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CUX2, BRAP and ALDH2 are 
associated with metabolic traits 
in people with excessive alcohol 
consumption
I‑Chun Chen1,2,3, Po‑Hsiu Kuo4,5, Albert C. Yang6,7, Shih‑Jen Tsai7,8,9, Tung‑Hsia Liu10, 
Hung‑Jen Liu3,11*, Tsuo‑Hung Lan1,12, Hong‑Ming Chen13, Huang‑Nan Huang13, 
Ren‑Hua Chung14 & Yu‑Li Liu10,15*

Molecular mechanisms that prompt or mitigate excessive alcohol consumption could be partly 
explained by metabolic shifts. This genome-wide association study aims to identify the susceptibility 
gene loci for excessive alcohol consumption by jointly measuring weekly alcohol consumption and 
γ-GT levels. We analysed the Taiwan Biobank data of 18,363 Taiwanese people, including 1945 with 
excessive alcohol use. We found that one or two copies of the G allele in rs671 (ALDH2) increased the 
risk of excessive alcohol consumption, while one or two copies of the C allele in rs3782886 (BRAP) 
reduced the risk of excessive alcohol consumption. To minimize the influence of extensive regional 
linkage disequilibrium, we used the ridge regression. The ridge coefficients of rs7398833, rs671 and 
rs3782886 were unchanged across different values of the shrinkage parameter. The three variants 
corresponded to posttranscriptional activity, including cut-like homeobox 2 (a protein coded by 
CUX2), Glu504Lys of acetaldehyde dehydrogenase 2 (a protein encoded by ALDH2) and Glu4Gly of 
BRCA1-associated protein (a protein encoded by BRAP). We found that Glu504Lys of ALDH2 and 
Glu4Gly of BRAP are involved in the negative regulation of excessive alcohol consumption. The 
mechanism underlying the γ-GT-catalytic metabolic reaction in excessive alcohol consumption is 
associated with ALDH2, BRAP and CUX2. Further study is needed to clarify the roles of ALDH2, 
BRAP and CUX2 in the liver–brain endocrine axis connecting metabolic shifts with excessive alcohol 
consumption.

The recommended level of low-risk alcohol consumption is < 100 g/week1. Phenotypes of excessive alcohol 
consumption are expressed in several forms. Before development of alcohol use disorder, the condition, for 
example, may initiate with problematic drinking, which has a 2.1% prevalence in Asian countries2,3. Excessive 
alcohol consumption creates a medical and social burden and is associated with alcohol-related liver diseases, 
public safety incidents, and trauma-related admissions to hospitals.
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The genetic architecture of alcohol consumption involves the genetic liability of alcohol use disorder, metabo-
lism, risky behaviors and cognitive phenotypes4. The alcohol dehydrogenase 1B (ADH1B), alcohol-metaboliz-
ing acetaldehyde dehydrogenase 2 (ALDH2), β-Klotho (KLB), glucokinase regulator (GCKR), corticotropin 
releasing hormone receptor 1 (CRHR1), and cell adhesion molecule 2 (CADM2) show strong links to drinking 
behaviours4–6. GCKR is associated with both alcohol consumption and alcohol use disorder4. The role of dopa-
mine receptor D2 subtype (DRD2) has been confirmed and replicated in a large-scale genome-wide association 
study (GWAS)7.

Genes that act in pleiotropy across various systems (e.g., cardiovascular, adrenal, pancreatic and central 
nervous systems) form the genetic picture of excessive alcohol consumption. The alcohol-decreasing allele in 
ADH1B gene was associated with lower odds of coronary heart disease, and those SNPs significantly associated 
with alcohol consumption were associated with high-density lipoprotein cholesterol levels8. The largest study of 
GWAS on tobacco and alcohol uses involved 1.2 million individuals and uncovered genetic bearing of ADH1B 
and GCKR, suggesting that alcohol consumption is influenced by individual differences in one’s ability to process 
calorie-rich alcoholic beverages9. Studies have replicated the KLB/FGF21 interaction in the putative liver-brain 
axis10,11; and notably, neuronal FGF21 senses metabolic changes in the peripheral tissues, resulting in homeostatic 
regulation of the liver-brain axis12.

Alcohol is chemically bound to hydrophobic amino acids and hydrogen-bonding polar groups of channel 
proteins13, which drive “go pathways” and “stop pathways” in the intracellular level. The “go pathways” are signal-
ling cascades that contribute to the transition from moderate to excessive alcohol intake, including activation of 
protein kinase A (PKA) and calcium/calmodulin-dependent protein kinase II, whereas the “stop pathways” keep 
alcohol intake in check, by upregulation of brain-derived neurotropic factor (BDNF) and glial cell line-derived 
neurotropic factor (GDNF)14.

Alcohol Use Disorder Identification Test (AUDIT) makes specific quantitative statements about alcohol con-
sumption versus alcohol use disorder, while Alcohol Use Disorder Identification Test-Consumption (AUDIT-C) 
measure alcohol consumption. The AUDIT can be applied as a proxy measurement to increase sample sizes in 
a GWAS on alcohol use disorder15. Physiological biomarkers may be used to identify persistent and excessive 
alcohol consumption. The ethanol intake of excessive drinkers is reflected in the ratio of carbohydrate transferrin 
to transferrin16. The extent of elevated aminotransferase levels in the body is also helpful in detecting alcohol 
abuse17. Asymptomatic patients with alcoholic liver disease present serum levels of γ-glutamyl transpeptidase 
(γ-GT) doubling that of normal17. The γ-GT, which is involved in the metabolism of glutathione, is a major 
antioxidant in humans, and it is also a common biomarker used in studying alcohol use disorder18,19.

It has been suggested in a large-scale GWAS on alcohol consumption4 and also other conditions, that to 
control the effect of population stratification, one may analyze participants according to races and ethnicities. 
The population of Taiwan comprises 92.6% southern Han Chinese, 4.9% northern Han Chinese, and 1.9% 
aborigines of Southeast Asian and Austronesian descent20. Genetic intermixing between these ethnic groups is 
rare, resulting in a genetically homogenous Taiwanese population of mostly Han Chinese descent. Our study 
aims to infer the susceptibility gene loci of excessive alcohol consumption by jointly measuring weekly alcohol 
consumption and γ-GT levels.

Results
We retrieved data on the whole-genome genotyping, and also the levels of serum γ-GT and medical history of 
the 18,363 people whose information had been held in the TWB. Of the participants, 9275 were women. “Exces-
sive alcohol consumption” was defined as a weekly intake of alcoholic beverages with an equivalent of > 150 mL 
of alcohol for ≥ 6 months. To identify the phenotype of excessive alcohol consumption, we used serum γ-GT as 
an add-on trait (Fig. 1).

To plot the genetic ancestry of our cohort from Taiwan Biobank (TWB), we used principal component analysis 
(PCA), and results confirmed a reliable distribution (see Supplementary Fig. S1 online). In this cohort, 1945 
participants (10.60%; 87.9% men) had excessive alcohol use (weekly intake of > 150 mL of alcohol for ≥ 6 months) 
(Table 1, see Supplementary Fig. S2 online). The average serum γ-GT level of those with excessive alcohol use was 
46.15 ± 77.08 U/L, higher than those without (23.60 ± 25.71 U/L). Among excessive alcohol users, a significant 
correlation was found between alcohol consumption and serum γ-GT levels (p < 1 × 10–3).

There were 1794 SNPs significantly associated with excessive alcohol use (p < 5 × 10–8) (see Supplementary 
Table S1 online). The COJO analysis of GCTA suggests that there were 3 independent signals among these SNPs. 
LocusZoom plots for the 3 SNPs are shown in Supplementary Fig. S3 online. The plot of log quantile–quantile 
(Q-Q) p values suggested only a few systematic sources of spurious associations (Fig. 2). Because the QQ plot 
contains a wider range of the observed − log10 p values, we further applied LD Score regression (LDSC) to ana-
lyze polygenicity and other factors21. The estimated LDSC intercept was 1.0083 with a standard error of 0.0056. 
Furthermore, the genomic inflation factor (λGC) was also reported by LDSC. The value of λGC was estimated to 
be 1.0043. Both LDSC intercept and λGC are close to 1, suggesting no inflation had occurred in our analysis due 
to confounding factors. The inflation observed in the QQ plot could be driven by a few causal signals as sug-
gested by the COJO analysis and the LocusZoom plots, while many SNPs close to the causal signals are in high 
linkage disequilibrium (LD) with the causal SNPs. Those SNPs observed corresponded to small p values most 
likely mapped to susceptibility risk loci for excessive alcohol use (Table 2).

We captured 1015 SNPs that were both significantly associated with excessive alcohol use and with γ-GT 
(FDR < 0.05) (Fig. 1; Table 2). These 1015 significant SNPs aggregated on chromosome 12 (Fig. 3). They 
were identified within a region of approximately 3.7 million bases located between TRPV4 and SDS (chr12: 
110238596–113944048) (see Supplementary Table S1 online). The strongest signal appeared at rs671 (ALDH2), 
where the codon change from the G allele to the A allele creates a missense variant and represents the translation 
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from glutamic acid to lysine in the sequence (see Supplementary Table S2 online). The SNP rs671 is in strong LD 
with rs4646776 (LD r2 = 0.998), one of the three independent SNPs identified by the COJO analysis, suggesting 
that they are in the same LD block.

To find the possible causal variants of excessive alcohol consumption within this region, we further identified 
their coding variants. We used coding-synonymous SNPs, 5′ untranslated region SNPs, missense SNPs, non-
coding RNA elements in the 3′ untranslated regions, cds-indels, and frameshift mutations to obtain 48 significant 

Figure 1.   Overall study scheme. GWAS: genome-wide association study, TWB: Taiwan Biobank, SNP: single 
nucleotide polymorphism.
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SNPs. Among these 48 SNPs, rs7398833 (CUX2), rs671 (ALDH2) and rs3782886 (BRAP) had ridge coefficients, 
β̂ridge , that remained unchanged across different values of the shrinkage parameter � (Fig. 4). The rs7398833 
(CUX2) is located in the 3′ untranslated region (3′-UTR), where it post-translationally manipulates the stability 
of CUX2. The coding change from T to C allele at rs3782886 (BRAP) creates a missense variant, which leads to 
a coding change from glutamic acid to glycine in the translation of BRCA1-associated protein isoform 4.

In our participants, a strong LD was found between rs671 and rs3782886 (r2 = 0.98) (see Supplementary 
Fig. S4 online). A significant haplotype was therefore associated with excessive alcohol consumption and it was 
comprised of both rs671 and rs3782886. The presence of a haplotype carrying the G allele of rs671 and T allele 
of rs3782886 (haplotype GT) showed an odds ratio (OR) of 2.49 (95% confidence interval CI 2.27–2.72) for 
excessive alcohol consumption, whereas a haplotype carrying A allele of rs671 and C allele of rs3782886 (hap-
lotype AC) had an odds ratio (OR) of 0.4 (95% CI 0.37–0.44). Comparing levels of γ-GT between carriers with 
haplotype GT and those with haplotype AC, we found a differential increment of 2.42 ± 0.53 U/L (p = 4.92 × 10–6).

We performed conditional analysis to identify independent signals between rs671 (ALDH2) and rs3782886 
(BRAP). We compared using a partial F-test, three models each with rs671 (ALDH2), with rs3782886 (BRAP), 
then with both rs671 (ALDH2) and rs3782886 (BRAP). The regression coefficients estimated were: rs671 
(ALDH2), rs3782886 (BRAP) and rs7398833 (CUX2) were estimated as 3.54 (95% CI 1.06, 6.02) for model 
rs671 (ALDH2), − 1.98 (95% CI − 3.38, − 1.59) for model rs3782886 (BRAP) and − 3.64 (95% CI − 13.51, 6.24) 
for model rs7398833 (CUX2). Regarding the direction of effects, one or two copies of G allele in rs671 (ALDH2) 
increased the risk of excessive alcohol consumption, while one or two copies of C allele in rs3782886 (BRAP) 
reduced the risk of excessive alcohol consumption. We found that the model that included both rs671 (ALDH2) 
and rs3782886 (BRAP) was significantly better with a significantly lower sum of squared error (p < 0.01) (see 
Supplementary Table S3 online).

Table 1.   γ-GT, age, and sex for the two groups differentiated by their alcohol consumption. S.D.: Standard 
deviation. a Excessive alcohol consumption is defined as a weekly intake > 150 mL of alcohol for > 6 months. 
b γ-GT: γ-glutamyl transpeptidase. c There is a significant difference in serum γ-GT levels between these two 
groups (p < 1 × 10–3).

Excessive alcohol consumptiona

(N = 1945)
No excessive alcohol consumption
(N = 16,405)

N; MEAN (S.D.) N (%) N; mean (S.D.) N (%)

γ-GTb (U/L) 1158; 46.15 (77.08)c 9663; 23.60 (25.71)c

Age 1945; 49.55 (10.31) 16,405; 48.72 (11.07)

Sex

Male 1710 (87.92%) 7369 (44.92%)

Female 235 (12.08%) 9036 (55.08%)

Figure 2.   Q–Q plot of the SNP-based test for the drinking variable, adjusted for age, sex, and 10 PCs. Q-Q plot: 
quantile–quantile plot, SNP: single nucleotide polymorphism, PCs: principal components.
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We also performed gene set-based analyses using gene sets including ALDH2, BRAP and CUX2. The gene 
set-based analyses for metabolic traits among excessive alcohol drinkers generated results in Fig. 5. None of these 
genes showed significant fold enrichment (FDR > 0.05).

For access to replication study, we compared of results of this GWAS with the publicly available database 
on the GWAS ATLAS resource (https​://atlas​.ctgla​b.nl/)22, a post-GWAS fine-mapping study in individuals of 
Korean descent (459 with alcohol dependence, 455 controls) and a trans-population GWAS meta-analysis of 
AUDIT-C (N = 274,424)7,23. A total of 45 GWASs were derived from the GWAS ALTAS resource (average sample 
size = 132,522). The multiple GWAS comparisons in the GWAS ATLAS resource grouped physically overlap-
ping risk loci, and identified risk loci from 111599617 to 111705565 on chromosome 12. This region mapped 
to BRAP and ALDH2. The post-GWAS fine-mapping study on participants of Korean descent showed a genetic 
correlation between rs3782886 (BRAP) and alcohol dependence (p = 9.94 × 10−31), with the minor homozygote 
associating with lesser risk of alcohol consumption23. This adheres to our finding that one or two copies of C 
allele in rs3782886 (BRAP) reduced the risk of excessive alcohol consumption. A trans-population GWAS meta-
analysis of AUDIT, including 1410 cases of excessive alcohol consumption in the East Asian subgroup of the 

Table 2.   Loci significantly associated with both excessive alcohol consumption and γ-GT. Adjusted for 
age, sex, and 10 principal components. ALDH2: aldehyde dehydrogenase 2, ACAD10: acyl-coenzyme A 
dehydrogenase family, member 10, BRAP: breast cancer 1-associated protein, HECTD4: HECT domain E3 
ubiquitin protein ligase 4, PTPN11: protein tyrosine phosphatase non-receptor type 11, NAA25: N(alpha)-
acetyltransferase 25, TRAFD1: TRAF-type zinc finger domain containing 1, RPH3A: rabphilin 3A, RPL6: 
ribosomal protein L6, CUX2: cut-like homeobox 2, MYL2: myosin, light polypeptide 2, ATXN2: ataxin 2, 
CCDC63: coiled-coil domain containing 63, TMEM116: transmembrane protein 116, MAPKAPK5: MAP 
kinase activated protein kinase 5, SH2B3: SH2B adaptor protein 3, ERP29: endoplasmic reticulum protein 29, 
IFT81: intraflagellar transport 81.

Gene Start End Minimum p value of drinking Number of overlapping SNPs

ALDH2 112204691 112247782 1.73E−96 20

ACAD10 112123857 112194903 3.78E−96 31

BRAP 112079950 112123790 7.68E−96 24

HECTD4 112597992 112819896 1.19E−94 185

PTPN11 112856155 112947717 8.45E−94 11

NAA25 112464500 112546826 2.27E−91 71

TRAFD1 112563305 112591407 8.44E−90 16

RPH3A 113008184 113336686 6.35E−80 188

RPL6 112842994 112856642 5.46E−76 2

CUX2 111471828 111788358 2.76E−66 39

MYL2 111348623 111358526 1.05E−43 30

CCDC63 111284573 111345339 7.33E−43 65

ATXN2 111890018 112037480 2.60E−39 86

TMEM116 112369086 112450970 1.35E−29 117

MAPKAPK5 112279782 112334343 1.36E−25 100

SH2B3 111843752 111889427 9.87E−25 18

ERP29 112451120 112461255 3.54E−20 9

IFT81 110562140 110656602 2.47E−19 3

Figure 3.   Manhattan plot of SNP-based test for the drinking variable, adjusted for age, sex, and 10 PCs. SNP: 
single nucleotide polymorphism, PCs: principal components.

https://atlas.ctglab.nl/
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Figure 4.   The X axis represents the weights, which are the ridge coefficients ( β̂ridge ) corresponding to 48 SNPs. 
The Y axis represents the shrinkage parameter λ, which controls the size of the coefficients and the amount of 
regularisation. Curves of the ridge coefficients as a function of regularisation. Note that rs7398833, rs671 and 
rs3782886 have β̂ridge values that are maximal values away from zero and remain constant across different λ 
values. Those curves sharply alienated from X axis indicate dependent signals of linkage disequilibrium.

Figure 5.   Results of gene set-based analysis for metabolic traits among people with excessive alcohol 
consumption. First column: The Gene Ontology (GO) category. Second column: The number of genes expected 
in this category. Third column: The observed number of genes that map to this GO category. Forth column: Fold 
Enrichment is the observed number divided by the expected number. If it is greater than 1, it indicates that the 
category is overrepresented. Fifth column: A plus sign indicates overrepresentation of this GO category. Sixth 
column: Cutoff is 0.05. Seventh column: The probability that the number of genes observed in this category 
occurred by chance.
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274,424 individuals, found a risk locus in BRAP7. We found that rs3782886 (BRAP) and rs671 (ALDH2) were 
associated with pleiotropy across various systems including metabolic conditions (see Supplementary Fig. S5 
online). These results do not manifest a replication of the initial findings, but it suggests that both BRAP and 
ALDH2 influence metabolic traits22.

Discussion
Our main finding is that in excessive alcohol consumption, the γ-GT-catalytic reaction is associated with 
ALDH2, BRAP and CUX2. Both the A allele in rs671 (ALDH2), and the C allele in rs3782886 (BRAP) lowered 
risks of excessive alcohol consumption. These gene products acted as negative regulators on excessive alcohol 
consumption.

Our GWAS has several strengths. First, we developed a new approach for evaluating intermarker linkage 
disequilibrium. Conducting ridge regression led to the identification of significant SNPs. For complex traits like 
excessive alcohol consumption, strategies to elucidate polygenicity should be considered. Our strategy to tackle 
the polygenicity and linkage disequilibrium is the use of ridge regression, which has proven to efficiently identify 
genetic markers of complex genetic disorders24–26. Like linkage disequilibrium score regression, ridge regression 
can help resolve SNPs in strong linkage disequilibrium24. Second, we captured SNPs that are significantly associ-
ated with both excessive alcohol use and γ-GT. Diagnostic bias was reduced by exhibiting persistent phenotypes 
with higher alcohol consumption. Third, our use of a nationwide biobank provided statistical power of our tests 
greater than those of previous studies27.

Our analysis of TWB revealed that 71% of participants carried the G allele at rs671 and 29% carried the A 
allele. As for rs3782886, 71% of subjects carried the T allele and 29% carried the C allele. In other East Asian 
populations, at rs671 83% of individuals have the G allele, and 17% have the A allele. In the American, African, 
European, and South Asian populations, in contrast, this frequency is 100% for the G allele and 0% for the A 
allele. For East Asian populations, the allele frequency at rs3782886 was 83% for the T allele and 17% for the C 
allele. However, for all the other population groups, the frequency is 100% for the T allele and 0% for the C allele. 
The strong linkage disequilibrium between rs671 and rs3782886 (r2 = 0.98) as well as the higher proportion of 
haplotype AC in East Asian populations are the evidence for a race-specific haplotype.

The association of rs3782886 with excessive alcohol use should not be neglected simply due to high link-
age disequilibrium with rs671, a well-documented single nucleotide variant encoding the alcohol-metabolism 
enzyme28–30. The reasons against such negligence are as follows.

First, BRAP is associated with a risk of myocardial infarction and a phenotype of metabolic traits in Asian 
populations31,32. BRAP is a risk locus for metabolic syndrome32. Metabolites associated with alcohol consumption 
are primarily involved in amino and fatty acid metabolism33,34. During ethanol metabolism as well as NADH 
and acetyl-CoA build up, more acetyl-CoA generate more malonyl-CoA. For fatty acid metabolism, that leads 
to inhibition of catabolism and activation of synthesis. Studies of Caenorhabditis elegans have demonstrated that 
BRAP2 (BRAP homolog) regulates the expression of proteins involved in lipid synthesis35. During persistent 
and excessive alcohol consumption, it is clinically implicated to elucidate the mechanisms between BRAP and 
metabolism of amino acid, and fatty acid.

Second, BRAP is involved in cerebral cortical neurogenesis36,37. For neural progenitor cells, cell signalling 
during the G1 phase of the cell cycle requires BRAP37. BRAP regulates at the cellular level MAP kinase pathways 
and the ubiquitin system38, which likely controls the cascade of protein turnover during neuronal differentiation. 
Given that BRAP is involved in cell differentiation of the central nervous system, its involvement in mechanisms 
of neurobiological changes during excessive alcohol consumption should be further explored.

Third, we argue that BRAP plays a role in the regulation of reactive oxygen species (ROS) during excessive 
alcohol consumption39. Both alcohol metabolism by CYP2E1 and the reoxidation of NADH via the electron 
transport chain in the mitochondria generate more ROS40. The BRAP/nuclear factor erythroid 2-related fac-
tor (Nrf2) signalling cascade responses to oxidative stress35, suggesting BRAP regulates ROS during excessive 
alcohol consumption.

In European populations, other consistently replicated hits in GWASs of alcohol consumption include KLB, 
FGF21, and GCKR, which are also involved in metabolism. But these hits were not identified in our present study. 
Plausible explanations of the discrepancy are as follows. First, particularly in East Asians, BRAP gene plays the 
major role in excessive alcohol consumption trait. Second, the liver–brain endocrine axis for homeostatic regula-
tion responds to excessive alcohol consumption via FGF2111,34, of which both KLB and Nrf2 are substrates closely 
affected by the nature of diet and food preference12,41. It remains unclear as to how BRAP/Nrf2 signalling links to 
energy use and nutrient use regarding metabolism. Functional analysis is required to determine the role of BRAP/
Nrf2 signalling in the liver-brain endocrine axis during the metabolic shift of excessive alcohol consumption.

Here, we reported the novel locus rs7398833 (CUX2), which is a 3′-UTR variant that functionally locks or 
releases the poly-A tail42. This function likely maintains the stability of the CUX2 protein and subcellularly 
localizes the CUX2 protein42. Second, CUX2 is expressed mostly in the brain and is involved in neuronal differ-
entiation in the cortex, specifically acting at the progenitors of GABAergic or dopaminergic neurons43. Alcohol 
is a ligand for both GABAergic and dopaminergic receptors. Further studies to verify the genetic correlation 
between rs7398833 (CUX2) and excessive alcohol consumption are necessary.

We selected loci that were associated with excessive alcohol consumption and elevated levels of γ-GT. The 
average levels of serum γ-GT, at 46.15 ± 77.08 U/L, fell within the range of those of excessive alcohol users 
(n = 1945) and are higher than the average level of all 18,363 participants (26.01 ± 35.69 U/L). The high stand-
ard deviation of γ-GT levels of the participants with excessive alcohol consumption in our study could reflect 
asymptomatic patients with alcohol-induced hepatitis17.
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Alterations in the metabolic profiles of excessive alcohol drinkers involve vastly different systems, such as 
carbohydrates, lipids, and proteins. To move a step closer to the metabolic traits of people with excessive alcohol 
consumption, we may need to study targets other than γ-GT. Nonetheless, γ-GT catabolises biliary glutathione 
and expands the pool of amino acid precursors required for conjugation (glycine [directly] and taurine [through 
cysteine oxidation]), thus implicating the metabolism of amino acids44. Additionally, γ-GT represents the impact 
of metabolic disease on vascular injury and atherosclerosis45,46. In this aspect, our study showed that mechanisms 
underlying the γ-GT catalytic metabolic reaction among people with excessive alcohol consumption are associ-
ated with ALDH2, BRAP and CUX2.

Considering the impact of socioeconomic backgrounds, the living locations, income and education levels 
were incorporated in measurement of our study. Information of education levels had 0.08% missing data. The 
income information had 54.3% missing data, and interpretation subject to the lack of thereof. In population-
based study, voluntary participation tends to attract individuals with higher education levels and socioeconomic 
status, as well as lower levels of problem drinking4. This trend complemented our study.

Our study has several limitations. First, we excluded significant intronic SNPs and used only significant 
exonic SNPs. The reason of why we excluded intronic variants was due to the limited sample size. The intronic 
signals that might be involved in alternative splicing and gene expression were therefore overlooked43. As a 
result, intronic variants that convey a risk of excessive alcohol consumption were likely to be missed. Second, 
we defined “excessive alcohol consumption” according to the criterion of a weekly intake of > 150 mL of alcohol 
for > 6 months. The types of beverages consumed were unclear. Low-risk alcohol use of < 100 g/week is equivalent 
to 7.1 cans of beer (350 mL each, 5% alcohol content) or 1.3 bottles of wine (750 mL, 13%). Our definition of 
excessive alcohol consumption was stricter than that employed in the literature. However, in the Taiwan Biobank 
one cannot identify how many of the excessive users had an alcohol use disorder diagnosis. Third, out of 18,363 
Taiwanese subjects, 1945 (~ 10%) were defined as cases, and 16,418 participants (~ 90%) were defined as controls 
in this case–control study. In addition, there was a sex imbalance in this sample. We addressed the limitation of 
case–control imbalance. In future work, SAIGE (Scalable and Accurate Implementation of Generalized mixed 
model) could be used to account for sample imbalance47. Nonetheless, the PCA plot for the genetic ancestry of 
this TWB cohort revealed that the distribution had no obvious deviation (see Supplementary Fig. S1 online). 
Fourth, the majority of individuals from eastern Taiwan and the outlying islands live in rural townships. Sup-
plementary Fig. S6 online shows that the prevalence of excessive alcohol consumption is likely to be different 
among individuals from northern, central, southern and eastern Taiwan. Those on the outlying islands had 
higher frequencies of excessive alcohol consumption. Owing to the small sample size from the outlying islands, 
we did not correct these islanders. Lastly, our findings did not provide directionality of causality (metabolism 
vs. alcoholism). One way to clarify this issue is to use Mendelian randomisations in future studies.

In conclusion, we developed an alternative strategy for overcoming extensive regional linkage disequilibrium. 
We uncovered Glu504Lys of ALDH2 and Glu4Gly of BRAP, which are involved in the negative regulation of 
excessive alcohol consumption. The mechanism underlying the γ-GT catalytic metabolic reaction in excessive 
alcohol consumption is associated with ALDH2, BRAP and CUX2. Further studies are needed to determine 
the roles of ALDH2, BRAP and CUX2 in the liver-brain endocrine axis upon the metabolic shift with excessive 
alcohol consumption.

Methods
Study participants.  Data were taken from the TWB, which were random samples of Taiwanese people aged 
30 to 70 years old with no history of cancer. Information analyzed was related to genomic data and lifestyle48,49. 
Lifestyle factors included current tobacco use and cigarette smoking, weekly exercise activity of ≥ 3 times, each ≥ 
30 min. We measured medical history containing the following conditions: gout, hypertension, hyperlipidaemia, 
stroke, diabetes mellitus, peptic ulcer, irritable bowel syndrome, migraine, gastric-oesophageal reflex syndrome, 
depressive disease, bipolar disorder, and schizophrenia. Using posters, brochures, websites, and audio and video 
media, we recruited TWB participants from 27 outreach centres in the rural and urban townships in Taiwan (see 
Supplementary Fig. S6 online). All participants signed informed consent forms. This study was approved by the 
Ethics Review Committees of National Taiwan University Hospital (project number: 201506095RINC).

Genotyping.  In the TWB, whole-genome genotyping was conducted on DNA extracted from blood samples 
using a QIAamp DNA blood kit, according to the manufacturer’s instructions (Qiagen, Valencia, CA, USA). 
The qualitative information of the extracted genomic DNA was visualised using agarose gel electrophoresis, and 
quantitative properties were measured by spectrophotometry. Samples were genotyped with a custom-designed 
Affymetrix Axiom Genome-Wide Array Plate, which contained 653,291 SNPs. To reach genotyping call-rate 
of 0.95, SNP and sample quality control thresholds were used in PLINK, a whole-genome data analysis toolset 
(MIND > 0.05). The identity state was set at 0.4 for each pair of individuals based on the average proportion of 
alleles shared at the genotyped SNPs. Those SNPs not following the Hardy–Weinberg equilibrium (with cut-
off p > 1 × 10–6) or rare variants with minor allele frequencies (< 1 × 10–3) were pruned. In total, 601,531 SNPs 
remained after the exclusion. Imputation was conducted with the Michigan Imputation Server (https​://imput​
ation​serve​r.sph.umich​.edu) using 1000G phase 3 v 5 as a reference panel. Eagle v 2.3 was used for phasing, and 
the EAS population was used for quality control. We imputed 11,389,991 variants of the TWB data based on 
the East Asian panel of the 1000 Genomes dataset. For imputation quality control, the criteria considered were 
an imputation quality score of > 0.8 and minor allele frequency of > 0.01. Finally, 6,410,722 variants successfully 
passed the two quality control stages.

https://imputationserver.sph.umich.edu
https://imputationserver.sph.umich.edu
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Statistical analyses.  Based on information related to lifestyle, medical history, and the genotypes of 
6,410,722 SNPs, we used the principal component analysis to extract 10 principal components for modelling the 
data. Multivariate logistic regression was used to calculate the odds ratio and p value for each SNP, and the model 
comprised of age, sex, and 10 principle components. We used the additive model to determine genotype risks. 
The false detection rate (FDR) was calculated to overcome effects of multiple tests. To determine the number of 
independent signals, the cut-off of FDR is less than 0.05.

Intermarker linkage disequilibrium is possibly caused by distance proximity and the coexpression of genes. 
If n is the number of significant SNPs, there are Cn

2 possible pairs with intermarker linkage disequilibrium. The 
ordinary least squares approach results in hypercollinearity when a full set of significant SNPs is included in 
the multivariate regression model. To solve the hypercollinearity problem, we used the ridge regression. Ridge 
regression minimises a penalty-augmented loss function and obtains the optimisation parameters β̂ridge.

 where �β�2 =
√

β2
0 + β2

1 + · · · + β2
p  and � is the shrinkage parameter that controls the size of coefficients and 

amount of regularisation. As � approaches zero, the least square solutions are obtained; as � approaches infinity, 
the ridge coefficients β̂ridge = 0 are obtained. The result is a constant (intercept-only) model. We selected the 
SNPs for which β̂ridge was stable across different � values.

Statistical analyses were conducted using R, Python open-source programming languages, FUMA GWAS 
(https​://fuma.ctgla​b.nl/), LDSC software (https​://githu​b.com/bulik​/ldsc), Plink version 1.90, the Multiple GWAS 
comparison and PheWAS of the GWAS ATLAS resource (https​://atlas​.ctgla​b.nl/), HAPLOVIEW version 4.2, 
and standard SAS software.

Gene‑set based analysis.  To map the most significant genes to particular clusters of biological mecha-
nisms, we conducted gene list analysis. The Gene Ontology (GO) terms were used for functional annotation. We 
performed gene-list analysis by using PANTHER software and tools50. The list of significant genes was uploaded 
directly on the homepage of the GO website (geneontology.org/docs/go-enrichment-analysis). Hypergeometric 
distribution was applied to test whether the overrepresentation of a GO term occurred significantly more often 
than chance. Hypergeometric distribution and binomial test were applied to test whether the overrepresentation 
of a GO term occurred significantly more often than chance. Cut-off of p value is < 0.05. Fold enrichment was 
defined as the number of significant genes in the list divided by the expected number of genes in a particular 
GO category50.

Ethics approval.  The study abided the Declaration of Helsinki. This study was approved by the Ethics 
Review Committees of National Taiwan University Hospital (project number: 201506095RINC).

Data availability
The raw data supporting the conclusion of this article will be made available by the authors, without undue 
reservation, to any qualified researchers.
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