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Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a major advance in the fields of diabetology, nephrology, and cardi-
ology. The cardiovascular and renal benefits of SGLT2 inhibitors are likely largely independent of their glycaemic effects, 
and this understanding is central to the use of these agents in the high-risk population of people with type 2 diabetes and 
chronic kidney disease. There are a number of potential safety issues associated with the use of SGLT2 inhibitors. These 
include the rare but serious risks of diabetic ketoacidosis and necrotising fasciitis of the perineum. The data regarding a pos-
sibly increased risk of lower limb amputation and fracture with SGLT2 inhibitor therapy are conflicting. This article aims 
to explore the potential safety issues associated with the use of SGLT2 inhibitors, with a particular focus on the safety of 
these drugs in people with type 2 diabetes and chronic kidney disease. We discuss strategies that clinicians can implement 
to minimise the risk of adverse effects including diabetic ketoacidosis and volume depletion. Risk mitigation strategies with 
respect to SGLT2 inhibitor-associated diabetic ketoacidosis are of particular importance during the current coronavirus 
disease 2019 (COVID-19) pandemic.
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Key Points 

Sodium-glucose cotransporter 2 (SGLT2) inhibitors have 
a number of adverse effects—the most serious of which 
are diabetic ketoacidosis and necrotising fasciitis of the 
perineum.

Clinicians should educate patients to temporarily stop 
taking their SGLT2 inhibitor when acutely unwell with 
reduced oral intake, to reduce their risk of diabetic 
ketoacidosis and acute kidney injury, and this education 
is especially important during the coronavirus disease 
2019 (COVID-19) pandemic.

In very large randomised controlled trials, SGLT2 inhibi-
tors have been associated with a lower risk of acute 
kidney injury. These drugs should not, however, be pre-
scribed to a patient who is hypovolaemic or hypotensive, 
and a patient’s loop and/or thiazide diuretic dose may 
need to be reduced.

1  Introduction

Diabetes is the leading cause of chronic kidney disease 
(CKD) [1], and the coexistence of both conditions places 
an individual at high risk of cardiovascular disease and 
death [2]. Sodium-glucose cotransporter 2 (SGLT2) 
inhibitors inhibit proximal tubular glucose reabsorption, 
leading to glycosuria [3]. These drugs have important car-
diovascular and renal benefits [4–9], leading one expert 
to refer to SGLT2 inhibitors as “cardiorenal risk reduc-
ing agents that have glucose lowering as a side effect” 
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[10]. Furthermore, the cardiovascular and renal benefits 
of SGLT2 inhibitors appear to be largely independent of 
their glycaemic effects [9, 11–13]. This point is pertinent 
to the use of these drugs in people with type 2 diabetes 
and CKD where glycosuria secondary to SGLT2 inhibi-
tion is reduced, resulting in potentially limited anti-hyper-
glycaemic efficacy [14–17]. Indeed, in two heart failure 
trials (DAPA-HF and EMPEROR-Reduced) and a CKD 
trial (DAPA-CKD) where the primary endpoint was met, 
the effect of the SGLT2 inhibitor on the primary outcome 
was consistent in participants irrespective of the presence 
or absence of diabetes [9, 18, 19]. There are a multitude of 
proposed mechanisms for the cardioprotective properties 
of SGLT2 inhibitors, including natriuresis and osmotic 
diuresis, inhibition of the sodium-hydrogen exchanger in 
the myocardium, potential use of ketone bodies for car-
diac metabolism, and reduced cardiac fibrosis and inflam-
mation [20]. These results suggest that the benefits may 
be independent of effects on glycaemia. Given the use of 
these drugs by not only endocrinologists and primary care 
physicians, but also nephrologists and cardiologists, clini-
cians need to become familiar with the physiology, effi-
cacy, and safety of SGLT2 inhibitors [10, 21, 22]. Indeed, 
SGLT2 inhibitors are associated with a number of adverse 
effects, including diabetic ketoacidosis (DKA), which is 
potentially life-threatening. Furthermore, adverse effects 
can occur very quickly. There have been many reviews 
exploring the efficacy of these agents in different popu-
lation groups. Hence, this article examines the potential 
safety issues associated with the use of SGLT2 inhibi-
tors, with a particular focus on the safety of these drugs 
in people with type 2 diabetes and CKD. We highlight 
measures that clinicians can implement to minimise the 
risk of adverse effects, including DKA, which is of par-
ticular relevance during the current coronavirus disease 
2019 (COVID-19) pandemic.

2 � Safety Issues in Patients With Versus 
Those Without CKD

The cardiovascular, renal and heart failure outcome trials 
to date have differed with respect to inclusion and exclu-
sion criteria, including estimated glomerular filtration rate 
(eGFR) cut-offs [4, 6–9, 18, 23, 24]. Importantly, there is 
limited available data specifically  about SGLT2 inhibitor 
use in patients with severe CKD. Subgroup analyses from 
the EMPA-REG OUTCOME, CANVAS, and DECLARE-
TIMI 58 trials found similar adverse event profiles with 
respect to specific SGLT2 inhibitors among participants 
with different baseline eGFR levels (Table 1) [25–27]. In a 
subgroup analysis of the CREDENCE trial, severe adverse 
events were consistent among screening eGFR categories. 
There was a significant interaction test for volume deple-
tion, with a higher risk with canagliflozin apparent in par-
ticipants with screening eGFR 30 to < 45, but not eGFRs 
45 to < 60 or 60 to < 90 mL/min/1.73 m2 (Table 1) [28]. Of 
note, empagliflozin, dapagliflozin, canagliflozin, and ertug-
liflozin exposure increases with advancing renal impairment; 
however, the area under the concentration–time curve does 
not exceed by twofold that reported in subjects with nor-
mal renal function [14–17]. Canagliflozin is the only one of 
these four SGLT2 inhibitors for which use of the lower dose 
(100 mg once daily) is recommended for patients with renal 
impairment (specifically eGFR 30 to < 60 mL/min/1.73 m2) 
[29]. However, in Australia, empagliflozin, dapagliflozin, 
and ertugliflozin are contraindicated in patients with eGFR 
persistently < 45 mL/min/1.73 m2, largely due to limited 
anti-hyperglycaemic efficacy [30–32].

Table 1   Subgroup analyses from major SGLT2 inhibitor trials with respect to adverse event profiles of SGLT2 inhibitors in participants with dif-
ferent baseline eGFRs [25–28]

CI confidence interval, eGFR estimated glomerular filtration rate, SGLT2 sodium-glucose cotransporter 2

Trial (SGLT2 inhibitor studied) Adverse event profile of SGLT2 inhibitors in participants with different baseline eGFRs
EMPA-REG OUTCOME (empagliflozin) Similar in participants with eGFR < 45, 45 to < 60, and ≥ 60 mL/min/1.73 m2

CANVAS Program (canagliflozin) Consistent across eGFR subgroups (< 45, 45 to < 60, 60 to < 90, and ≥ 90 mL/
min/1.73 m2); however, trend (P heterogeneity = 0.06) for higher risk of hypoglycae-
mia in lower eGFR subgroup—noted that subgroups with lower eGFR had higher 
insulin use

DECLARE-TIMI 58 (dapagliflozin) Consistent across eGFR subgroups (< 60, 60 to < 90, and ≥ 90 mL/min/1.73 m2)
CREDENCE (canagliflozin) Consistent across eGFR subgroups (30 to < 45, 45 to < 60, and 60 to < 90 mL/

min/1.73 m2 at screening) with respect to serious adverse events, amputation, and 
fracture. However, significant interaction test for volume depletion (P = 0.01), hazard 
ratio of volume depletion for participants with eGFR 30 to < 45 mL/min/1.73 m2 
1.99 (95% CI 1.33–2.98) (canagliflozin vs placebo), compared with hazard ratio for 
participants with eGFR 60 to < 90 mL/min/1.73 m2 0.89 (0.58–1.38)
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3 � Infections of the Genitalia and Perineum

Diabetes, particularly with poor control and glycosuria, is 
a known risk factor for genital infection [33]. Diabetes may 
suppress the immune response to infection [34]. Glucose 
present on the genitalia due to SGLT2 inhibition is believed 
to aid growth and adherence of yeast and impair the local 
immune response [35]. A meta-analysis of randomised con-
trolled trials (RCTs) and two large population-based stud-
ies have demonstrated an approximate threefold increase in 
risk of genital infection with SGLT2 inhibitor use compared 
with placebo or other diabetes drug classes [36–38]. In the 
CREDENCE trial, the event rate for genital mycotic infec-
tion in the canagliflozin versus placebo groups for females 
was 12.6 versus 6.1 per 1000 person-years, and for men, 8.4 
versus 0.9 per 1000 person-years [8]. A study of two large 
cohorts of commercially insured patients in the United States 
found that the elevated risk of genital infections was appar-
ent within the first month of SGLT2 inhibitor treatment and 
remained elevated during the course of treatment [37]. Fur-
thermore, the risk of genital infections with SGLT2 inhibitor 
use was greater in the subgroup of patients aged 60 years 
and over. History of prior genital infection (especially recent 
history) is a clear risk factor for the development of genital 
infection during SGLT2 inhibitor treatment [39]. Toyama 
et al. conducted a meta-analysis of RCTs of SGLT2 inhibi-
tors in patients with type 2 diabetes and CKD (defined as 
eGFR < 60 mL/min/1.73 m2) and found an approximate 
threefold increase in the risk of genital infections [40]. This 
suggests that the increase in the risk of genital infections in 
patients with CKD is similar to that in the non-CKD popula-
tion. Most genital infections are mild to moderate in severity 
and are responsive to topical antifungals or a single dose of 
fluconazole [41, 42]. These infections do not necessitate ces-
sation of the agent [42]. Clinicians should recommend good 
perineal hygiene to patients [43].

In 2018, the Food and Drug Administration (FDA) issued 
a warning about the risk of necrotising fasciitis of the peri-
neum (Fournier’s gangrene) with SGLT2 inhibitor treatment 
[44]. There were 55 cases of Fournier’s gangrene requir-
ing surgical debridement associated with SGLT2 inhibitor 
use reported to the FDA Adverse Event Reporting System 
(FAERS) between March 2013 and January 2019 [45]. All 
patients were severely ill, at least 25 patients needed more 
than one surgery, and three patients died. A number of 
patients had complicating DKA, sepsis, and/or acute kidney 
injury (AKI). The time between initiation of SGLT2 inhibi-
tor therapy and infection was variable—5 days to 49 months. 
Large RCTs have not demonstrated an increased risk of 
Fournier’s gangrene with SGLT2 inhibitor treatment. In the 
DECLARE-TIMI 58 trial, one patient in the dapagliflozin 
group compared with five patients in the placebo group 

experienced Fournier’s gangrene [7]. However, RCTs are not 
designed or powered to demonstrate or refute an increased 
risk of extremely rare events such as Fournier’s gangrene. 
The documented case reports submitted to regulatory and 
surveillance agencies need to be carefully considered.

4 � Urinary Tract Infections

In 2015, the FDA issued a warning about the risk of serious 
urinary tract infections (UTIs) with SGLT2 inhibitor use due 
to 19 cases of urosepsis and pyelonephritis reported over an 
18-month period [46]. In contrast, SGLT2 inhibitors have 
generally not been associated with an elevated risk of UTIs 
in large meta-analyses and population-based studies [36, 38, 
47, 48]. One of the four cardiovascular outcome trials to 
date, however, has demonstrated a significant increase in 
risk of UTIs with SGLT2 inhibitor therapy; in the VERTIS 
CV trial approximately 12% versus 10% of participants ran-
domised to ertugliflozin and placebo, respectively, experi-
enced a UTI [49]. In the CREDENCE trial, there was no 
significant difference in the rate of UTIs between the cana-
gliflozin and placebo groups [8]. The exact rate of pyelone-
phritis and urosepsis was not reported. Whether there are 
differences in the risk of UTI based on the type of SGLT2 
inhibitor is yet to be established. With respect to why SGLT2 
inhibition may not increase the risk of UTIs despite caus-
ing glycosuria, Fralick and MacFadden have hypothesised 
that diuresis and polyuria secondary to SGLT2 inhibition 
counters potential bacterial growth due to glycosuria and/or 
prevents bacterial ascension of the urinary tract [35]. Severe 
CKD may lead to reduced urine output, and glycosuria sec-
ondary to SGLT2 inhibition is reduced [14–17]. The influ-
ence of these factors on the risk of UTIs is uncertain as data 
regarding SGLT2 inhibitor treatment in patients with stage 
4 and 5 CKD (eGFR 15–29 mL/min/1.73 m2 and < 15 mL/
min/1.73 m2 or requiring dialysis, respectively) are limited. 
Also unclear is the risk of UTIs in higher-risk populations 
such as people with urinary tract structural or functional 
abnormalities or people who are immunosuppressed. With 
regard to post-transplant diabetes mellitus in renal trans-
plant recipients, in one RCT (n = 49 patients), which com-
pared empagliflozin or placebo treatment for 24 weeks, 
three patients in both the empagliflozin and placebo groups 
experienced a UTI [50]. However, two patients in the empa-
gliflozin group had to discontinue treatment—one because 
of urosepsis and one because of repeated UTIs. The patient 
who experienced urosepsis had a history of recurrent UTIs, 
and clinicians should be cautious when considering prescrib-
ing SGLT2 inhibitors to patients with a history of recurrent 
UTIs.
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5 � Hypoglycaemia

Given the insulin-independent mechanism of action of 
SGLT2 inhibitors, these agents are not associated with an 
increased risk of hypoglycaemia [4, 6, 7, 51]. These drugs 
lower plasma glucose by inducing glycosuria, resulting in a 
reduction in plasma insulin concentration and an increase 
in plasma glucagon concentration, leading to an increase 
in endogenous glucose production [51, 52]. The absence 
of hypoglycaemia risk was clearly seen in the DAPA-HF 
trial, where 55% of patients did not have diabetes [9]. How-
ever, if a patient is prescribed insulin and/or a sulfonylurea, 
the doses of these medications may need to be reduced, as 
SGLT2 inhibitors reduce glycated haemoglobin (HbA1c) 
by 0.6–0.9% (Table 2) [53]. With regard to adjusting con-
comitant diabetes medications in patients with moderate to 
severe CKD, clinicians should note that SGLT2 inhibitors 
have limited anti-hyperglycaemic efficacy, due to reduced 
glycosuria [54].

6 � Volume Depletion

In 2015/2016, the FDA issued a warning about the risk of 
AKI with canagliflozin and dapagliflozin based on 101 cases 
over an approximate 2.5-year period, some requiring hos-
pitalisation and dialysis [55]. In approximately half of the 
cases, AKI occurred within 1 month of SGLT2 inhibitor 
initiation. CREDENCE and the cardiovascular outcome tri-
als have clearly demonstrated the important renoprotective 
effects of SGLT2 inhibitors [8, 56, 57]. In CREDENCE and 
the cardiovascular outcome trials (EMPA-REG OUTCOME, 
CANVAS Program, and DECLARE-TIMI 58), there was 
a 25% lower risk of AKI with SGLT2 inhibitor treatment 
compared with placebo [57]. There is often a mild acute 
decrease in eGFR with SGLT2 inhibitor initiation that is 

reversible on treatment cessation—the reduction in the CRE-
DENCE trial at 3 weeks was −3.7 mL/min/1.73 m2 [8, 58]. 
In the trial, the mean change in eGFR slope was lower in 
the canagliflozin group compared with the placebo group 
(−3.19 vs −4.71 mL/min/1.73 m2 per year) [8]. The mild 
reduction in eGFR with SGLT2 inhibitor initiation does not 
represent AKI. This effect is thought to be due to increased 
tubular sodium delivery to the macula densa activating tubu-
loglomerular feedback, resulting in afferent arteriolar vaso-
constriction, which is protective in the long-term because of 
the reduction in intraglomerular pressure [58]. This theory 
is partly based on data in young adults with type 1 diabetes 
and hyperfiltration [59]. However, the recent Renoprotective 
Effects of Dapagliflozin in Type 2 Diabetes trial questioned 
this theory [60]. In patients with type 2 diabetes without 
overt nephropathy, 12 weeks of dapagliflozin reduced GFR, 
filtration fraction, and intraglomerular pressure without 
increasing renal vascular resistance—suggesting that the 
acute eGFR decline is due to efferent arteriolar vasodilation 
rather than afferent arteriolar vasoconstriction [60, 61]. In 
the EMPA-REG OUTCOME trial, the acute dip in eGFR 
with empagliflozin treatment was greater in users of an angi-
otensin converting enzyme (ACE) inhibitor, an angiotensin 
receptor blocker (ARB), or any diuretic compared with non-
users [62]. However, in users of these medications, adding 
empagliflozin did not increase the risk of AKI compared 
with adding placebo [62].

SGLT2 inhibitors should not be initiated in patients who 
are hypovolaemic and/or hypotensive, because this could 
contribute to AKI. Further, patients prescribed loop and/or 
thiazide diuretics may need dose reduction of these medica-
tions to prevent volume depletion (Table 2) [63, 64]. Patients 
should be instructed when acutely unwell (for example, vom-
iting, diarrhoea, and reduced oral intake) to withhold their 
SGLT2 inhibitor (part of a sick day management plan) [43].

There has been a recent reported case of AKI second-
ary to osmotic nephrosis attributed to recent prescription 

Table 2   Suggested adjustment of concomitant diabetic and non-diabetic medication when initiating an SGLT2 inhibitor [43, 93]

DKA diabetic ketoacidosis, CKD chronic kidney disease, HbA1c glycated haemoglobin, SGLT2 sodium-glucose cotransporter 2

Medication Suggested adjustment

Diabetes
Insulin Consider reducing dose if HbA1c < 8.0%. However, do not excessively reduce insulin dose (for example, > 20%) as this 

increases the risk of DKA
Sulfonylurea Consider reducing dose or stopping if HbA1c < 8.0%

In patients with advanced CKD, SGLT2 inhibitors have limited anti-hyperglycaemic efficacy due to reduced glycosuria, which 
should factor into decisions about potentially changing other diabetes medications. Insulin doses need to be reduced in 
advanced CKD due to an increased half-life of the drug irrespective of concomitant SGLT2 inhibitor use

Non-diabetes
Loop and/

or thiazide 
diuretics

Consider reducing dose of diuretic if systolic blood pressure < 120 mmHg. If evidence of dehydration based on fluid balance 
assessment, recommend reducing dose or stopping diuretic and only starting SGLT2 inhibitor when dehydration resolved
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of canagliflozin, postulated to be due to increased tubular 
osmotic pressure secondary to glucose reabsorption inhibi-
tion [65]. The authors of this report recommend considera-
tion of a kidney biopsy in cases of prolonged AKI despite 
SGLT2 inhibitor discontinuation. Furthermore, the issue 
of possible hypoxic medullary injury secondary to SGLT2 
inhibition, due to increased distal natriuresis augmenting 
transport workload in the medulla and oxygen consump-
tion, has been raised by Heyman et al. [66]. These authors 
caution against concomitant administration of agents that 
could worsen medullary hypoxia, and recommend cessation 
of SGLT2 inhibitors prior to radiocontrast studies.

7 � Diabetic Ketoacidosis

DKA is a rare but potentially life-threatening adverse effect 
of SGLT2 inhibitor therapy [67, 68], estimated to occur in 
approximately one in 1000 SGLT2 users who have type 2 
diabetes (although the precise incidence is unknown) [69]. 
The event rate of SGLT2 inhibitor-associated DKA in the 
CREDENCE trial was higher compared with the cardiovas-
cular outcome trials (2.2 vs < 1 event per 1000 patient-years) 
[8, 56]. This may be, at least in part, related to the higher 
use of insulin at baseline in CREDENCE; all except one of 
the 12 patients in CREDENCE who developed DKA had 
concomitant insulin treatment [4, 6–8]. In contrast, there 
were no reported DKA events in patients randomised to 
dapagliflozin in the DAPA-CKD trial; however, this trial 
included patients with and without diabetes [19]. The higher 
risk of DKA in insulin-treated patients is pertinent to neph-
rologists as patients with advanced CKD have relatively 
limited therapeutic options for the management of type 2 
diabetes. SGLT2 inhibitor-associated DKA is commonly 
referred to as “euglycaemic” DKA as the degree of hyper-
glycaemia is often lower than expected due to glycosuria 
[70]. However, in a review of 105 cases of SGLT2 inhibitor-
associated DKA, 35% of cases had an admission plasma 
glucose concentration < 200 mg/dL (11.1 mmol/L) [71]. 

A more precise term for this adverse effect is “DKA with 
lower-than-anticipated glucose levels”, as recommended 
by the American Association of Clinical Endocrinologists 
and American College of Endocrinology [70]. The duration 
of SGLT2 inhibitor treatment prior to the onset of DKA is 
highly variable (0.3–420 days) [69, 71].

With regard to the pathophysiology of DKA, SGLT2 
inhibitor use leads to a reduction in plasma insulin concen-
tration and an increase in plasma glucagon concentration 
[52]. Additionally, free fatty acid suppression post-meal 
is impaired [52]. This decrease in the insulin-to-glucagon 
ratio and increase in free fatty acids promotes ketogenesis 
[52, 72]. SGLT2 inhibitor treatment increases plasma ketone 
levels, and an elevated ketone level does not necessarily indi-
cate DKA [72–75]. SGLT2 inhibitor-associated DKA most 
frequently occurs in patients with one or more additional risk 
factor(s) for insulin deficiency and/or ketogenesis (Table 3) 
[67–71]. In a recent Australian retrospective cohort study 
of SGLT2 inhibitor-associated DKA cases, 22% of patients 
with presumed type 2 diabetes were subsequently diagnosed 
as having type 1 diabetes [69]. Fourteen of 37 cases of DKA 
related to SGLT2 inhibition occurred during hospital admis-
sion. Eleven of the 14 patients were fasting due to surgery, 
and SGLT2 inhibitor therapy was continued during admis-
sion in six of these cases. Eleven of the 14 inpatients were 
on insulin treatment prior to hospitalisation, and insulin was 
generally ceased prior to the onset of DKA. These findings 
highlight the need to employ specific strategies to reduce 
the risk of DKA, including educating patients to temporarily 
withhold their SGLT2 inhibitor when acutely unwell with 
reduced oral intake (Table 4) [67, 70, 71].

Treatment of SGLT2 inhibitor-associated DKA involves 
rehydration and an insulin-dextrose infusion [70]. A higher 
rate of intravenous dextrose (10–20%) is often needed to 
enable sufficient dosage of insulin for resolution of ketoaci-
dosis [67]. An endocrinologist should be involved in the 
management of DKA and decisions regarding subsequent 
diabetes pharmacotherapy.

Table 3   Risk factors for SGLT2 inhibitor-associated DKA

DKA diabetic ketoacidosis, SGLT2 sodium-glucose cotransporter 2

Type 1 diabetes including latent autoimmune diabetes in adults (patients with presumed type 2 diabetes where there is clinical suspicion of type 
1 diabetes should have autoantibodies tested)

Type 2 diabetes with insulin deficiency
Excessive reduction in exogenous insulin dose or insulin cessation
Diabetes due to pancreatic disease
Fasting, including during the perioperative state
Very low carbohydrate diet
Hypovolaemia
Excessive alcohol consumption (daily consumption and/or binge drinking)
Metabolic stress including acute infection, surgery, myocardial infarction, pancreatitis, and intensive exercise
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8 � Lower Limb Amputation

The CANVAS Program is the only cardiovascular outcome 
trial that has shown an increased risk of lower limb amputa-
tion with SGLT2 inhibitor therapy compared with placebo 
[6, 7, 76]. Approximately six versus three participants per 
1000 person-years in the canagliflozin versus placebo groups 
experienced lower limb amputation; 71% of amputations 
occurred at the level of the toe or metatarsal [6]. Multivariate 
modelling revealed a number of baseline characteristics that 
were significantly associated with amputation during follow-
up, including male sex, prior amputation, peripheral vascular 
disease, neuropathy, albuminuria, and higher HbA1c [77]. 
However, the effect of canagliflozin on amputation risk did 
not vary according to any baseline characteristic or dose 
of canagliflozin (100 or 300 mg daily) [77]. Interestingly, 
there was no difference in the risk of amputation between 
the canagliflozin and placebo groups in the CREDENCE 
trial [8]. During the CREDENCE trial, there was a protocol 
amendment asking investigators to examine patients’ feet 
and temporarily withhold the study drug if there was any 
active condition present that might lead to amputation [8].

A cohort study using nationwide health and adminis-
trative registers in Sweden and Denmark found that com-
pared with new users of glucagon-like peptide 1 (GLP-1) 
receptor agonists, new users of SGLT2 inhibitors had an 
increased risk of lower limb amputation (incidence rate 2.7 
vs 1.1 events per 1000 person-years, hazard ratio 2.3) [48]. 
Ninety-nine per cent of SGLT2 inhibitor users were taking 
dapagliflozin (61%) or empagliflozin (38%). These results 
contrast with safety results of the EMPA-REG OUTCOME, 
DECLARE-TIMI 58, and DAPA-HF trials [7, 9, 76].

In summary, whether there is a definite increase in risk 
of lower limb amputation with canagliflozin treatment is 
unclear. Furthermore, the mechanisms underlying such a 
potential adverse effect are unknown. Postulated mecha-
nisms include volume depletion secondary to diuresis, and 
an effect on calcium, magnesium, and vitamin D metabolism 
that may impair foot ulcer healing [78, 79]. Based on avail-
able evidence to date, we recommend that clinicians provide 
education to patients about preventive foot care and perform 
regular foot screening, as well as avoiding canagliflozin in 

patients with an acute heightened risk of amputation (as per 
the CREDENCE protocol—history of amputation within 
past 12 months, active ulcer, osteomyelitis, gangrene, or 
critical leg ischaemia within 6 months) [8].

9 � Mineral Metabolism and Fracture

Blau et al. examined the acute effect of canagliflozin on min-
eral metabolism in healthy adults [80]. Subjects received 
canagliflozin 300 mg daily or placebo for 5 days, and later 
crossed over to the other treatment. Canagliflozin adminis-
tration rapidly increased serum phosphorus, corresponding 
to an increase in urinary phosphorus reabsorption. Addi-
tionally, canagliflozin treatment increased plasma fibroblast 
growth factor 23 (FGF23) and parathyroid hormone (PTH) 
and reduced 1,25-dihydroxyvitamin D. The differences in 
mean serum phosphorus and plasma FGF23 between the 
canagliflozin and placebo groups were no longer significant 
by day 5. In contrast, differences in 1,25-dihydroxyvitamin 
D and PTH were still significant at this time point. There 
was no significant difference in serum calcium, but there 
was a significant decrease in urinary calcium excretion on 
day 4. de Jong et al. performed a post hoc analysis of the 
IMPROVE trial, a randomised, placebo-controlled, crosso-
ver trial involving dapagliflozin in patients with type 2 dia-
betes and albuminuric CKD (eGFR ≥ 45 mL/min/1.73 m2) 
[81]. Compared with the start of treatment, 6 weeks of 
dapagliflozin increased serum phosphorus (+  11%), PTH 
(+ 15%), and FGF23 (+ 20%) and decreased 1,25-dihy-
droxyvitamin D (− 19%). Importantly, these changes did 
not correlate with change in eGFR. The increase in serum 
phosphorus with SGLT2 inhibition is believed to be due to 
increased sodium in the proximal tubule driving sodium-
dependent phosphate reabsorption [82]. This is postulated 
to increase FGF23, which decreases 1,25-dihydroxyvitamin 
D, leading to an increase in PTH [80, 83]. In the study by 
Blau et al., the increase in serum phosphorus correlated with 
urinary sodium excretion, but not urinary glucose excretion 
[80]. In severe CKD, the effects of SGLT2 inhibition on 
urinary glucose and presumably also urinary sodium excre-
tion are attenuated, perhaps resulting in a less marked effect 

Table 4   Strategies to reduce the risk of SGLT2 inhibitor-associated DKA

DKA diabetic ketoacidosis, SGLT2 sodium-glucose cotransporter 2

Careful prescription of an SGLT2 inhibitor in light of a patient’s risk factors for DKA (see Table 1)
Reducing a patient’s insulin dose cautiously when commencing an SGLT2 inhibitor, as excessive insulin dose reduction or cessation of insulin 

therapy can contribute to the risk of DKA
Informing patients about the risk of SGLT2 inhibitor-associated DKA, including when to withhold an SGLT2 inhibitor, including acute illness 

with reduced oral intake (part of a sick day management plan), symptoms of DKA (nausea, vomiting, abdominal pain, tiredness, rapid breath-
ing), and the need to seek medical attention if symptoms occur (provision of written information is recommended)

Cessation of an SGLT2 inhibitor ≥ 3 days prior to an operation and only recommencing therapy when a patient is eating and drinking normally
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on serum phosphorus. However, more data are needed with 
regard to patients with stage 4 CKD, where control of hyper-
phosphataemia can be difficult.

Changes to mineral metabolism secondary to SGLT2 
inhibition may be relevant to the heightened risk of fracture 
evident in the CANVAS Program (15.4 vs 11.9 participants 
with fracture randomised to canagliflozin vs placebo per 
1000 patient-years) [6], although this is the only very large 
RCT to date with a fracture safety signal. Meta-analyses 
of RCTs of SGLT2 inhibitors have not demonstrated an 
increased risk of fractures compared with placebo [84, 85]. 
The increased risk of fracture with canagliflozin was only 
seen in one of the two trials that compose the CANVAS 
Program (CANVAS, not CANVAS-R). Furthermore, there 
was no difference in risk of fracture between the canagli-
flozin and placebo groups in CREDENCE [8]. The mean 
follow-up was longer in CANVAS compared with CAN-
VAS-R (5.7 vs 2.1 years). The median follow-up of CRE-
DENCE was 2.6 years. Interestingly, in a fracture analysis 
of CANVAS, there was no difference between canagliflo-
zin-treated patients with or without fractures with respect to 
post-randomisation per cent changes from baseline in serum 
phosphate [86]. There was a similar fracture incidence in 
the canagliflozin 100 mg and 300 mg groups. A possible 
relationship between falls (potentially caused by volume 
depletion) and fractures cannot be excluded. An RCT of 
dapagliflozin in patients with stage 3 CKD demonstrated a 
higher risk of fracture with the SGLT2 inhibitor compared 
with placebo; seven of the 13 participants randomised to 
dapagliflozin who sustained a fracture exhibited orthostatic 
hypotension or had a history of diabetic neuropathy [87].

In summary, meta-analyses and population-based studies 
of SGLT2 inhibitor therapy have largely not demonstrated 
an increased risk of fracture [40, 47, 84, 85, 88]. However, 
given the changes in mineral metabolism and the results 
of the CANVAS Program described, longer-term data are 
needed with respect to risk of fracture. This issue is of rel-
evance to the population of patients with CKD, who have or 
are at risk of CKD–mineral and bone disorder (CKD-MBD).

10 � Safety Considerations of SGLT2 Inhibitor 
Use During the COVID‑19 Pandemic

Patients with comorbidities including diabetes, older age and 
hypertension are at risk for severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) infection [89]. There-
fore, it is important that clinicians inform patients taking 
SGLT2 inhibitors that they should temporarily stop their 
SGLT2 inhibitor when acutely unwell with reduced oral 
intake (as part of a sick day management plan), and that 
patients understand this advice, to try to reduce the risk of 
DKA and dehydration potentially leading to AKI [90, 91]. 

Patients admitted to hospital with SARS-CoV-2 infection 
should have their SGLT2 inhibitor discontinued [90, 91]. 
In a systematic literature review of cases involving patients 
with COVID-19 and DKA or combined DKA and hypergly-
caemic hyperosmolar syndrome, at least seven of the 110 
patients were taking SGLT2 inhibitors. Self-monitoring of 
plasma ketone levels when DKA is suspected has been rec-
ommended [92], although there are cost and possibly test kit 
availability issues. Additionally, patients must understand 
how to correctly use a meter that measures plasma ketone 
levels and be able to seek advice, preferably from a diabetes 
educator or endocrinologist, as to what actions to take based 
on their symptoms, plasma glucose, and ketone level.

11 � Conclusion

SGLT2 inhibitors have clinically important cardio-renal ben-
efits, especially for people with type 2 diabetes and CKD, 
who are at high risk of cardiovascular disease and end-stage 
kidney disease. Clinicians need to be aware of the potential 
safety issues with SGLT2 inhibitor therapy in order to try 
to minimise the occurrence of adverse events, as well as to 
detect and intervene early if these events occur. Our under-
standing regarding the safety of these agents is evolving, and 
longer-term data will provide greater knowledge. Addition-
ally, there is a need for greater  specific data with respect to 
people with severe CKD.
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