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Abstract

Accumulating evidence indicates that hepatocellular carcinoma (HCC) tumorigenesis, recurrence, metastasis, and
therapeutic resistance are strongly associated with liver cancer stem cells (CSCs), a rare subpopulation of highly
tumorigenic cells with self-renewal capacity and differentiation potential. Previous studies identified B cell leukemia/
lymphoma-11b (BCL11B) as a novel tumor suppressor with impressive capacity to restrain CSC traits. However, the
implications of BCL11B in HCC remain unclear. In this study, we found that low BCL11B expression was an
independent indicator for shorter overall survival (OS) and time to recurrence (TTR) for HCC patients with surgical
resection. In vitro and in vivo experiments confirmed BCL11B as a tumor suppressor in HCC with inhibitory effects on
proliferation, cell cycle progression, apoptosis, and mobility. Furthermore, BCL11B could suppress CSC traits, as
evidenced by dramatically decreased tumor spheroid formation, self-renewal potential and drug resistance. A Cignal
Finder Array and dual-luciferase activity reporter assays revealed that BCL11B could activate the transcription of P73 via
an E2F1-dependent manner. Thus, we concluded that BCL11B is a strong suppressor of retaining CSC traits in HCC.
Ectopic expression of BCL11B might be a promising strategy for anti-HCC treatment with the potential to cure HBV-
related HCC regardless of P53 mutation status.

Introduction

Hepatocellular carcinoma (HCC) is the fifth most
common malignancy worldwide'. Surgical resection
remains the most effective approaches for curing HCC?,
while its long-term efficacy is limited by a high frequency
(~50-70%) of metastasis/recurrence within 5 years after
operation®*, Such predicament can be mainly attributed
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to a poor understanding of liver carcinogenesis and HCC
molecular pathogenesis®. Therefore, there is an urgent
need to clarify the molecular mechanisms of HCC pro-
gression so that new therapies can be developed.

Cancer stem cells (CSCs) are a rare subclass of highly
tumorigenic cells with self-renewal capacity and differ-
entiation potential®’. HCC tumorigenesis, progression
and drug resistance are strongly associated with liver
CSCs®. Therefore, specific eradication of CSCs represents
an appealing strategy for HCC treatment’ "%, Dysfunction
of tumor suppressor has been identified to play essential
roles in restraining the self-renewal capacity of CSCs'>'*,
and P53 exerts strong power in hindering the stemness of
HCC cells'. Previously, we found that 58% of Chinese
patients with HBV-related HCC harbored P53 muta-
tions'®, indicating that abnormal P53 function is common
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Fig. 1 Downregulation of BCL11B in HCC tissues. a RT-PCR detection of BCL11B mRNA expression in 20 HCC tissues and matched non-tumor liver
specimens. b The protein expression of BCL11B in 20 pairs of HCC tumor tissues (T) and corresponding peritumoral tissues (P). ¢ Comparison of the
relative expression levels of BCL11B protein between metastatic and non-metastatic HCC tissues. d Representative immunohistochemistry staining
on BCL11B in 189 HCC patients. e, f Kaplan-Meier analysis of the overall survival (OS) (e) and the time-to-recurrence (TTR) (f) of HCC patients in
BCL11B low group and BCL11B high group; Scale bar: 100 um.

in HCC. P53 dysfunction was shown to greatly contribute
to the maintenance of CSC traits in HCC'”'®, Those
results suggest restoration of P53 signaling might be a
promising approach to eliminate CSCs in HCC. However,
currently, no effective therapeutic regimens are available
to reactivate P53 signaling in HCC.

B cell leukemia/lymphoma-11b (BCL11B) is a C2H2-
type transcription factor that has been identified as a
critical regulator for T-cell acute lymphoblastic leukemia
(T-ALL)"*?°. BCL11B was recently shown to drive human
mammary stem cell self-renewal by inhibiting basal dif-
ferentiation®". In addition, BCL11B could inhibited LGR5
expression and downregulated the activity of the
[B-catenin pathway, thereby attenuating cell regeneration
and impairing tumor development in colorectal cancer™.
Although BCL11B was preferentially decreased and low
BCL11B expression indicated poorer prognosis in LIHC
(liver hepatocellular carcinoma) cohort according to
TCGA database, its exact function in HCC remained
elusive. Since HCC is characterized by its impressively
stem cell traits and highly metastatic potentials, we focus
our attention on exploring the biological functions of
BCL11B in HCC progression. Here, we reported that the
low BCL11B expression was an independent indicator for
poor prognosis in HCC after surgical resection. Further-
more, BCL11B could activate the transcription of P73, a
homologous protein of P53, resulting in suppression of its
target genes such as P21 and CDK2, thereby exerting
substantial inhibitory effects on the proliferation,
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migration, and stemness potential in HCC. Thus, target-
ing BCL11B might provide novel insights into HCC pro-
gression and metastasis, with potentially —major
therapeutic implications.

Results
BCLL11B downregulation is common in HCC and indicates
poor prognosis

We first explore the expression pattern of BCL11B in
TCGA database, and found that BCL11B expression was
preferentially decreased in LIHC cohort (Supplementary
Fig. 1a), and patients with low BCL11B expression had a
significantly poorer prognosis (P <0.05, Supplementary
Fig. 1b). Next, BCL11B expression in 20 HCC and cor-
responding adjacent non-cancerous tissues were detected.
Results showed that BCL11B was significantly down-
regulated in cancerous tissues (Fig. la, b). Moreover,
primary tumor tissues of patients who suffered metastasis
exhibited lower BCL11B protein levels (Fig. 1c). Next,
prognostic value of BCL11B was determined based on
TMA containing 189 patients. Representative images
were shown in Fig. 1d. Patients were stratified into two
groups according to their BCL11B expression level. Low
BCL11B expression was significantly associated with
advanced Edmondson stage (P=0.012) and Barcelona
Clinic Liver Cancer (BCLC) stage (P=0.031; Supple-
mentary Table 1). Kaplan—Meier analysis indicated
patients with low BCL11B expression had significantly
shorter OS and TTR (both P < 0.050, Fig. 1e, f). Univariate
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Multivariate cox proportional regression analysis of factors associated with recurrence and overall survival.

Variables Recurrence Overall survival
HR (95% ClI) P HR (95% Cl) P

ALT (>40 U/L versus <40 U/L) 1.27 (0.82-1.97) 0.289 1.17 (0.68-2.03) 0.565
AST (>40 U/L versus <40 U/L) 1.30 (0.82-2.04) 0.265 1.24 (0.71-2.17) 0456
AFP (>400 ng/ml versus <400 ng/ml) 1.98 (1.30-3.03) 0.002 1.66 (0.99-2.79) 0.053
No. of tumors (multi versus single) 142 (0.80-2.53) 0.236 141 (0.71-2.81) 0329
Tumor size (>5cm versus <5cm) 145 (0.92-2.28) 0.113 0.89 (0.51-1.55) 0.682
Vascular invasion (yes versus no) 140 (0.90-2.18) 0.133 1.73 (1.02-2.91) 0.041
Edmondson stage (llI-IV versus I-Il) 1.62 (1.09-241) 0.017 1.38 (0.86-2.23) 0.186
BCL11B (Low versus high) 0.56 (0.36-0.87) 0.009 0.36 (0.20-0.65) 0.001

ALT alanine aminotransferase, AST aspartate transaminase, AFP a-fetoprotein, BCLC Barcelona Clinic Liver Cancer, HR hazard ratio.

The bold values were considered statistically significant (P < 0.05).

(Supplementary Table 2) and multivariate (Table 1) Cox
proportional regression analyses revealed that BCL11B
expression was an independent prognostic factor for OS
(hazard ratio [HR] = 0.56, 95% confidence interval [CI] =
0.36-0.87, P=0.009) and TTR (HR=0.36, 95% CI=
0.20-0.65, P =0.001).

BCLL11B inhibits proliferation, induces GO/G1 arrest, and
attenuates cell mobility in HCC

BCL11B expressions in one normal liver cell line (L02)
and seven HCC cell lines were determined. We found that
BCL11B expression was dramatically downregulated in
the HCC cell lines compared with that in the normal liver
cell line (Supplementary Fig. 1c). We then transfected two
HCC cell lines, HepG2 (P53 wild-type) and MHCC97L,
which had relatively high BCL11B expression with two
distinct short-hairpin RNAs targeting BCL11B (shl and
sh2), in order to knock down BCL11B expression. Con-
trarily, we induced ectopic expression of BCL11B in Huh7
cells (P53 mutated). Empty lentiviral vehicle (Mock) was
transfected as a control. BCL11B knockdown and over-
expression efficiencies were confirmed by RT-PCR and
Western blot assays (Supplementary Fig. 1d). BCL11B
knockdown significantly enhanced the proliferation of
MHCC97L and HepG2 cells (Fig. 2a, b and Supplemen-
tary Fig. le). Conversely, enforced overexpression of
BCL11B inhibited the proliferation of Huh7 cells. Flow
cytometry analysis indicated that BCL11B knockdown
resulted in a substantial accumulation of MHCC97L cells
and HepG?2 cells in S phase, accompanied by a substantial
decrease in the numbers of cells in GO/G1 phase. BCL11B
overexpression achieved almost the opposite effects (Fig.
2¢ and Supplementary Fig. 1f). Furthermore, cell cycle-
related protein expressions were evaluated by western
blot. BCL11B knockdown significantly increased cyclin
D1 and CDK2 expression, whereas BCL11B
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overexpression decreased cyclin D1 and CDK2 expression
(Fig. 2c).

Next, transwell assays indicated that BCL11B knock-
down markedly increased the number of migrating and
invading MHCC97L and HepG2 cells, whereas BCL11B
overexpression achieved the opposite effects in Huh7 cells
(Fig. 2d and Supplementary Fig. 1g). Likewise, wound-
healing assays revealed that BCL11B has an inhibitory
effect on cell migration (P<0.05; Fig. 2e and Supple-
mentary Fig. 1h).

BCL11B restrains the self-renewal potential of HCC cells

We next determined the expression levels of stemness-
associated makers in BCL11B-modulated cells. BCL11B
knockdown increased the expression of liver CSC-related
markers (EpCAM and CD24) as well as that of a cluster of
pluripotent stem cell markers (Nanog, OCT4, and SOX2).
Conversely, BCL11B overexpression achieved the opposite
effects (Fig. 2f and Supplementary Fig. 2a, b). Moreover,
BCL11B knockdown significantly enhanced the number of
spheroids formed in both MHCC97L and HepG2 cells (all
P <0.05; Fig. 2g and Supplementary Fig. 2c). Conversely,
BCL11B overexpression significantly reduced the number
of spheroids formed by Huh7 cells (both P<0.001).
Moreover, BCL11B-silenced MHCC97L cells exerted
greater self-renewal ability over three serial passages com-
pared with control cells, as evidenced by an increasing
number of spheres during passaging (P<0.001). We
observed similar results when BCL11B was silenced in
HepG2 cells (P<0.001). By contrast, cells overexpressing
BCL11B lost the ability of self-renewal, as evidenced by a
decreasing number of spheres during serial passages (P <
0.001; Fig. 2h). Interestingly, silencing BCL11B expression
in a normal hepatocyte-derived cell line (L02) also resulted
in promoted effects on cell proliferation, mobility, and
stemness (Supplementary Fig. 3a—e).
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Fig. 2 BCL11B inhibits proliferation, induces GO/G1 arrest and attenuates mobility and cell self-renewal capacities in HCC cells. a CCK-8
assay analysis of cell growth in BCL11B-knockdown MHCC97L and HepG2 cells, as well as BCL11B-overexpressing Huh7 cells. b Cell proliferation was
detected by clone formation assay in indicated HCC cells to observe the effects of BCL11B expression on cell proliferation potentials. ¢ Analysis of cell
cycle in BCL11B-knockdown MHCC97L and HepG2 cells, as well as BCL11B-overexpressing Huh7 cells by flow cytometry (left), and western blot were
conducted to evaluate expressions of cell cycle-related molecules (right). d Cell migration and invasion were analyzed by transwell assay in HCC cells
according to indicated BCL11B expression manipulations. @ Wound healing assays were conducted in indicated HCC cells to evaluate the effects of
BCL11B expression manipulations on cell migration. f Dynamic changes of protein expression of CSC related markers due to BCL11B expression
manipulations in indicated HCC cells. g Sphere-forming assays were conducted to evaluate the effects of BCL11B on CSC traits in HCC cells. h Self-
renewal ability was evaluated by sphere-forming assays in three serial passages in MHCC97L- and HepG2-shBCL11B cells, as well as Huh7 BCL11B-OE
cells. Corresponding parental cells were set as controls. Error bars represent the standard deviation (SD) from at least three independent experiments;
*P < 0.05; **P <0.01; ***P <0.001.

BCL11B enhances the chemosensitivity of HCC cells

Drug resistance is a hallmark of CSCs?3. Therefore, we
investigated whether BCL11B expression increases the
sensitivity of HCCs to the chemotherapeutic agents
(sorafenib and doxorubicin). Compared with control cells,
BCL11B-silenced MHCC97L cells exhibited lower apop-
tosis rates after treatment with 5uM sorafenib or 2 uM
doxorubicin. Similarly, BCL11B knockdown reduced the
apoptosis rates of HepG2 cells after treatment with sor-
afenib or doxorubicin. Contrarily, BCL11B overexpression
sensitized Huh7 cells towards chemotherapeutic treat-
ment, as evidenced by increases in apoptosis rates from
~20% to almost 40% (Fig. 3a and Supplementary Fig. 4a).
Moreover, MHCC97L and HepG2 cells with BCL11B
knockdown had higher survival rates than wild-type or
Mock-transfected parental cells after treatment with sor-
afenib or doxorubicin according to colony-formation
assays (all P<0.01). Conversely, Huh7 cells with
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BCL11B overexpression exhibited lower survival rates
than parental or Mock-transfected cells after sorafenib or
doxorubicin treatment (all P < 0.01; Fig. 3b and Supple-
mentary Fig. 4b). Together, our results revealed that
BCL11B expression greatly sensitizes HCC cells to con-
genital targeting or chemotherapy.

BCL11B induces differentiation in HCC cells

It was reported that BCL11B could induce cell differentia-
tion”’, We then examined whether BCL11B has the same
regulatory function in liver CSCs. Dynamic changes of several
stemness-associated genes (EpCAM and CD24) and liver
maturation-associated makers (CK8 and G6PC) after mod-
ulation of BCL11B expression were detected by WB assays.
Results showed that BCL11B knockdown in MHCC97L and
HepG2 cells increased the EpCAM and CD24 expressions in a
time-dependent manner and decreased CK8 and GP6C
expressions in a similar manner (all P<0.01; Fig. 3¢, d). By
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(see figure on previous page)

Fig. 3 Silencing BCL11B enhanced chemosensitivity and induced cell differentiation in HCC. a BCL11B silencing resulted in lower percentages
of apoptosis rate under 5 uM sorafenib or 2 uM doxorubicin treatment, while BCL11B overexpression led to higher percentages of apoptosis rate
under 5 uM sorafenib or 2 uM doxorubicin treatment, compared with corresponding control cells, respectively. b Clone formation assays showed that
BCL11B silencing resulted in higher numbers of clone under 5 uM sorafenib or 2 uM doxorubicin treatment, while BCL11B overexpression decreased
number of Huh7 clone under 5 uM sorafenib or 2 uM doxorubicin treatment. c-e Dynamic changes of the protein expression levels of CSC markers
(EpCAM and CD24) and mature hepatocyte markers (CK8 and GP6C) due to BCL11B expression manipulations in MHCCO7L cells (c), HepG2 (d), and
Huh7 cells (e). f Alterations of the percentage of CD24" and CK8™ cells in indicated HCC cells due to BCL11B expression manipulations were
evaluated by flow cytometry. g Immunofluorescence analysis of CD24 and CK8 expression in BCL11B-knockdown MHCCI7L cells and HepG2 cells, as
well as BCL11B-overexpressing Huh7 cells, with their corresponding parental cells as controls, respectively. Scale bar: 10 um. Means + SD from three
independent experiments are presented; *P < 0.05; **P < 0.01; ***P < 0.001.

contrast, BCL11B overexpression in Huh7 cells had opposite
effects on each of the four markers (all P<0.01; Fig. 3e and
Supplementary Fig. 5a).

To further confirm that BCL11B induces differentiation
in liver CSCs, we performed flow cytometry to detect
alterations in the percentages of CD24" and CK8" frac-
tions after modulation of BCL11B expression. We found
that BCL11B knockdown in MHCCO97L cells and HepG2
cells greatly increased the percentages of CD24™" cells (all
P<0.01; Fig. 3f), whereas it dramatically reduced the
percentages of CK8' cells (all P<0.01). Conversely,
BCL11B overexpression in Huh7 cells greatly decreased
the numbers of CD24" cells and increased the numbers of
CK8" cells (P <0.01; Supplementary Fig. 5b).

In agreement with the flow cytometry results, immu-
nofluorescence assays also revealed that BCL11B induced
differentiation in HCC cells. BCL11B knockdown in
MHCC97L and HepG2 cells resulted in enhanced
expression of CD24 and reduced expression of CKS,
whereas BCL11B overexpression in Huh7 cells produced
the opposite effects (Fig. 3g).

BCL11B suppressed tumorigenesis and cancer cell self-
renewal in vivo

In vivo experiments were performed to confirm the role
of BCL11B in HCC. Huh7 cells stably overexpressing
BCL11B, MHCCO97L cells with stable BCL11B silencing,
and their corresponding control cells were transplanted
orthotopically into the livers of the nude mice. After
6 weeks, compared with those in the corresponding
controls, the volumes and weights were significantly
increased in the BCL11B-silenced MHCC97L tumors (P
<0.001; Fig. 4a) and decreased in the BCL11B-
overexpressing Huh7 tumors (P<0.001; Fig. 4b). To
confirm that BCL11B restrains the traits of liver CSCs, we
injected subcutaneously nude mice with serially diluted
(10%, 10% 10% or 10° cells) BCL11B-knockdown
MHCC97L cells or BCL11B-overexpressing Huh7 cells.
The BCL11B-silenced MHCC97L cells were able to gen-
erate tumors even when only 102 cells were injected, and
exhibited higher rates of tumor formation than control
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cells at all four dilution orders (Fig. 4c). Meanwhile, the
BCL11B-overexpressing Huh7 cells failed to generate any
tumors at the highest dilution, and they formed fewer
tumors than control cells at all four dilutions (Fig. 4d).
BCL11B, Ki67, CD24, and CKS8 staining of the xenograft
tumors were shown in Fig. 4e. Tumors with high BCL11B
expression presented low CD24 and Ki67 expression and
high CK8 expression. Tumors with low BCL11B expres-
sion exhibited the opposite expression patterns of CD24,
Ki67, and CKS8.

BCL11B activated the transcription of P73, but not P53 in
HCC

Cignal Finder Center 10-Pathway Reporter Array was used
to explore the signaling pathways affected by BCLI11B
expression modulation. The P53 signaling pathway exhibited
the greatest alterations (P < 0.05) in response to manipulations
of BCL11B expression (Fig. 5a). Therefore, we hypothesized
that BCL11B restrains CSC traits in HCC by affecting the
P53 signaling pathway. To test that, we examined the effects of
BCL11B on the P53 pathway in HepG2 cells (wild-type P53)
and Huh? cells (mutant P53). Surprisingly, although BCL11B
expression had a strong influence on the expression of P53
target genes such as P21, c-MYC, and Cyclin D1, it shed no
effect on P53 expression in both two cell lines (Fig. 5b, ¢).
Those results indicated that BCL11B might suppress HCC
regardless of the P53 mutation state, suggesting the BCL11B-
dependent regulatory process might be P53-independent.

P73 exerted a compensatory effect when P53 function is
compromised***®, and its transcription process was P53-
independent. Therefore, we further investigated whether
BCL11B shed effects on P73 expression. Interestingly, we
found that manipulation of BCL11B expression sig-
nificantly altered P73 expression in HCC cells (Fig. 5b, c).
Previously, E2F1 was reported as key regulator for P73
expression®®?’, to further explore the potential regulatory
mechanism of BCL11B on P73 transcription, we first co-
transfected HEK293T cells with E2F1 and P73 luciferase
reporter plasmids. Results confirmed E2F1 greatly
increased P73 promoter activity (Fig. 5d), confirming its
regulatory role. Notably, further experiments indicated
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E2F1 knockdown successfully abolished the enhancing
effects of BCL11B overexpression on P73 signaling in
BCL11B-overexpressing Huh7 cells (Fig. 5e). Taken
together, the results indicated that BCL11B promotion of
P73 transcription requires in the presence of E2F1.
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Knockdown of P73 rescued BCL11B-induced inhibitory
effects on malignancy potentials in HCC cells

We next aimed to confirm the essential role of P73 in
the BCL11B-mediated inhibition of HCC cells further.
Results showed that P73 knockdown significantly
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enhanced the proliferation of BCL11B-expressing HepG2
cells and abolished the inhibitory effects on proliferation
caused by BCL11B overexpression in Huh7 cells (Fig. 6a, b
and Supplementary Fig. 6a). Moreover, P73 knockdown
resulted in substantial accumulation of HCC cells in S
phase, accompanied by a substantial decrease in the
numbers of cells in GO/G1 phase (all P<0.05; Fig. 6d).
Knockdown of P73 increased the numbers of migrating
and invasive BCL11B-expressing HepG2 cells and rescued
the migration and invasion capacity inhibition in
BCL11B-overexpressing Huh7 cells (all P < 0.01; Fig. 6¢, e
and Supplementary Fig. 6¢, d). P73 knockdown did not
affect BCL11B expression but caused the downregulation
of P21 but induced CDK2 and Cyclin D1 upregulation in
BCL11B-high cells. Notably, P73 knockdown abolished
the inhibitory effects of BCL11B overexpression in Huh7
cells (Fig. 6f, g).
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BCL11B exerted inhibitory effects on stemness traits in
HCC via P73

After P73 knockdown, expressions of stemness-
associated genes (CD24, OCT4, and SOX2) were
increased, whereas those of differentiation-related genes
(CK8 and G6PC) were decreased in BCL11B-expressing
HepG2 cells. P73 silencing dramatically abolished the
regulatory effects caused by ectopic expression of BCL11B
(Fig. 7a, b). Accordingly, P73 exert impressive inhibition
on CSC-like phenotype, evidenced by increasing numbers
of spheroids (Fig. 7c and Supplementary Fig. 6b) and
enhanced self-renewal capacities (P < 0.01; Fig. 7d) after
P73 knockdown. Flow cytometry assays showed that P73
knockdown enhanced drug resistance in HepG2 cells and
abolished drug sensitization caused by BCL11B over-
expression in Huh7 cells (P<0.01; Fig. 7e). To better
clarify the inhibitory functions of BCL11B was related to
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p73 instead of p53, we also silenced P53 expression in
HepG2 cells. Although P53 knockdown resulted in a
slighter inhibition of cell proliferation, mobility, and
stemness, these effects were not compatible to those of
BCL11B knockdown. However, P73 knockdown resulted
in almost the same inhibition effects as BCL11B silence
did (Supplementary Fig. 7a-h). Collectively, our data
demonstrated that P73, but not P53, might be the key
downstream molecule of BCL11B-mediated inhibitory
effects observed in HCC cells.
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Discussion

A better understanding of CSCs will provide novel
insights into HCC carcinogenesis, with potentially major
therapeutic implications. Our data identified BCL11B as a
novel suppressor of liver CSCs. We found that BCL11B
was universally downregulated in HCC tissues. Ectopic
expression of BCL11B in HCC cells resulted in inhibitory
effects on proliferation, cell cycle progression, and cell
mobility. BCL11B significantly hindered liver CSC traits
and promoted HCC cell differentiation. Further
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investigations revealed that BCL11B could trigger the
transcription of P73, and resulted in subsequent sup-
pression function in HCC. Overall, our data indicated
BCL11B as a promising therapeutic target for HCC with
the potential to eradicate CSCs.

BCL11B was previously considered as a haploinsuffi-
cient suppressor of tumorigenesis’®*’, but its role in
regulating stemness traits remained controversial. A
recent study revealed BCL11B as a key regulator of T-cell
differentiation and maturation®. Attenuation of BCL11B
activity also greatly enhanced B-catenin signaling, indi-
cating a repressive effect of BCL11B in the carcinogenesis
of colorectal cancers***!* However, it was also reported
that enriched BCL11B expression in highly tumorigenic
glioma cells promoted cancer cell growth by regulating
the expression of stemness-associated genes (SOX2 and
BMI1)*. Furthermore, high BCL11B expression was
necessary for mammary epithelial cells to maintain
quiescence®®, The distinct and contrasting functions of
BCL11B in different cancers might be attributed to the
complexity and heterogeneity of CSCs. It indicates that
various CSC models might be responsible for BCL11B
function in different cancers®*>°. Additionally, it was
reported that CSCs were derived from normal stem cells,
and the accumulation of genetic or epigenetic mutations
along with the effects of the tumor microenvironment
caused the CSCs to become highly heterogeneous®”. We
showed that BCL11B could greatly disrupt spheroid for-
mation and stemness-associated gene expression in HCC.
In vitro experiments identified BCL11B as a critical
molecule for the sensitization of HCC cells to sorafenib
and doxorubicin. Our findings are in line with previous
studies of colorectal cancers and clearly identify BCL11B
as an inhibitor of CSC traits in HCC***".

P53 signaling is a vital pathway that is suppressed in
various types of cancer because of its regulatory roles in
diverse biological functions such as cell cycle progression,
proliferation, migration, invasion, apoptosis, and senes-
cence®®. Negative correlations between P53 signaling and
CSC characteristics are frequently observed in solid tumors,
including breast cancer®, lung carcinoma®, prostate can-
cer", and colorectal cancer*”. In HCGC, it is reported that
P53 signaling interferes with CSC self-renewal and stem-
ness by inhibiting the expression of stemness-associated
genes such as NANOG'. Our previous investigation
revealed that P53 mutation occurs in almost 60% of Chinese
patients with HBV-related HCC, suggesting that mutation
of the P53 gene not only abolishes the P53 tumor-
suppressor function but also endows the mutant P53 pro-
tein with a gain-of-function to promote tumorigenesis'®.
Considering the biological significance of P53 signaling, it is
an appealing strategy to reactivate P53 signaling in patients
harboring mutant P53 proteins, which might provide sur-
vival benefits for patients with HBV-related HCC.
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The transcription factor P73 was previously reported to
have similar functions as wild-type P53. It can bind to the
regulatory regions of P53 target genes, thereby inducing
cell death and enhancing cell growth. P73 has an extre-
mely low mutation frequency in solid tumors®***** and is
therefore considered a potential target for restoring
P53 signaling, especially in patients with P53 mutation.
Our data revealed that BCL11B is essential for triggering
P73 transcription and that P73 serves as a key down-
stream target through which BCL11B exerts its inhibitory
functions in HCC. Critically, the silencing of P73 abol-
ished the inhibitory effects of BCL11B overexpression.
Our results suggest that the upregulation of P73 expres-
sion might be a way to reactivate P53 signaling in HCC.
Considering that various other strategies have failed to
restore P53 signaling in HCC, our findings provide an
alternative way to enhance P53 signaling by inducing the
upstream regulator BCL11B, which may have the poten-
tial to hinder disease progression and CSC traits in HCC.
It remains unclear, however, how BCL11B triggers P73
transcription. Further investigation will be required to
fully explore that question.

In summary, our results emphasize the clinical value as
well as the biological function of BCL11B in HCC. We
identified BCL11B as a novel tumor suppressor in HCC
that exerts inhibitory effects on cell proliferation and
migration. BCL11B enhanced the chemosensitivity of
HCC cells, attenuating their self-renewal, and promoting
their differentiation. BCL11B exerted its function mainly
by upregulating P73 expression to reactivate
P53 signaling, suggesting an exciting target for the reac-
tivation of wild-type P53 signaling in individuals harbor-
ing P53 mutations. Restoration of BCL11B expression
might be an attractive strategy for HCC therapy.

Materials and methods
Patients samples

Two independent cohorts of patients with HCC were
recruited from Zhongshan Hospital, Fudan University.
The first cohort consisted of 20 pairs of HCC samples and
matched adjacent non-tumor tissue samples collected in
2018. The second cohort included 189 patients with HCC
who underwent surgical resection between 2012 and
2013. The specific sample information was shown in
supplementary materials and methods. The Human
Research Ethics Committee of Zhongshan Hospital,
Fudan University approved the study protocol. All
patients provided written, informed consent for inclusion
in the study.

In vivo assay

Male nude mice (4 weeks old) were purchased from the
Department of Experimental Animals of the Chinese
Academy of Sciences (Shanghai, China). Animal care and
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experimental protocols were conducted under guidelines
approved by the Institutional Animal Care and Use
Committee (IACUC) at Zhongshan Hospital, Fudan
University. MHCC97L cells (untransfected, transfected
with empty [Mock] lentivirus vector, or transfected with
BCL11B-specific short-hairpin [sh] RNA) and Huh 7 cells
(untransfected, transfected with empty vector [NC], or
transfected with a BCL11B-overexpression construct)
were suspended in 200 ul serum-free DMEM and Matri-
gel (1:1). The cells were then injected orthotopically into
the livers of nude mice for proliferation analysis (5 x 10°
cells per mouse). For analysis of the self-renewal capacity
of HCC cells in vivo, nude mice were injected sub-
cutaneously with serially diluted (total of 10% 10?, 10% or
10° cells) BCL11B-knockdown MHCC97L cells or
BCL11B-overexpressing Huh 7 cells. After 6 weeks, the
resulting tumors were detached from the mice, weighed,
and photographed.

Statistics

SPSS 18.0 and Graph Pad were used for statistical
analysis. All data were shown as the mean + standard
error of the mean (SEM). P < 0.05 was considered statis-
tically significant. Data were tested for statistical sig-
nificance by paired two-tailed t-test. Categorical data were
compared by X* test and Fisher’s exact test. OS and TTR
curves were analyzed by the Kaplan-Meier method and
the log-rank test. Cox proportional hazards regression
models were constructed to perform univariate and
multivariate analyses of prognostic parameters. P values of
statistical significance are shown in the respective figures.
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