Skip to main content
. 2020 Oct 1;20(19):5611. doi: 10.3390/s20195611

Table 3.

Accuracy, ROC AUC, sensitivity and specificity on the validation set for our best model, namely a bidirectional LSTM trained on 120-dimensional feature vectors obtained by applying PCA on the 2048-dimensional features vectors produced by a ResNeXt-101 32×8d network. The same metrics are reported for the plain ResNeXt-101 32×8d model. Results are report for all intracranial hemorrhage subtypes.

ICH Type ResNeXt-101 and Bidirectional LSTM
Accuracy ROC AUC Sensitivity Specificity
on Slices on Scans on Slices on Scans on Slices on Scans on Slices on Scans
Any 0.9600 0.9516 0.9843 0.9792 0.8605 0.9436 0.9781 0.9576
Epidural (EPH) 0.9970 0.9892 0.9851 0.9414 0.4430 0.4000 0.9988 0.9973
Intraparenchymal (IPH) 0.9832 0.9368 0.9927 0.9834 0.8142 0.8639 0.9927 0.9620
Intraventricular (IVH) 0.9920 0.9651 0.9970 0.9866 0.9102 0.9127 0.9948 0.9757
Subarachnoid (SAH) 0.9752 0.9220 0.9821 0.9609 0.6624 0.6944 0.9921 0.9767
Subdural (SDH) 0.9627 0.9140 0.9682 0.9451 0.6817 0.7203 0.9837 0.9601
ResNeXt-101
Any 0.9543 0.9409 0.9752 0.9782 0.7866 0.9436 0.9848 0.9388
Epidural (EPH) 0.9967 0.9879 0.9703 0.9479 0.2405 0.4000 0.9992 0.9959
Intraparenchymal (IPH) 0.9809 0.9449 0.9883 0.9806 0.6865 0.8377 0.9974 0.9819
Intraventricular (IVH) 0.9905 0.9570 0.9953 0.9889 0.8325 0.9127 0.9960 0.9660
Subarachnoid (SAH) 0.9697 0.9126 0.9644 0.9582 0.5024 0.7222 0.9949 0.9583
Subdural (SDH) 0.9604 0.9086 0.9576 0.9408 0.5993 0.8182 0.9873 0.9301