Skip to main content
. 2020 Oct 23;76(1):139–154. doi: 10.1007/s11235-020-00733-2

Table 5.

Comparison table of state-of-the-art studies focusing on phishing techniques

Authors Classification Feature selection technique Accuracy
James et al. [36] J48, IBK, SVM, NB 89.75%
Subasi et al. [57] ANN, kNN, RF, SVM, C4.5, RF 97.36%
Abdelhamid et al. [9] eDRI 93.5%
Mao et al. [44] SVM, DT 93%
Jain and Gupta [34] 99.09%
Yao et al. [63] 98.3%
Patil et al. [53] LR, DT, RF 96.58%
Jagadeesan et al. [33] RF, SVM 95.11%
Hota et al. [29] CART, C4.5 RRFST 99.11%
Tyagi et al. [58] DT, RF, GBM PCA 98.40%
Curtis et al. [21]
Sahingoz et al. [54] SVM, DT, RF, kNN, KS, NB NLP 97.98%
Parsons et al. [52]
Joshi et al. [39] RF, RA RA 97.63%
Ubing et al. [59] EL 95.4%
Mao et al. [45] SVM, RF, DT, AB 97.31%
Williams et al. [62]
Niranjan et al. [48] RC, kNN, IBK, LR, PART 97.3%
Chen and Chen [17] ELM, SVM, LR, C4.5, LC-ELM, kNN, XGB ANOVA 99.2%
Chiew et al. [19] RF, C4.5, PART, SVM, NB 96.17%
Pandey et al. [50] SVM, RF 94%