI endoscopy | CNN | Unaltered video frames | 125 videos of consecutively encountered diminutive polyps | 94 | 98 | 83 | 90 | 97 | – |
Cai, 2019 12 | Detect early ESCC under conventional endoscopic white light imaging | White light endoscopy | CNN | 1332 abnormal and 1096 normal images | 187 images from 57 patients | 91.4 | 97.8 | 85.4 | 86.4 | 97.6 | – |
Chen, 2018 13 | Colorectal polyp detection | NBI endoscopy | CNN (TensorFlow algorithm) | 1476 images of neoplastic and 681 of hyperplastic polyps | 96 hyperplastic and 188 neoplastic polyps smaller than 5 mm | 90.1 | 96.3 | 78.1 | 89.6 | 91.5 | – |
Cho, 2019 14 | Classify gastric neoplasms based on endoscopic white-light images | White light endoscopy | CNN (Inception-v4, Resnet-152, Inception-Resnet-v2) | 5017 images from 1269 individuals | 200 images from 200 patients | 93 | 60.7 | 98.3 | 85 | 93.9 | Advanced gastric cancer |
74.5 | 28.3 | 88.3 | 41.9 | 80.5 | Early gastric cancer | ||||||
86.4 | 0 | 99.4 | 0 | 86.9 | High-grade dysplasia | ||||||
78.5 | 6.7 | 91.2 | 11.8 | 84.7 | Low-grade dysplasia | ||||||
66.5 | 95.7 | 50.8 | 51.1 | 95.7 | Non-neoplasm | ||||||
Guo, 2019 15 | Real time automated diagnosis of precancerous and early ESCC in both non-magnifying and magnifying settings | NBI endoscopy | CNN (SegNet architecture) | 2770 images of precancerous lesions and early ESCC in 191 cases and 3703 images of non-cancerous lesions in 358 cases | 1480 malignant images in 59 cases, 5191 non-cancerous images in 2004 cases, 27 precancerous and early ESCC videos, and 33 normal videos | nr | 98.04 | 95.03 | NR | NR | – |
NBI endoscopy videos | nr | 60.8 | 99.9 | NR | NR | – | |||||
Hirasawa, 2018 16 | Detect early and advanced gastric cancer | Standard white-light, chromoendoscopy, NBI | CNN (Single Shot MultiBox Detector) | 13584 EGD images for 2639 histologically proven gastric cancer | 2296 images from 77 gastric cancer lesions of 69 patients | nr | 92.2 | nr | 30.6 | NR | – |
Horie, 2018 17 | Detect esophageal cancer | White-light, NBI | CNN (Single Shot MultiBox Detector) | 8428 histologically proven EGD images of cancer in 384 patients | 162 images of cancer and 376 images without cancer from 47 patients with 49 cancer lesions. 573 images of non-cancerous areas from 50 patients with no cancer | nr | 77 | 79 | 39 | 95 | – |
Horiuchi, 2019 18 | Differentiate gastric cancer from gastritis | Magnifying NBI endoscopy | CNN (GoogLeNet) | 1492 cancer and 1078 gastritis images | 151 cancer and 107 gastritis images | 85.3 | 95.4 | 71 | 82.3 | 91.7 | – |
Ikenoyama, 2019 19 | Detect gastric cancer | Standard EGD | CNN | 13584 images from 2639 lesions | 2940 images from 140 cases (209 early cancer images, 2731 non-neoplastic images) | nr | 65.6 | NR | 14.6 | NR | Conference abstract |
Ito, 2018 20 | Assist in cT1b colorectal cancer diagnosis | White-light colonoscopy | CNN (AlexNet & Caffe) | Group 1: 2520 cTis + cT1a, 2418 cT1b images; Group 2: 2604 cTis + cT1a, 2400 cT1b images; Group 3: 2604 cTis + cT1a, 2418 cT1b images | 190 conventional white-light images | 81.2 | 67.5 | 89 | NR | NR | – |
Komeda, 2019 21 | Colorectal polyp classification | White-light, NBI, chromo-endoscopy | CNN | 29572 adenoma images, 62999 non-adenoma images | 60 cases of colon polyps | nr | 97.5 | 97.9 | NR | NR | Conference abstract, white light |
nr | 94.8 | 96.5 | NR | NR | Conference abstract, NBI | ||||||
nr | 90.1 | 99.5 | NR | NR | Conference abstract, chromo-endoscopy | ||||||
Li, 2019 22 | Early gastric cancer detection | Magnifying NBI endoscopy | CNN (InceptionV3-Keras framework) | 386 images of non-cancer lesions, 1702 images of early cancer | 341 images (170 early cancer & 171 non-cancer lesions) | 90.91 | 91.18 | 90.64 | 90.64 | 91.18 | – |
Liu, 2018 23 | Early gastric cancer detection | Magnifying NBI endoscopy | CNN (VGG16, InceptionV3, InceptionResNetV2) | Magnifying NBI of normal gastric images and early gastric cancer images | Images (number not mentioned) | 98.5 | 98.1 | 98.9 | NR | NR | Conference abstract |
Ozawa, 2018 24 | Automatic endoscopic detection and classification of colorectal polyps | White-light & NBI colonoscopy | CNN (Single Shot MultiBox Detector) | 16418 images of 4752 histologically proven colorectal polyps and 4013 images of normal colorectum | 3533 images | nr | 92 | nr | 93 | NR | Conference abstract |
Sakai, 2018 25 | Detect early gastric cancer | White light endoscopy | CNN (Single Shot MultiBox Detector) | 1000 images of 0-I, 0-IIa, 0-IIc lesions | 228 cancer images | 82.8 | 73.6 | 98.8 | NR | NR | – |
Wu, 2019 5 | Detect early gastric cancer | EGD | CNN (VGG-16, ResNet-50, Google's TensorFlow) | 2204 early cancer, 326 advanced cancer, 4791 control | 170 images | 92.5 | 94 | 91 | 91.26 | 93.81 | – |
Zhang, 2017 26 | Early esophageal neoplasia | NBI and magnifying endoscopy | CNN | 218 endoscopic images generated 218000 patches, 90 % used for training and rest for testing | 79.38 | 73.41 | 83.54 | 72.09 | 84.44 | Conference abstract | |
Zhao, 2019 6 | Early ESCC using magnifying NBI | Magnifying NBI endoscopy | VGG16 | three test groups with 463, 438 & 449 images | 1350 images in 219 patients | 89.2 | 87 | 84.1 | 81.9 | 90.4 | – |
CNN, convolutional neural networks; PPV, positive predictive value; NPV, negative predictive value; ESCC, esophageal squamous cell carcinoma; NBI, narrow band imaging; EGD, esophagogastroduodenoscopy; PET, positron emission tomography; ESD, endoscopic submucosal dissection; VGG, visual geometry group; NR, not reported