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miR-504 modulates the stemness and
mesenchymal transition of glioma stem cells and
their interaction with microglia via delivery by
extracellular vesicles
Ariel Bier1, Xin Hong2, Simona Cazacu2, Hodaya Goldstein1, Daniel Rand1, Cunli Xiang2, Wei Jiang2,
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Abstract
Glioblastoma (GBM) is a highly aggressive tumor with poor prognosis. A small subpopulation of glioma stem cells
(GSCs) has been implicated in radiation resistance and tumor recurrence. In this study we analyzed the expression of
miRNAs associated with the functions of GSCs using miRNA microarray analysis of these cells compared with human
neural stem cells. These analyses identified gene clusters associated with glioma cell invasiveness, axonal guidance,
and TGF-β signaling. miR-504 was significantly downregulated in GSCs compared with NSCs, its expression was lower
in GBM compared with normal brain specimens and further decreased in the mesenchymal glioma subtype.
Overexpression of miR-504 in GSCs inhibited their self-renewal, migration and the expression of mesenchymal markers.
The inhibitory effect of miR-504 was mediated by targeting Grb10 expression which acts as an oncogene in GSCs and
GBM. Overexpression of exogenous miR-504 resulted also in its delivery to cocultured microglia by GSC-secreted
extracellular vesicles (EVs) and in the abrogation of the GSC-induced polarization of microglia to M2 subtype. Finally,
miR-504 overexpression prolonged the survival of mice harboring GSC-derived xenografts and decreased tumor
growth. In summary, we identified miRNAs and potential target networks that play a role in the stemness and
mesenchymal transition of GSCs and the miR-504/Grb10 pathway as an important regulator of this process.
Overexpression of miR-504 exerted antitumor effects in GSCs as well as bystander effects on the polarization of
microglia via delivery by EVs.

Introduction
Glioblastomas (GBMs) are the most common and

aggressive of the astrocytic tumors. They are character-
ized by increased proliferation and angiogenesis, invasion
into the surrounding normal tissue and resistance to

therapies1. The prognosis of patients with GBM remains
extremely poor, and the median survival of GBM patients
has remained around 14–16 months over the past dec-
ades2. Gene expression profiling studies identified GBM
subtypes that are classified based on their transcriptional
signatures into various molecular groups, including pro-
neural, classical, and mesenchymal3,4. Recently, the pro-
filing of DNA methylation patterns in glioma has refined
these categories5, aligning them with the WHO 2016
diagnostic schema for glioma. These subtypes have dis-
tinct differential genetic alterations, molecular signatures,
cellular phenotypes, and patient prognosis5–7.
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GBMs contain a small subpopulation of cancer stem cells
(i.e., glioma stem cells [GSCs])8 that are characterized by
self-renewal, multi-lineage differentiation potential, and the
ability to generate xenografts that recapitulate the parental
tumors9. GSCs have been implicated in tumor infiltration
and resistance to radio- and chemotherapy as well as tumor
recurrence10. GSCs share stemness characteristics with
neural stem cells (NSCs) but differ in their differentiation
and oncogenic potentials9,11,12.
The epithelial-to-mesenchymal transition (EMT) is a

process that allows epithelial cells to abandon their
polarity and cell-to-cell adhesion properties and acquire
mesenchymal cell phenotypes which are associated with
enhanced invasiveness, stemness and metastasis, and
treatment resistance13. Recent studies demonstrated a
similar process in glioma, and proneural-to-mesenchymal
transition in these tumors is characterized by increased
aggressiveness, invasiveness and therapy resistance14–16.
Mesenchymal transition can occur in recurrent tumors
and in response to radiation17,18 and is associated with
poor patient prognosis.
Tumor aggressiveness and mesenchymal transition of

glioma are induced by cells and secreted factors in the
tumor microenvironment19–21. These cells include endo-
genous central nervous system (CNS) cells such as astro-
cytes, oligodendrocytes, neurons and microglia, and
infiltrating immune cells21. Microglia are resident immune
cells in the brain and together with infiltrating macrophages
represent the most prevalent CNS-associated cells in the
tumors22. Microglia and recruited macrophages have been
reported to undergo differentiation to cells with M2-type
characteristics, in response to factors secreted by glioma
cells23. The M2 microglia and macrophages further support
tumor growth via the secretion of growth factors, chemo-
kines and extracellular matrix-modifying enzymes22,24. In
addition, recent studies implicated extracellular vesicles
(EVs) as important mediators of intercellular communica-
tion and in the cross talk of tumor cells and their micro-
environments25. EVs contain proteins, lipids, and various
RNA species and play important roles in the interaction of
glioma cells and microglia23,25.
The expression of specific microRNAs (miRNAs) has

been shown to be associated with several aspects of
glioma pathogenesis including cell cycle control, invasion,
migration, resistance to therapies, and cell apoptosis26.
Specific miRNAs have been also implicated in the self-
renewal, stemness, and tumorigenic features of GSCs27.
Here, we analyzed the miRNA expression of GSCs in

comparison with human NSCs (hNSCs) and identified
unique miRNA expression profiles that distinguish these
two cell populations. Focusing on miR-504, which was
highly expressed in hNSCs compared to GSCs, we
demonstrated that it was upregulated in the G-CIMP
glioma subtype compared to other GBM subtypes.

Moreover, we found that miR-504 exerted an antitumor
effect in vitro and in vivo and in addition, inhibited the
stemness and mesenchymal transit of GSCs. In addition,
overexpression of miR-504 in GSCs exerted a bystander
effect on cocultured microglia cells by promoting the dif-
ferentiation of these cells toward M1 phenotype via EV
delivery.

Materials and methods
GSC cultures
All human materials were used in accordance with the

policies of the Henry Ford Hospital Institutional Review
Board. Generation of GSCs from fresh GBM specimens and
their characterization have been recently described28–31.
Briefly, the GSCs were maintained in neurosphere medium
(DMEM-F12 1:1, glutamine 10mM, HEPES buffer 10mM,
and sodium bicarbonate 0.025%) supplemented with basic
fibroblast growth factor (20 ng/ml) and epidermal growth
factor (20 ng/ml). The GSCs expressed markers such as
CD44, CD133, Musashi-1, Sox2, and nestin, exhibited self-
renewal, and expressed astrocytic and neuronal markers
upon differentiation. The GSCs also exhibited tumorigenic
potential and generated glioma xenografts in nude mice28–33.
The full information of the GSCs employed in this study is
described in Table S1.

Microglia and NSC cultures
Human microglial cells were obtained from Applied

Biological Material (Richmond, BC, Canada). All cells
employed in this study were tested for mycoplasma con-
tamination (Mycoplasma PCR Detection Kit) and found
negative. hNSCs (H9, hESC derived) were obtained from
Invitrogen.

Transduction of GSCs and microglial cells
Lentivirus vectors (System Biosciences, Mountain View,

CA) expressing the miR-504 reporter, pre-miR-504, miR-
504 antagomiR, Grb10, or control and Grb10 shRNAs were
packaged and used to transduce the cells according to the
manufacturer’s protocol and as previously described28–30.

Neurosphere formation assay
To determine the ability of GSCs to form secondary

neurospheres, cells were plated in 24-well plates at a
density of 10 and 100 cells/well through limiting dilution
and the number of neurospheres/well was determined
following 10 days for ten different wells. Spheres that
contained more than 20 cells were scored and the results
are presented as percentages of maximal neurospheres
formed compared to control cells28,29.

In vitro limiting dilution assay
For the in vitro limiting dilution assay, GSCs were

plated in 96-well plates in decreasing numbers of cells (50,
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20, 10, 5, 2, and 1) per well. Following 10 days, the number
of spheres was determined for each well. Extreme limiting
dilution was analyzed as recently reported32.

Real-time polymerase chain reaction (RT-PCR)
Total RNA was extracted using RNeasy midi kit

according to the manufacturer’s instructions (Qiagen,
Frederick, MD). Reverse transcription reaction was car-
ried out using 2-μg total RNA as previously described28,31.
Briefly, reactions were run on an ABI Prism 7000
Sequence Detection System (Applied Biosystems, Foster
City, CA). Cycle threshold (Ct) values were obtained from
the ABI 7000 software. S12 levels were used as controls.
The primer sequences are described in Table S2.

Western Blot analysis
Cell pellet preparation and Western Blot analyses were

performed as previously described28–30.

Transwell migration assay
Transwell chambers (BD Biosciences, San Jose, CA) were

used for analyzing cell migration as recently reported29,34 In
brief, cells (25,000/well) were incubated for 3 h in culture
medium with 10% fetal bovine serum in the bottom cham-
bers. The total number of the migrated cells was determined
in fixed and stained cells (0.05% crystal violet for 5min).

Cell viability assay
Cells were washed with phosphate-buffered saline (PBS),

centrifugated in 3000 rpm for 5min and the cell pellet was
incubated in PBS containing 0.4% trypan to stain the dead
cells. The number of Trypan-blue stained cells was deter-
mined using a Countess II FL (Thermo Fisher, MA, USA).

Isolation of GSC-derived EVs
EVs were prepared as previously described31,35 using

sequential centrifugation at 300 × g for 10min, 2500 × g for
20min, 10,000 × g for 30min and 110,000 × g for 90min.
The pellet was then resuspended in PBS and washed twice
followed by filtration using a 0.22-μm filter. The protein
content of the enriched EV fractions was determined using
the Micro BCA assay kit (ThermoFischer Scientific, Oregon
City, OR). The expression of the exosome markers CD63,
CD81, and CD9 was analyzed by Western blot and the
quantification of the isolated EVs was performed using the
ExoELISA-Ultra CD63 kit according to the manufacturer’s
instructions. For the exosome treatment, 0.5 × 108 EVs were
added to the cultured cells.

ImageStreamX analysis
Microglial cells were treated with GSC-derived EVs

labeled with CellTracker Red (ThermoFisher, Waltham,
MA) for 24 h. Cells were excited using 561-nm laser, and
cell fluorescence of approximately 104 cells per sample was

captured and photographed using an ImageStreamX high-
resolution imaging flow cytometer (Amnis Co., Seattle,
WA) as previously described35. The samples were gated to
obtain a population of captured single-cell images of living
cells, then gated for the cells in focus using the gradient root
mean square feature. Cells incubated with or without
labeled EVs were compared for the intensity of the red
channel fluorescence. Images were analyzed using IDEAS
6.0 software (Amnis Co., Seattle, WA).

miR-504 reporter
For analyzing miR-504 delivery, a miR-504 luciferase

reporter plasmid was employed as previously described
for miR-12436. A unique miR-504 binding site, which is a
fully complementary sequence of mature miR-504, was
cloned downstream of luciferase reporter gene of the
pMiR-Luc reporter vector from Signosis, Inc. (Santa
Clara, CA). For the mCherry reporter, the luciferase gene
of pMiR-Luc reporter vector was replaced with mCherry-
N1 obtained from Clontech (Mountain View, CA).

Phagocytosis analysis
Human microglial cells were plated alone or in coculture

with GSCs. Phagocytosis was determined using the pHrodo™

Green zymosan bioparticle assay (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s instructions. Briefly,
microglia plated alone and in the presence of GSCs were
incubated with a solution of pHrodo Green zymosan bio-
particles in Live Cell Imaging Solution (0.5mg/ml). Phago-
cytosis was determined after 120min using fluorescence
plate reader at Ex/Em 509/533.

miRNA array processing and analysis
All experiments were performed using Affymetrix HU

GENE1.0st oligonucleotide arrays and GeneChip miRNA
4.0 Array (ThermoFisher). Sample processing was per-
formed according to the protocol provided by the company.
The rest of the analysis was performed using Partek®

Genomics SuiteTM software, version 6.6 (©2012 Partek,
Inc.). miRNA data were summarized using RMA and
standardized by sketch-quantile normalization. Differential
expression was performed via ANOVA. Significant miR-
NAs were selected to have at least 1.5-fold change and a
P value < 0.05. Results were visualized by volcano plot.
Functional analysis was conducted by Ingenuity software
using the core analysis on differential miRNA lists. The
panel of measured miRNAs (a list of all measured miRNAs)
was used as the background set for enrichment tests. Net-
works included up to 35 miRNAs and mRNAs.

TCGA data analysis
Expression data were downloaded for TCGA cases from

the Broad Firehose portal (http://gdac.broadinstitute.org/).
GBM cases were assayed by microarray for miRNA
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expression6. The level 3, batch-adjusted, expression data file
captured mature miRNA quantification (file date: 12/10/
2014). Low-grade glioma (LGG) cases were assayed by
miRNA-sequencing37. The level 3 data file contained
expression data per mature miRNA as reads per million
miRNAs mapped (file date: 12/10/2014). GBM and LGG
cases were assayed by mRNA-sequencing5. The level 3 data
file contained RSEM normalized data38, quantified per-gene
as the normalized count (file date: 12/10/2014). Expression
data are used continuously, discretized by quantile, or
dichotomized at the median as high/low as appropriate for
the research question. Clinical data and molecular classifi-
cations were taken from the recent publication of the TCGA
Glioma Analysis Working Group6. Comparison of mean
expression between groups was performed by one-way
ANOVA followed by Tukey’s corrected two-sample tests,
which adjust for multiple comparisons to maintain the
family-wise error rate.

Xenograft studies
Following the guidelines of Henry Ford Hospital’s

Institutional Animal Care and Use Committee, dis-
sociated GSCs (3 × 105 cells) transduced with a lentivirus
vector expressing a control pre-miR or pre-miR-504 were
inoculated intracranially into nude mice (Nu/Nu) as
previously described32. Briefly, animals were anesthetized
and injected with the GSCs through a 3-mm hole to the
right of the bregma at a depth of 2.5 mm and a rate of
5 μL/30 s. All animals were monitored daily and sacrificed
at the first signs of neurological deficit.

Statistical analysis
The results are presented as the mean values ± SD. The

data of patient specimens are presented graphically with
median and interquartile range noted. Data were analyzed
using ANOVA or a Student’s t test with correction for
data sets with unequal variances. Data were analyzed on a
log 2 scale as appropriate. Kaplan–Meier estimates of the
survival time from diagnosis until death or last follow-up
were used for outcome analysis. Differences in survival
curves between groups were assessed by the log-rank test.
Cox regression was used to construct multivariable
models of survival including miRNA expression, age at
diagnosis, IDH mutation status and grade.

Results
Functional clustering and networks associated with
miRNAs that distinguish GSCs from hNSCs
To define the patterns of miRNA expressions that are

unique to GSCs and associated with their tumorigenicity
and mesenchymal characteristics, we used a miRNA array
chip for 12 GSCs and three different cultures of hNSCs.
We first compared the miRNA expression of GSCs and
hNSCs. miRNAs were identified using cutoffs for ≥1.5-

fold differential expression and a significant P value (P ≤
0.05), as listed in Table S3 and as shown in a volcano plot
(Fig. 1A). Thirty miRNAs were significantly upregulated,
and 55 miRNAs were downregulated in GSCs relative to
hNSCs. These miRNAs were further analyzed by func-
tional enrichment and network analysis using Ingenuity
Pathway Analysis (IPA; Ingenuity Systems, http://www.
ingenuity.com). IPA analysis identified clusters of miR-
NAs that are associated with well-known oncogenic
pathways including cell cycle, cellular development, cel-
lular growth and proliferation, cell-to-cell signaling and
interaction and cell death and survival (Fig. 1B). IPA was
also used to generate three networks of altered miRNA
interactions consisting of at least 15 miRNAs from the
miRNA lists (Figs. 1C, S1A, B). These networks are
associated with miRNA biogenesis including regulation of
Dicer1 and AGO2 (Figs. 1C, S1A) and of oncogenes
such as TERT, MYC, CASP2, CASP10, BCL2, and TP73
(Fig. S1a). An important oncogenic pathway that was also
identified is associated with increased regulation of clas-
sical EMT mediators such as Smad2/3, Smad6/7, TGFβ1,
and Dicer (Figs. 1C, S1B).
We then identified miRNAs that were expressed in GSCs

but not in hNSCs and found that 10 miRNAs were sig-
nificantly upregulated in GSCs while 37 were downregulated
(Fig. S1D). The IPA of these miRNA clusters generated two
networks, each containing more than 10 miRNAs (Figs. 1D,
S1C). These networks consist of proteins related to cell
survival (p53 and TERT) and miRNA biogenesis (Dicer and
AGO2) similar to the pathways that were obtained in the
initial comparison of the GSCs and hNSCs (Fig. 1D). In
addition, the two key mesenchymal markers ZEB2 and
RUNX1 were also identified in these networks (Fig. S1C).

MiR-504 is downregulated in GBMs and GSCs
Using RT-PCR analysis we first validated some of the

miR array results (Figs. 2A, S2). Since miR-504 was one of
the most downregulated miRNAs in GSCs compared with
hNSCs (Fig. 1A), we focused on this miRNA as a potential
inhibitor of the tumorigenicity of GSCs. The expression of
miR-504 in GBM specimens was also significantly
increased in normal brain compared with astrocytic
tumor specimens (Fig. 2B).
We then analyzed the relative expression of miR-504 in

the different subtypes of GBM using TCGA6. There are
339 GBM cases in our study that have IDH/Methylation
subtyping. This subtyping splits the IDHmut-noncodel
class into two groups according to methylation pattern
(Fig. 2C). The G-CMIP-low class has a lower level of
methylation globally and has been found to have worse
prognosis. The IDHwt GBM tumors are split into three
groups. Two align with expression class, as mesenchymal-
like and classic-like, and the third has a distinct methy-
lation pattern, denoted as LGm6–GBM (Fig. 2C,
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ANOVA, P < 0.0001). Gray lines indicate significant dif-
ference between groups (post hoc t test, P < 0.05). Ana-
lysis of miR-504 expression in LLGs demonstrated that
the expression of miR-504 was higher on average in grade
II glioma compared with grade III (Fig. 2D).
There are 509 LGG cases in our study that have IDH/

methylation subtyping. This subtyping splits the IDHmut
class into three groups according to methylation pattern
(Fig. 2E). The G-CMIP-high class has a highest miR-504
expression. The IDHwt LGG tumors are also split into
three groups. The classic-like and PA-like are two groups
with the lowest and highest expression, respectively.
While the mesenchymal-like group has intermediate
expression (Fig. 2E). Gray lines indicate significant dif-
ference between groups (post hoc t test, P < 0.05). While
survival differences were observed by IDH-mutation sta-
tus (data not shown), there was no evidence that miR-504

expression has independent prognostic value beyond the
two new WHO 2016 diagnostic groups, GBM with IDHwt
and GBM with IDH mutant. A Kaplan–Meier plot
demonstrates that the quarter of patients with lowest
expression of miR-504 has the worst survival outcome
among grade II and III glioma (Fig. 2F; log-rank P=
0.00136 overall; log-rank P= 0.00402, 0.00123, 0.0111 Q1
vs. Q2–4, respectively). Collectively, these results indicate
that miR-504 expression is inversely correlated with
tumor aggressiveness and poor prognosis.

miR-504 inhibits the stemness and mesenchymal transit of
GSCs
To examine the effect of miR-504 we overexpressed it

in GSCs (Fig. 3SA) and found that pre-miR-504 mark-
edly decreased the expression of the stemness markers
Oct4 and Nanog and increased the expression of the

Fig. 1 miRNA array analysis of GSCs and hNSCs. miRNA chip array was performed for 12 GSC and 3 neural stem cell NSC cultures. The miRNA
profile of GSCs and hNSCs was compared and a volcano plot was generated (A). Green circles-miRNAs significantly downregulated in GSCs, red
circles-miRNAs significantly upregulated in GSCs. FC >= 1.5, P value ≤ 0.05. For these miRNAs, Ingenuity functional enrichment analysis (B) and
ingenuity networks (C, D) demonstrated the interconnectedness of the altered miRNAs in GSCs were performed by IPA.
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astrocytic marker GFAP in both GSC-1 and GSC-2
(Fig. 3A).
The role of miR-504 in the stemness of GSCs was fur-

ther examined on the self-renewal ability and neurosphere
formation of these cells. Overexpression of miR-504 in
GSCs decreased their ability to form neurospheres as
indicated by analyzing secondary neurosphere formation
(Fig. 3B), the extreme limiting dilution assay (Fig. 3C) and
spheroid size (Fig. 3D), suggesting that miR-504 inhibited
the stemness potential of GSCs and increased their dif-
ferentiation. miR-504 overexpression did not induce cell
death in the GSCs as determined by trypan blue staining
(data not shown).
In addition, overexpression of miR-504 also decreased

GSC migration (Fig. 3E) and the expression of the
mesenchymal markers CTGF, fibronectin 1 (FN), and
YKL-40 (Fig. 3F). These results demonstrate that miR-504
acts as a negative regulator of the stemness, mesenchymal
phenotypes, and migration of GSCs.
We further examined the effects of miR-504 over-

expression on the tumorigenic capacity of GSCs in vivo.
For these experiments we employed GSC-1 transduced
with lentivirus vectors expressing pre-miR-504. Intracra-
nial implantation of these cells into immunocompromised
mice resulted in significantly smaller xenografts (4.35 ±
1.33 mm2; n= 5) compared with those expressing a

control pre-miR (11.96 ± 4.20 mm2; N= 5, P < 0.005)
(Fig. 3G). In addition, overexpression of miR-504
increased the mean survival of tumor-bearing mice
compared with the control miR group (66 days vs.
42 days, P < 0.0001, N= 11/group) (Fig. 3H). These data
demonstrate that overexpression of miR-504 in GSCs
decreased their tumorigenicity which is in line with the
favorable prognosis of patients with tumors that express
high levels of this miR.

Grb10 is a target of miR-504 and mediates the inhibitory
effects of this miR on GSCs
Bioinformatics analysis identified Grb10 as a potential

target of miR-504 which was also recently reported as a
validated one39. Using the Grb10 3′-UTR- tagged to
luciferase, we demonstrated a direct targeting of Grb10 by
miR-504 (Fig. 4A). We then analyzed the expression of
Grb10 in hNSCs and GSCs (N= 10) and found that this
gene was highly expressed in GSCs compared to hNSCs
(Fig. 4B). Using TCGA we analyzed the expression of
Grb10 in various subtypes of glioma and found that the
expression of Grb10 was significantly higher in GBM
compared with low-grade tumors as determined by his-
tology criteria (Fig. 4C) and the WHO grade (Fig. 4D). In
addition, analysis of methylation glioma subtypes
demonstrated that Grb10 was highly expressed in the
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Fig. 2 Expression of miR-504 in GSCs and glial tumors. Validation of top miRNAs enriched in GSCs (N= 11) compared with the hNSCs (N= 4) was
performed by RT-PCR (A) P < 0.001. miR-504 expression in glial tumors compared with normal brains (n= 20 for each) was determined using real-
time PCR (B) P < 0.001. Relative expression of miR-504 in GBM (C) and LGG (E) by subtypes was determined according to The Cancer Genome Atlas
(TCGA data portal): gray bars indicate significant differences in post hoc t tests P < 0.05. Relative expression of miR-504 was also analyzed in grade III
and grade II LGG (D). Overall survival plotted according to quartile of miR-504 expression among grade II and III glioma (F); log-rank P= 0.00136
overall; log-rank P= 0.00402, 0.00123, 0.0111, Q1 vs. Q2–4, respectively.
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mesenchymal subtype and exhibited lowest expression in
the G-CIMP high tumors (Fig. 4E). Kaplan–Meier analysis
(Fig. 4F) shows that the quarter of patients with highest
expression of Grb10 have the worst survival outcomes

(log-rank P= 6.39e−12 overall; log-rank P= 5.13e−11,
6.15e−07, 2e−05, Q4 vs. Q1–3, respectively).
Dichotomizing miR-504 at the 25th and Grb10 at the

75th percentiles, demonstrates that the low/high pattern

Fig. 3 miR-504 inhibits stemness, mesenchymal markers and oncogenic potential in GSCs. GSC-1 and GSC-2 were transduced with lentivirus
vectors expressing control pre-miR or pre-miR-504 and the expression of stemness markers was determined using RT-PCR P < 0.001 (A). Self-renewal
analysis was performed with the two different GSCs. Cells overexpressing a control or miR-504 pre-miRs were plated at 10 cells/well in 96-well plates
and the number of neurospheres per well was quantified after 10 days. P < 0.0001 (B). In vitro extreme limiting dilution assay (ELDA) demonstrated
that overexpression of pre-miR-504 decreased the frequency of neurosphere formation in GSC-1 (C). Representative pictures of neurospheres (GSC-1)
after 2 weeks in culture are presented (D). The results represent at least three different experiments/samples that gave similar results. GSCs
overexpressing pre-miR-504 were also analyzed for cell migration using the transwell migration assay (E) and for the expression of mesenchymal
markers using real time PCR P < 0.001 (F). GSC-1 overexpressing a control pre-miR or miR-504 were implanted intracranially into nude mice and
tumor size was determined in brain sections stained for H&E and for human anti-MHCI antibody following 4 weeks of transplantation (G) *P < 0.001.
Kaplan–Meier survival curves for mice bearing intracranial xenografts derived from GSC-1 overexpressing pre-miR-504 or control pre-miR (n= 11)
were determined by both log-rank (Mantel–Cox) test and Gehan–Breslow–Wilcoxon test (H) P < 0.0001.
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of miR-504 and Grb10, respectively, more clearly iden-
tifies a subset of patients with poor overall survival
compared to each expression alone (Fig. 4G, log-rank
P= 2.67e−8 overall; log-rank P= 0.0012, 2.89e−12,
0.0003, low/high vs. high/high, high/low and low/low,
respectively).
We then examined the role of Grb10 in GSC functions

and demonstrated that its overexpression in GSCs
increased (Fig. 4H), while its silencing decreased (Fig. 4H)
the stemness and mesenchymal phenotypes of GSCs,
similar to the effects of miR-504. Overexpression of a
Grb10 plasmid lacking 3′-UTR induced a modest upre-
gulation of self-renewal of the GSCs and partially

abrogated the inhibitory effect of miR-504 on the
mesenchymal phenotype (Fig. 4I) and the self-renewal
(Fig. 4J) of the treated GSCs. These results demonstrate
that targeting Grb10 by miR-504 mediates at least in part
the inhibitory effects of miR-504 on the stemness and
mesenchymal phenotypes of GSCs.

Overexpression of miR-504 in GSCs promotes M1 (pro-
inflammatory) phenotypes of cocultured microglial cells
Glioma cells and GSCs have been demonstrated to

induce polarization of microglia toward the M2 pheno-
type (anti-inflammatory/pro-tumorigenic) by the secre-
tion of cytokines and EV-derived miRNAs23,40,41.

Fig. 4 Targeting of Grb10 mediates the anti-tumor effects of miR-504. The direct targeting of Grb10 by miR-504 was determined using luciferase
assay of the Grb10 3′-UTR luciferase plasmid P < 0.001 (A). The expression of Grb10 was determined in hNSCs (N= 4) and GSCs (N= 11) by RT-PCR P
< 0.01 (B). The expression of Grb10 in the different subtypes of glioma was determined using data from TCGA. Boxplots of Grb10 expression are
shown on a log-2 scale by histology (WHO2007 criteria); (ODG oligodendroglioma, OAC oligoastrocytoma, AST astrocytoma, GBM glioblastoma) (C),
by WHO Grade (D), and by methylation subclass (E). Gray lines indicate a significant difference between groups (post hoc t test, P < 0.05). A
Kaplan–Meier plot (F) shows that the quarter of patients with highest expression of Grb10 have the worst survival outcomes (log-rank P= 6.39e−12
overall; log-rank P= 5.13e−11, 6.15e−07, 2e−05, Q4 vs. Q1–3). Overall survival plotted according to high/low expression of miR-504 and Grb10
dichotomized at 25th percentile for miR-504 and 75th percentile for Grb10 to provide a better separation. log-rank P= 1e−04 (G). Median survival is
indicated on the graphs. GSC-1 cells were transduced with lentivirus vectors expressing a control vector, Grb10, a control shRNA or Grb10 shRNA, and
the expression of mesenchymal and stemness markers was analyzed using RT-PCR (H) *P < 0.005; **P < 0.01. The role of Grb10 in miR-504 effects on
Nanog expression (I) and self-renewal (J) was analyzed in GSCs transduced with lentivirus expressing miR-504 with and without Grb10 lacking the 3′-
UTR. *P < 0.001. The results represent at least three different experiments that gave similar results.
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In addition, we recently reported that EVs can deliver
exogenous miRNAs both in vitro and in vivo31,36. We
therefore hypothesized that the overexpressed miR-504 in
GSCs can be transferred to neighboring cells and there-
fore affects not only the oncogenic functions of the GSCs
but also their interactions with neighboring cells such as
microglia.
For these studies we employed co-cultures of microglial

cells and GSCs overexpressing pre-miR-504 or a control
pre-miR in transwell plates with 1-μm filters that allow
only the transfer of soluble factors and EVs as described
in Fig. 5A. Coculturing of microglia with control GSCs or
cells transduced with lentivirus expressing a control pre-
miR (Fig. 5A, D) resulted in a relative increased expres-
sion of the M2-associated markers, CD209 and TGF-β
and in the decreased expression of CD86 and TNF-α (Fig.
5B, E). GSC coculturing also increased the phagocytosis
of microglia cells (Fig. 5C). In contrast, transduction of
the GSCs with pre-miR-504 (Fig. 5D) decreased the
expression of the M2-associated markers, increased the
expression of CD86 and TNF-α (Fig. 5E) and decreased

phagocytosis (Fig. 5F). To verify that miR-504 was deliv-
ered by the GSCs to the cocultured microglial cells, we
employed a miR-504 reporter tagged to luciferase that
allows the quantification of the transferred miRNA as was
previously reported33. Microglial cells were transduced
with a lentivirus vector expressing the miR-504-luciferase
reporter and the GSCs were transduced with lentivirus
vector expressing either control pre-miR or pre-miR-504
(Fig. 5D). As presented in Fig. 5G, microglia that were co-
cultured with GSCs overexpressing pre-miR-504 exhib-
ited decreased luciferase activity indicating that miR-504
was transferred by the cocultured GSCs. These results
indicate that miR-504 was transferred by GSCs to
cocultured microglial cells. We further analyzed the
expression of miR-504 in the cocultured microglial cells
and found that they expressed high levels of this miR
compared with microglia cocultured with GSCs expres-
sing a control miR (Fig. 5H). Finally, we demonstrated
that overexpression of miR-504 in microglial cells upre-
gulated the relative expression of the M1 markers CD86
and TNF-α (Fig. 5I).

Fig. 5 Overexpression of miR-504 in GSCs induces M1 polarization of cocultured human microglia. GSC-1 cells and microglial cells were
cocultured in transwell plates with 1-μM filters (A). The expression of M1 and M2 markers in microglia was determined by RT-PCR (B) and
phagocytosis by the pHrodo™ Green zymosan bioparticle assay (C). GSC-1 cells transduced with lentivirus vectors expressing a control pre-miR or pre-
miR-504 were cultured in transwell plates with microglial cells transduced with lentivirus vectors expressing a miR-504 reporter tagged to luciferase
(D). The expression of the M1 and M2 markers in microglia was determined using RT-PCR (E) and phagocytosis by the pHrodo™ assay (F). The
luciferase activity of the miR-504 reporter was also determined (G). The expression of miR-504 in the cocultured microglial cells was analyzed using
RT-PCR (H). Overexpression of miR-504 microglia increased the relative expression of the M1 markers and decreased those of M2 as determined by
RT-PCR (I). The results represent at least three different experiments/samples that gave similar results. *P < 0.001, **P < 0.01.
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EV-associated miR-504 derived from GSCs induces
microglia M1 phenotypes
EV-associated miRNAs are implicated in the cross-talk

of GSCs and microglia33,35. To determine the role of EVs
in the delivery of miR-504 to microglial cells, we first
analyzed the expression of miR-504 in EVs derived from
GSC-1 that were transduced with lentivirus vectors
expressing control pre-miR or pre-miR-504. EVs were
isolated from GSC-1 cultures using differential ultra-
centrifugation as previously described35 and were ana-
lyzed for the expression of CD63, CD81, and CD9
(Fig. S3B). The amount of the secreted EVs was deter-
mined using ELISA of CD63 antibodies and was found to
be comparable in GSC-1 overexpressing con-miR or miR-
504 (data not shown). We found that EVs isolated from
GSC-1 overexpressing miR-504 expressed significantly
higher levels of miR-504 compared with EVs isolated
from GSC-1 expressing a control pre-miR (Figs. 6A, S3C).

We next demonstrated the transfer of EVs from GSC-1 to
microglial cells using ImageStreamX analysis. In these
studies, GSC-1 derived EVs labeled with CellTracker Red
were added to microglial cells and their fluorescence was
determined 12 h later. The EVs were efficiently inter-
nalized and accumulated in the microglial cells (Fig. 6B).
Incubation of microglial cells that express the miR-504
reporter with EVs that were isolated from GSC-1
expressing either the con-miR or miR-504 (Fig. 6C)
demonstrated the functional delivery of the miR-504 to
the microglial cells (Fig. 6D), which resulted in decreased
expression of CD209 and TGF-β, and increased expres-
sion of CD86 and TNF-α (Fig. 6E), similar to our obser-
vations with cocultured GSCs (Fig. 5D). To demonstrate
that the delivered miR-504 mediated the effects of the
GSC-1 derived EVs, we examined the effects of EVs iso-
lated from GSC-1 overexpressing miR-504 on the differ-
entiation of microglial cells transfected with a miR-504
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Fig. 6 Exogenous miR-504 is delivered by GSC-derived EVs to cocultured microglial cells and promotes their M1 polarization. The
expression of miR-504 in EVs derived from GSC-1 cells was analyzed by RT-PCR (A). Fluorescence intensity analysis of microglial cells incubated with
CellTracker Red labeled EVs isolated from GSC-1 cells compared with untreated cells. A representative image is presented (B). EVs derived from GSC-1
overexpressing a control pre-miR or pre-miR-504 were added to human microglia expressing the miR-504 reporter (C). The luciferase activity of the
miR-504 reporter was measured (D) and the expression of M1 and M2 markers in the microglia was determined by RT-PCR (E). Microglia cells
expressing control or miR-504 antagomiRs were incubated with EVs derived from GSC-1 cells overexpressing miR-504 (F) and the expression of the
M1 and M2 markers were analyzed by RT-PCR (G). The results are representative of at least three different experiments that gave similar results. For
statistical analysis, *P < 0.001.
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antagomir (Fig. 6F) and found that these effects were
markedly abrogated, whereas, no significant inhibition
was observed in microglia transfected with a control
antagomir (Fig. 6G). These results indicate that the
transfer of miR-504 by GSC-derived EVs mediated, at
least partly, the increased M1 phenotypes of the micro-
glial cells induced by the cocultured GSCs.

Discussion
GBM is one of the most aggressive, infiltrative and

incurable tumors with an average patient survival of
around 14–16 months1,2. GBM therapy resistance and
recurrence are primarily attributed to the existence of
GSCs8–10. Therefore, targeting these cells is an essential
component of any successful therapeutic approach.
Recent studies demonstrated that the mesenchymal dif-
ferentiation of GBM is associated with acquisition of
stemness characteristics, tumor aggressiveness, therapy
resistance, and poor clinical outcome16–18,42. Thus, deci-
phering the mechanisms underlying the mesenchymal
differentiation of GSCs is essential for identifying novel
therapeutic targets and improving patient survival.
miRNAs have emerged as attractive therapeutic targets

due to their critical roles in the regulation of major cell
processes such as cell proliferation, stemness, and apop-
tosis that are key components in cancer initiation and
progression29–31,43. In addition, specific miRNAs have
been implicated in controlling the mesenchymal differ-
entiation of tumor cells26,44,45.
Using miRNA microarray analysis of GSCs in compar-

ison to hNSCs, we identified 85 miRNAs that were sig-
nificantly altered in the GSCs compared with hNSCs.
These miRNAs were found to be associated with well-
known tumorigenic pathways including cell cycle, cellular
development, cellular growth and proliferation, cell-to-
cell signaling and interaction, and cell death and survival.
These findings indicate that alterations in miRNA
expression are associated with deregulation in pathways
which contribute to the tumorigenic phenotypes of GSCs.
Additional differences in miRNA expression between

GSCs and hNSCs were also associated with the EMT
process and included pathways regulating Smad2/3,
Smad6/7 TGFβ146, and Dicer47, suggesting that the
expression of specific miRNAs in GSCs regulate their own
expression in parallel with the tumorigenic characteristics
of these cells. Finally, other IPA networks identified ZEB2
and RUNX1, two major regulators of the EMT pathway7,
as mainly enriched in GSCs.
One of the most downregulated miRNAs in GSCs

compared to hNSCs was miR-504. We further found that
miR-504 expression was significantly lower in GBM as
compared to normal brains and exhibited a grade-
dependent expression. In addition, using the TCGA por-
tal, we found that miR-504 expression was significantly

increased in the G-CIMP high glioma and more generally
in IDH-mutant GBM, whereas, it was considerably lower
in the IDH-wt glioma classes including the mesenchymal-
like subtypes. In agreement with the lower expression of
miR-504 in more high grade tumors and in the
mesenchymal subtype, we found that overexpression of
miR-504 inhibited the self-renewal and mesenchymal
phenotypes of GSCs, Collectively, the current results
highlight miR-504 as a potential tumor suppressor
miRNA and as a negative regulator of the tumorigenicity
of GBM and GSCs.
Our results of a role of miR-504 as a tumor suppressor

in glioma and as an inhibitor of mesenchymal transfor-
mation are in agreement with recent publications48–52.
The current studies present new data regarding the
expression of miR-504 in patient-derived GSCs compared
with NSCs and in specific subtypes of gliomas including
patient survival data. In addition, the current studies focus
on the functions of miR-504 in GSCs including their
tumorgenicity using intracranial xenografts.
The role of miR-504 in oncogenic processes appears to

be tumor dependent. Thus, in gastric cancer miR-504
expression was decreased by the tumor suppressor gene
Trefoil factor 1 (TFF1) that leads to the activation of
p5353, whereas miR-504 had a dual function in oral
squamous cell carcinoma54. Moreover, serum expression
of miR-504 were demonstrated to differentiate between
primary and metastatic brain tumors55, suggesting a role
of this miR as a diagnostic marker and a mediator of the
interaction of glioma and non-CNS cells.
The inhibitory effects of miR-504 on GSCs were at least

partly mediated by Grb10, which was recently reported as
a validated miR-504 target in vascular endothelial cells39.
Grb10 is an imprinted gene that is differentially expressed
from two promoters and in the brain it is paternally
expressed56. The role of Grb10 in tumorigenesis is just
beginning to be understood57,58. Using TCGA analysis,
we demonstrated that Grb10 was highly expressed in
more aggressive glioma tumors and its expression was
directly correlated with worse prognosis. In addition,
overexpression of Grb10 in GSCs promoted their
aggressiveness, whereas silencing exerted an opposite
effect and abrogated the inhibitory effect of miR-504.
Thus, our studies demonstrated the miR-504/Grb10
pathway as an important regulator of the stemness-EMT
process in GSCs.
Additional targets of miR-504 were reported in glioma

and a recent study reported that miR-504 inhibited EMT
by targeting the Frizzled-7-mediated the Wnt-β-catenin
pathway51.
GSCs have been reported to promote the differentiation

of microglia toward the M2/anti-inflammatory pheno-
type, an effect that is more pronounced in mesenchymal
GSCs23,40,41. The M2 microglia phenotype in turn acts to
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support the migration and aggressiveness of the tumor
cells and inhibition of anti-tumor immune
response24,59,60. The cross talk between microglia and
GSCs is mediated by secreted cytokines and EV-derived
miRNAs23,40,41,61 In view of our recent reports that EVs
can also deliver exogenous miRNA to neighboring
cells31,36, we hypothesized that overexpression of miR-504
in GSCs may be transferred to neighboring cells via EVs.
Using a miR-504 reporter that can directly detect changes
in miRNA levels, we found that GSCs overexpressing
miR-504 delivered this miRNA to cocultured microglia
via EVs. We also found that the increased relative
expression of M2 markers induced by GSCs was abro-
gated in microglia co-cultured with GSCs overexpressing
a miR-504 mimic.
The mechanisms by which the EV-derived miR-504

exerts its effects on the microglial cells are currently being
studied. Since miR-504 decreased the stemness and
mesenchymal differentiation of GSCs, it is possible that
other factors or miRNAs that are secreted by the trans-
duced GSCs can also contribute to the induction of this
change in the microglial phenotype.
The mutual crosstalk between glioma cells and micro-

glia highlights the importance of soluble factors as

potential therapeutic targets. Indeed, EV-associated
miRNAs have been reported to play an important role
in intercellular interactions in both physiological and
pathological conditions62,63. In addition, overexpressed
miRNA mimics have been also reported to be delivered by
EVs to neighboring cells36,39. Our data indicate that
overexpressing miR-504 in GSCs affects not only the
functions of the tumor cells but also the tumor-promoting
activity of microglia and probably macrophages in the
tumor microenvironment, thereby amplifying the ther-
apeutic effect of miR-504 (Fig. 7).

Conclusions
The acquisition of mesenchymal phenotypes has been

associated with increased stemness, infiltration, and
aggressive phenotypes in GSCs64. Therefore, identifying
therapeutic targets that can interfere with this process is
of utmost importance. Performing comparative analyses
of hNSCs and GSCs, we identified novel miRNAs and
potential target networks that are associated with the
stemness and mesenchymal transit of GSCs. miR-504 is
downregulated in GSCs and exerts inhibitory effects on
the functions of these cells via the targeting of Grb10 that
acts as an oncogene in GBM and GSCs. Importantly, the

Fig. 7 A diagram summarizing the role miR-504 on GSCs and microglia polarization via delivery by EVs. The effects of miR-504 on GSCs and
microglia polarization are depicted in this diagram.
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overexpression of miR-504 in GSCs not only inhibits the
tumorigenic potential of GSCs in vitro and in vivo but can
be also transferred to microglial calls and promote
their M1 polarization. Thus, the antitumor effects of
RNA-based therapy in cancer cells can further exert a
bystander effect on the tumor microenvironment via EV
delivery.
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