Skip to main content
. 2020 Oct 1;21(19):7271. doi: 10.3390/ijms21197271

Table 1.

The comparison of basic features on different models.

Feature Method Precision Recall F-Score Accuracy
K-tuple features Autoencoder(8-mer) + SVM 0.3622 0.2709 0.2388 0.6650
Autoencoder(8-mer) + RF 0.3558 0.2701 0.2379 0.6654
Autoencoder(8-mer) + LR 0.2081 0.2506 0.2040 0.6460
Autoencoder(8-mer) + XGBoost 0.3271 0.2741 0.2487 0.6559
Autoencoder(8-mer) + LightGBM 0.3031 0.2649 0.2308 0.6573
Autoencoder(8-mer) + EDP + SVM 0.3888 0.2682 0.2331 0.6647
Autoencoder(8-mer) + EDP + RF 0.2938 0.2712 0.2376 0.6661
Autoencoder(8-mer) + EDP + LR 0.3787 0.2906 0.2790 0.6430
Autoencoder(8-mer) + EDP + XGBoost 0.3315 0.2716 0.2464 0.6522
Autoencoder(8-mer) + EDP + LightGBM 0.2946 0.2668 0.2325 0.6606
Properties of open reading frame SVM 0.1622 0.2500 0.1967 0.6488
RF 0.3596 0.2863 0.2748 0.6387
LR 0.2641 0.2575 0.2120 0.6598
XGBoost 0.3023 0.2644 0.2404 0.6265
LightGBM 0.2477 0.2526 0.2098 0.6457
Fickett nucleotide features SVM 0.2843 0.2560 0.2120 0.6497
RF 0.3108 0.2814 0.2633 0.6570
LR 0.1985 0.2633 0.2167 0.6539
XGBoost 0.3874 0.2946 0.2910 0.6366
LightGBM 0.3636 0.2904 0.2844 0.6338
Physicochemical properties SVM 0.3232 0.2564 0.2098 0.6549
RF 0.2740 0.2673 0.2495 0.6127
LR 0.3449 0.2629 0.2229 0.6636
XGBoost 0.2752 0.2649 0.2399 0.6268
LightGBM 0.4111 0.3913 0.3728 0.7018
Mutli-scale secondary structures SVM 0.5076 0.4590 0.4356 0.7169
RF 0.4204 0.4171 0.4000 0.6927
LR 0.2648 0.2574 0.2133 0.6576
XGBoost 0.4318 0.4122 0.4023 0.6928
LightGBM 0.4248 0.4040 0.3870 0.7042

For testing purposes, the autoencoder converts 65,536-dimensional 8-mer data into 128-dimensional output. The encoding layer consists of an input with 65,536 dimensions and three intermediate layers with nodes of 4096, 1024, and 256, respectively. The decoding layer corresponds to the encoding layer, and finally converts the 8-mer sequence into the 128-dimensional real value vector. EDP represents the combination of the EDP of the 2-mer and the EDP of the ORF.