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Abstract

Purpose: To test the hypothesis that removing the assumption of material homogeneity will 

improve the spatial accuracy of stiffness estimates made by Magnetic Resonance Elastography 

(MRE).

Methods: An artificial neural network was trained using synthetic wave data computed using a 

coupled harmonic oscillator model. Material properties were allowed to vary in a piecewise 

smooth pattern. This neural network inversion (Inhomogeneous Learned Inversion (ILI)) was 

compared against a previous homogeneous neural network inversion (Homogeneous Learned 

Inversion (HLI)) and conventional direct inversion (DI) in simulation, phantom, and in-vivo 

experiments.

Results: In simulation experiments, ILI was more accurate than HLI and DI in predicting the 

stiffness of an inclusion in noise-free, low-noise, and high-noise data. In the phantom experiment, 

ILI delineated inclusions ≤2.25 cm in diameter more clearly than HLI and DI, and provided a 

higher contrast-to-noise ratio for all inclusions. In a series of stiff brain tumors, ILI shows sharper 

stiffness transitions at the edges of tumors than the other inversions evaluated.

Conclusion: ILI is an artificial neural network based framework for MRE inversion that does not 

assume homogeneity in material stiffness. Preliminary results suggest that it provides more 

accurate stiffness estimates and better contrast in small inclusions and at large stiffness gradients 

than existing algorithms that assume local homogeneity. These results support the need for 

continued exploration of learning-based approaches to MRE inversion, particularly for 

applications where high resolution is required.
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1. Introduction:

Magnetic Resonance Elastography (MRE) is an imaging method for noninvasively 

measuring tissue mechanical properties (Muthupillai et al., 1995). In MRE, a phase-contrast 

MRI pulse sequence with motion encoding gradients is used to image a steady-state 

displacement field from shear waves that have been introduced into the tissue of interest by 

mechanical vibration. This displacement field is then mathematically inverted to produce 

estimates of tissue mechanical properties. Changes in tissue stiffness as measured with MRE 

have been shown to be sensitive to a number of pathological processes including but not 

limited to fibrosis in the liver (Asbach et al., 2008; Huwart et al., 2007; Rustogi et al., 2012; 

Yin et al., 2016) and neurodegenerative disease (ElSheikh et al., 2017; Gerischer et al., 

2018; Lipp et al., 2018; Murphy et al., 2016; Streitberger et al., 2012; Wuerfel et al., 2010). 

In focal disease, stiffness has been shown to differentiate malignant and benign lesions in the 

liver (Venkatesh et al., 2008), pancreas (Shi et al., 2018), and brain (Pepin et al., 2018; 

Streitberger et al., 2014), as well as characterize brain tumor mechanical properties for 

operative planning (Hughes et al., 2015; Murphy et al., 2013a). Recent work has also shown 

that viscoelastic properties of the hippocampus as measured by MRE correlate with 

performance on a memory task (Schwarb et al., 2017, 2016). While these results are 

promising, there is still room for improvement in the spatial resolution of the technique, 

particularly for the evaluation of mechanical properties in small focal lesions that are often 

difficult to evaluate (Hughes et al., 2015; Shi et al., 2018; Venkatesh et al., 2008).

One area for potential improvement is in the inversion algorithms that estimate mechanical 

properties from the acquired displacement data. There are many strategies for performing 

this calculation, including but not limited to local frequency estimation (LFE) (Braun et al., 

2001; Manduca et al., 2001), nonlinear inversion (NLI) (McGarry et al., 2012; Van Houten 

et al., 2001), and direct inversion (DI) (Oliphant et al., 2001; Papazoglou et al., 2008; 

Romano et al., 2000, 1998). Each of these approaches has their advantages and limitations. 

DI and LFE techniques assume local homogeneity, which results in blurring of large 

stiffness gradients. NLI does not assume local homogeneity, but its iterative approach 

relying on finite element simulations results in long reconstruction times and total variation 

regularization encourages piecewise constant mechanical property estimates (Van Houten et 

al., 2001). Recently, an adaptation of DI that does not assume local homogeneity has been 

developed (Barnhill et al., 2018; Sánchez et al., 2010), but this method relies on data at 

multiple frequencies to stabilize the result, resulting in longer scan times, and needs further 

evaluation in vivo. Murphy et al. recently reported a machine learning framework for MRE 

inversion using artificial neural networks (ANNs) trained on simulated wave data (Murphy 

et al., 2018). The neural network inversion produced stable stiffness estimates using a small 

spatial footprint even in the presence of noise, but was trained on simulated wave data that 

assumed homogeneous materials and as such does not account for local gradients in 

mechanical properties during parameter estimation.

There is still a need for an inversion algorithm that can provide stable stiffness estimates in 

the presence of noise, does not assume local homogeneity, is computationally efficient, and 

can invert MRE images acquired at a single frequency. This work uses the same framework 
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as Murphy et al., but accounts for local inhomogeneity by training ANNs on wave data 

generated by a coupled harmonic oscillator simulation of shear wave propagation in a 

medium with inhomogeneous stiffness. Here we present initial results for using this 

framework to estimate stiffness of inclusions in simulation and phantom experiments, and 

demonstrate in vivo feasibility in brain lesions.

2. Methods:

Simulations and analyses were performed in MATLAB R2017b (The MathWorks, Inc., 

Natick, MA, USA). The ANNs were built and trained using Keras (Chollet, Francois, 2015) 

with a TensorFlow backend (Martín Abadi et al., 2015).

2.1 Simulated Training Data

A coupled harmonic oscillators (CHO) simulation adapted from (Sack et al., 2002) was used 

to generate 3-dimensional displacement data sets. The CHO simulation models discretely 

sampled harmonic displacements in a medium with assigned spatially-varying material 

properties. The detailed derivation for the 2-D case can be found in (Braun et al., 2001) and 

the extension to 3-D in (Sack et al., 2002). This simulation does not model the full Navier 

equations of motion, specifically neglecting longitudinal waves and mode conversion at 

interfaces. However, it can be solved quickly, allowing generation of the large numbers of 

training examples required to train and test an artificial neural network in a short time frame. 

Furthermore, it is common practice in the MRE field to apply a curl operator to the 

displacement field to remove longitudinal waves from the displacement fields prior to 

inversion. We have used the curl of the wave field as the input to the NNI algorithm for all 

experimental data sets. It is important to note that while this step will reduce the impact of 

longitudinal waves, shear waves generated at interfaces due to mode conversion will still be 

absent in the simulated data.

Each simulated data set was a 16×16×16 patch of 2-mm isotropic voxels (Figure 1). 

Piecewise smooth input stiffness maps were generated by smoothing 3D Gaussian noise 

fields with randomly rotated 3D Gaussian kernels of randomly chosen dimensions (σ in 

range 1–4 voxels selected independently for each dimension). The range of stiffness values 

in each simulated patch was selected from a uniform distribution of 0–14.5kPa and the 

smooth map is scaled accordingly. The absolute minimum and maximum stiffness values 

allowed in any stiffness map were 0.5 and 15kPa respectively. An ellipsoid inclusion taken 

from an independently generated smoothly varying random field was inserted into half of the 

simulations to provide training examples with sharp transitions in stiffness and create 

piecewise smooth stiffness maps. A randomly selected number of harmonic force generators 

(1 to 10) with an oscillation frequency of 60Hz were placed at the boundary of the 

simulation. The damping ratio for each simulation was randomly selected from a uniform 

distribution from 0 to 0.7, which covers the range of physiologic values reported in the brain 

(Johnson et al., 2013). The steady state solution at 4 phase offsets equally distributed across 

one period of motion was used to generate 4 displacement images for each dataset.

After each dataset had been generated, a cubic patch was selected from the center of the 

simulation. For data sets with inclusions, the sharp transition was included in the patch. 
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Zero-mean Gaussian noise was added to each patch of training data with a standard 

deviation scaled to assign the patch a median signal to noise ratio in the range 1 to 20 

(uniform distribution). The input features to the artificial neural network were the real and 

imaginary components of the temporal first harmonic of the voxels in each patch. The real 

and imaginary components receive the same scaling, such that no value in either the real or 

imaginary component had an absolute value greater than 1.

2.2 Inhomogeneous Learned Inversion (ILI)

The 3D convolutional neural network architecture used includes inception blocks and 

residual connections and has been described previously (Murphy et al., 2020). The network 

was fit using the Adam optimizer (Kingma and Ba, 2017) with a mean squared error (MSE) 

loss function. Weights were updated after processing batches of 1000 training examples. 

Three decreasing learning rates were used, and training at each learning rate was stopped 

after three consecutive iterations where the MSE did not improve in the validation set. The 

output of the network was a single stiffness estimate, with stiffness defined as the product of 

density and the square of the wave speed, assigned to the voxel at the center of the patch.

2.3 Footprint Selection

In MRE inversion with homogenous algorithms, smaller patches are desirable (for higher 

resolution), but larger patches may be required to sufficiently reduce noise. In the proposed 

framework, we expect patch size to have little effect on resolution and for large patches to 

offer improved performance in noisy data. However, large patches will increase the 

likelihood of edge artifacts when the processing footprint overlaps with voxels outside the 

tissue of interest (such as cerebrospinal fluid and skull in brain MRE). For this reason, as 

well as the computational cost associated with increasing patch size, we limited our 

maximum side length to 9 voxels. To ensure we chose the optimal footprint within that 

limitation, 5 million 3-dimensional simulated datasets were generated, and separate ANNs 

were trained as described above using cubic training patches with side lengths of 5, 7, and 9 

voxels. An additional 250,000 simulated datasets were generated to serve as the validation 

set, and 30,000 simulated datasets were generated for the test set. Each network was 

evaluated on its test set by determining the correlation coefficient between the inversion 

estimate and the true stiffness at the center of the patch after the addition of noise. The ANN 

with a 9×9×9 voxel cubic footprint performed best in the test set and is used for all future 

analyses.

2.4 Performance in the Test Set

Model evaluation was performed on the 30,000 examples in the test set. The correlation 

coefficient was computed between the stiffness estimate and the true stiffness at the center of 

the patch for each example in the test set using three inversion algorithms:

1. Direct Inversion with quartic smoothing of the displacement images prior to 

inversion (Romano et al., 2000).

2. Homogeneous learned inversion (HLI): our term for a neural network inversion 

trained on patches of homogeneous data simulated using point-source sinusoids 

with attenuation as described in (Murphy et al., 2020).
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3. ILI: the neural network inversion described above.

As DI is prone to outliers that would impact the correlation coefficient, examples where the 

DI stiffness estimate exceeded 30 kPa were removed for the DI results only. This analysis 

was performed both before and after the addition of noise. DI with 3×3×3, 5×5×5, 7×7×7, 

and 9×9×9 quartic smoothing kernels was evaluated, as well as HLI footprints of 5×5×5, 

7×7×7, and 9×9×9. As with ILI, the footprint for each algorithm that provided the best 

performance in the test set is used for all further analyses. Quartic smoothing with a 9×9×9 

kernel for DI (11-voxel total footprint), and a footprint of 9×9×9 for HLI provided the best 

results in the test set and are used in all figures for all experiments unless otherwise stated. 

The larger DI footprint was tested because the convolution of a 7×7×7 filter with the 

Laplacian kernel used in DI does not result in a full 9×9×9 cube, and was selected because 

the DI result in noisy data continued to improve with a 9×9×9 filter (Table 1).

2.5 Coupled Harmonic Oscillator Simulation Experiments

Inversion algorithms were then evaluated in a set of simulation experiments to investigate 

the effects of noise and stiffness inhomogeneity on the accuracy of stiffness estimation. The 

CHO simulation was used to generate 2 sets of 1000 41×41×41 voxel simulated datasets 

with all parameters as described in section 2.1 except for the stiffness profile. The first 

experiment used simulations of homogeneous patches with stiffness chosen randomly from a 

uniform distribution of 1 to 15kPa to generate a noise-free dataset. The effect of noise was 

investigated by adding zero-mean Gaussian noise to adjust the median SNR in each 

simulation to values of 5 and 20. As there is attenuation within these simulations the SNR 

varies across an image. The second experiment added inclusions with diameters ranging 

from 1 to 5 cm with background and inclusion stiffness randomly selected from a uniform 

distribution of 0.5 to 15kPa. As in the homogeneous simulations, noise was added to 

generate two additional datasets where the median SNR in the inclusion was 5 or 20. We 

evaluated the same three inversion algorithms described above on these simulations.

For the homogeneous experiments, the root mean squared error (RMSE) between the 

median of a centered 35×35×35 patch from each inversion and the known true stiffness 

value is reported. To investigate voxel-level stability, the interquartile range (IQR) of the 

voxel-level percent error is reported from the same centered patch. This smaller patch size 

was used to ensure that the harmonic force generators and voxels directly adjacent would not 

be located within the patch. For the inclusion experiments, the RMSE between the median of 

the inclusion from each inversion and the known true stiffness values of the inclusion is 

reported. The inclusion mask applied to the inversion results did not include any partial 

volume voxels in the true stiffness map at the edge of the inclusion.

2.6 Phantom Experiment

To assess the performance of ILI on real data, MRE was performed on a polyvinyl chloride 

(PVC) brain phantom containing six spherical inclusions with diameters of 1.75cm, 2cm, 

2.25cm, 2.5cm, 2.75cm, and 3cm. The 50% PVC/50% softener background has a stiffness of 

3.42kPa (at 60Hz) and the 65% PVC/35% softener inclusions have a stiffness of 7.09kPa as 

measured on a RheoSpectris C500+ (Rheolution, Inc., Montreal, QC, Canada) on samples 

poured from the same batch as the MRE phantom. Mechanical vibration was applied via a 

Scott et al. Page 5

Med Image Anal. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pneumatic system with power levels of 3, 5, and 7 percent to produce wave data with 

varying SNR (Resoundant Inc., Rochester, MN). Scanning was performed on a compact 3T 

system with a high performance gradient capable of 80 mT/m amplitude and 700T/m/s slew 

rate (Foo et al., 2018) using a modified GRE pulse sequence with the following parameters: 

7.2 mT/m motion encoding gradient (MEG) amplitude, mechanical vibration=60Hz, 

TE=20.4ms, TR=24.1ms, one 16.7 ms first-moment nulled MEG cycle, motion encoding 

sensitivity (MENC) = 7.1 μm/rad, BW=±25kHz, FOV=240×240×192mm3, acquisition 

matrix= 120×120×96, flip angle = 12°, 2D GRAPPA acceleration=2, 8 channel receiver 

array (Invivo, Gainesville, FL), scan time=12:25.

ILI, HLI, and DI were applied to the first harmonic of the curl of the measured displacement 

field. ILI and HLI results were analyzed and displayed without any further filtering or 

smoothing. DI results were median filtered with a 3×3×3 kernel for display only. Contrast to 

noise ratio (CNR) as defined in (Doyley et al., 2003) is reported for all three inversions. Note 

that for DI, CNR was calculated using the median values of the inclusion and background to 

minimize potential bias due to outliers. To statistically test for differences in CNR, two 

linear mixed effects models were fit with CNR as the response variable. The full model 

included fixed effects of inversion, driver power, inclusion diameter and a constant, with 

random slopes (inversion and inclusion diameter) and intercepts for each driver power. The 

restricted model was identical with the exception that the fixed effect of inversion was 

removed. The likelihood ratio test was then used to test if inclusion of inversion as a fixed 

effect significantly improved the prediction of CNR (p<0.05 considered significant).

To evaluate the performance of each inversion at the boundaries of the inclusions, a line 

profile across the boundary was fit. A map of distance (in voxels) from the inclusion 

boundary was developed by repeated dilations (distance from the boundary into the 

background) or erosions (distance from the boundary into the inclusion) of the inclusion 

masks using a 6-connected jack-shaped structural element. For each distance from the 

boundary, the median stiffness as well as the 97.5 and 2.5 percentiles were estimated by a 

1000 sample bootstrap with case resampling (treating inclusions as cases). Similar to the 

CNR test, two linear mixed effects models were fit with the error in squared stiffness 

estimates as the response variable. To reduce the number of model parameters, a restricted 

cubic spline basis was used to represent position with respect to the boundary (3 knots 

located 3 voxels into the background, on the boundary, and 3 voxels into the inclusion). The 

full model included inversion, position, and their interaction as fixed effects, with random 

slopes (inversion, position, and their interaction) and intercepts for each inclusion. The 

restricted model was identical with the exception that the fixed effects involving inversion 

were removed. The likelihood ratio test was again used to test if inclusion of inversion as a 

fixed effect significantly improved the prediction of the squared error in stiffness estimates 

(p<0.05 considered significant).

2.7 In Vivo Evaluation

Human data were obtained with institutional review board approval and written informed 

consent from all patients. Meningiomas offer an opportunity to assess the accuracy of ILI in 

vivo as they are well defined lesions with clear borders and their stiffness is known 
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qualitatively from the surgical report at resection. Since meningiomas have high variability 

in stiffness, we consider a subset of tumors stiffer than normal brain to allow cross-subject 

analysis of the spatial pattern of stiffness changes. Of the 64 meningioma cases with 

available surgical reports in our MRE database, 23 were stiff enough that suction could not 

be used for removal of any part of the tumor (encompassing scales 3, 4, and 5 described in 

(Hughes et al., 2015)). Of these 23, one case was excluded because of a T1-weighted (T1w) 

image of insufficient quality to accurately segment the meningioma and two cases were 

excluded because of extensive tumor growth into the sinuses. After generating the stiffness 

maps but before any further processing, three additional cases were excluded because the 

median tumor stiffness for DI was softer than normal brain. All three of these cases were 

highly vascular tumors, where the surgical score, which is dependent on the surgical 

instrumentation used to resect the tumor, is more likely to be discordant with MRE measured 

stiffness (Hughes et al., 2015). Seventeen cases were included in the final analysis.

MRE data were acquired as described in (Hughes et al., 2015) with 3mm isotropic resolution 

and 8 phase offsets sampled over one period of 60Hz motion on clinical 3T scanners (GE 

Medical Systems, Milwaukee, WI) or the compact 3T scanner described above (Foo et al., 

2018). MRE data were resampled to 2mm isotropic resolution prior to computation of the 

curl and subsequent inversion to allow the use of the same ILI and HLI networks used in 

sections 2.4–2.6. Tumor segmentation was performed manually on a T1w image acquired in 

the same session as the MRE scan (acquisition previously described in (Murphy et al., 

2013b)) using FSLView (Jenkinson et al., 2012). Gray matter, white matter, and 

cerebrospinal fluid probability maps were computed in SPM5 (Ashburner and Friston, 

2005). Then the T1w image, along with the tissue probability maps and tumor mask, were 

registered to the MRE magnitude image, and the T1w image and all derived masks were 

resampled to 2mm isotropic resolution. ILI, HLI, and DI were applied to the first harmonic 

of the curl of the resampled MRE displacement images.

To assess overall spatial agreement between manual tracings and a stiffness-based 

segmentation, stiffness maps for each inversion in each subject were thresholded at the 95th 

percentile of the normal brain stiffness, and the Dice coefficient was calculated between the 

thresholded stiffness map within the tumor mask and the tumor mask itself. To compute the 

stiffness threshold, the gray and white matter probability maps were summed and all voxels 

with a combined probability greater than or equal to 95% that were outside the tumor mask 

were defined as normal brain. To reduce bias introduced by edge effects, two erosions using 

a 6-connected jack-shaped structural element were performed on the resulting segmentation. 

The 95th percentile within this volume was then used to threshold the stiffness map. Paired, 

two-tailed T-tests were used to compare Dice coefficients between ILI and DI and ILI and 

HLI (p<0.05 considered significant).

To assess inversion performance at the tumor boundaries, similar analysis to that in section 

2.6 was used. A map of distance (in voxels) from the tumor boundary was developed by 

repeated dilations (distance from the boundary into the brain) or erosions (distance from the 

boundary into the tumor) of the tumor mask using a 6-connected jack-shaped structural 

element. For each subject, the median stiffness at each location for each inversion was used 

to generate a summary line profile across the tumor boundary. The maximum and minimum 
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values of this line profile were used to scale each line profile from 0 to 1 so that data from 

all subjects (with varying stiffness both in tumor and surrounding brain) could be combined 

to evaluate the shape of the median stiffness estimate across the tumor boundary. Using the 

combined data, for each distance from the boundary the median stiffness as well as the 2.5 

and 97.5 percentiles were estimated by a 1000 sample bootstrap with case resampling 

(treating subjects as cases).

All stiffness maps have been interpolated 2-fold for display purposes only.

3. Results:

3.1 Performance in Test set

Results in the test set using the best performing spatial footprint in the noisy test set for each 

inversion are summarized in Figure 2. In the noise-free case, all three inversion estimates 

correlate with the true stiffness, with ILI showing the strongest correlation (R=0.979, 

R=0.821, and R=0.728 for ILI, HLI, and DI, respectively). This result shows that ILI 

improves estimation accuracy of spatially varying stiffness. ILI (R=0.940) continues to 

provide higher correlation than HLI (R=0.798) and DI (R=0.707) with noise added. Results 

using all tested spatial footprints are shown in Table 1.

3.2 CHO simulations

Results from the CHO experiments using all tested spatial footprints for all three inversions 

are summarized in Table 2. Briefly, ILI with a 9×9×9 spatial footprint provided more 

accurate estimates of inclusion stiffness in noisy data than DI or HLI of any tested spatial 

footprint. With the smallest spatial footprint tested (5×5×5 voxels), HLI provided the most 

accurate stiffness estimates in the high noise homogeneous dataset. In low noise and noise-

free datasets, DI provided the most accurate stiffness estimates in homogeneous data. For 

5×5×5 and 7×7×7 voxel footprints, the learned inversions provide lower variance stiffness 

estimates in noisy homogeneous simulations than DI. Figure 3 allows visualization of the 

partial volume effect induced by the homogeneity assumption in HLI and DI with large 

footprints. As inclusion size decreases, HLI and DI stiffness estimates move closer to the no 

contrast line. This effect is mitigated by ILI.

3.3 Phantom Experiment

Phantom inversions of the 7 percent driver power scan are shown in Figure 4. ILI (9×9×9 

spatial footprint) more clearly delineates the 1.75cm, 2cm, and 2.25cm diameter inclusions 

than HLI (9×9×9 spatial footprint), and inclusions <2.5 cm in diameter are difficult to detect 

with DI (11×11×11 spatial footprint). ILI also shows a higher CNR than HLI and DI for all 

inclusions at all driver power levels (Figure 5). The likelihood ratio test showed that the 

linear mixed effects model including inversion as a fixed effect significantly improved 

prediction of CNR (p=0.001). Because the phantom data has high SNR, the large spatial 

footprints that provided optimal performance in the noisy test set are unnecessary. A 

footprint of 5×5×5 voxels optimized the CNR for both HLI and DI in the phantom. Inversion 

results with these footprints more clearly depict the inclusions than the large footprint results 

(Supplemental Figure1), but still provide lower CNR in all inclusions at all driver power 
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levels than ILI with a 9×9×9 footprint (Supplemental Figure 2, p<0.01, likelihood ratio test). 

ILI also shows a sharper transition at the inclusion boundaries and more accurate stiffness 

estimates than HLI and DI with large footprints (Figure 6) or the optimal footprints for the 

phantom data (Supplemental Figure 3). Including inversion as a fixed effect significantly 

improved the prediction of errors in stiffness estimates in both cases (p<0.001 for both).

3.4 In Vivo Results

Two representative cases are shown in Figure 7. The Dice coefficient for ILI was 

significantly higher than for DI (p<0.001) with no significant difference between ILI and 

HLI (p=0.15) (Figure 8). ILI also offered sharper transition from background brain into the 

tumors than HLI and DI (Figure 9).

4. Discussion:

This study builds upon recently reported work showing the feasibility of using artificial 

neural networks for inversion in MRE (Murphy et al., 2018) by increasing the complexity of 

the training data using a coupled harmonic oscillator simulation (Sack et al., 2002) of shear 

wave propagation in a medium with inhomogeneous stiffness, thereby more closely 

simulating true tissue mechanical properties. This advance in the training data improves the 

accuracy of stiffness estimation in the presence of material inhomogeneity.

Experiments in small patches of simulated wave data showed that ILI was more accurate 

than DI and HLI at estimating the stiffness of voxels in areas of spatially varying stiffness 

(Figure 2). This result is expected as DI is known to break down at boundaries (McGrath et 

al., 2016; Murphy et al., 2013b). ILI accuracy decreased with decreasing SNR, but there 

does not appear to be any consistent bias in estimates of noisy data except at the top of the 

training range, where ILI estimates are biased soft in the noisiest examples (Figure 2). Both 

HLI and DI show no clear trend with SNR (right column, Figure 2), and produce estimates 

biased toward the center of the training range, suggesting that at the spatial footprints shown 

these methods are more affected by their assumption of material homogeneity than SNR.

Additional, larger-footprint simulation experiments showed that the median stiffness of an 

inclusion estimated by ILI was more accurate than estimates by DI and HLI at multiple 

noise levels. The perfect performance (to numerical precision) of DI in the homogeneous, 

noise-free simulation (Table 2) serves as an important check that the simulation produces 

accurate displacement fields that obey the fundamental assumptions of conventional 

inversion algorithms under ideal conditions. In noise-free simulations with inclusions, DI 

accurately estimated the stiffness of large inclusions, with errors only in the smaller 

inclusions (Figure 3). This is expected, as with decreasing inclusion size, the proportion of 

voxels affected by the boundary will increase. Due to the partial volume effect, this will 

result in underestimated stiffness of a stiff inclusion in a soft background and overestimated 

stiffness of a soft inclusion in a stiff background. This effect can be seen in both the DI and 

HLI panels of Figure 3. These partial volume effects are substantially reduced by ILI, 

though ILI actually appears to overestimate inclusion contrast in some of the smallest 

inclusions when SNR is high. With the large spatial footprints used in Figure 3, all three 

inversion algorithms appear robust to noise, with relatively little change in performance as 
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noise is added. However, when using smaller spatial footprints (Table 2), it is clear that DI is 

more sensitive to noise than the ANN inversions, which is in agreement with previous 

findings (Murphy et al., 2018).

Results in the phantom suggest that ILI improves the detectability of focal inclusions, 

producing higher CNR than DI and HLI in six inclusions of 1.75 to 3cm in diameter (Figure 

5 and Supplemental Figure 1). Further, ILI provided sharper boundaries at the edges of 

inclusions (Figure 6 and Supplemental Figure 3). As would be expected due to the 

assumption of local homogeneity, DI and HLI blur inclusion boundaries more with larger 

spatial footprints (Figure 5 versus Supplemental Figure 1).

In the meningioma cases shown (Figure 7), ILI more sharply demarcated tumor boundaries. 

ILI also shows focal areas of increased stiffness in presumably normal brain when compared 

to the HLI and DI stiffness maps. While this study is not designed to assess the accuracy of 

these regions, we note that the general areas where ILI shows a stiffness increase also show 

stiffness increases with the other two inversions, just less clearly defined and with lower 

stiffness estimates. Further studies are needed to assess the performance of ILI in normal 

brain. The large stiffness training range used in this study was chosen expressly for analysis 

of focal inclusions and tumors, and more accurate estimates in normal brain would likely be 

achieved using a smaller training range.

In the cross-subject in vivo experiment, ILI produced a higher Dice coefficient, labeling 

more of each tumor as stiff, than DI, but not HLI (Figure 8). This equivalency of HLI and DI 

may be due to the methodology used to set a threshold for what qualifies as stiffer than 

normal brain. We chose to use the 95th percentile of normal brain values, and as can be seen 

in Figure 7, HLI produces softer and more homogeneous estimates in normal brain than DI 

and ILI. As such the threshold was lower for HLI than the other two algorithms. 

Additionally, to perform these analyses we assume that the tumor is homogeneously stiffer 

than normal brain. While this may have been the surgeon’s qualitative impression at 

resection, it is likely that there is some heterogeneity in stiffness within the tumor. This 

threshold effect likely contributes to the relatively low Dice coefficients seen with all three 

inversions, and would have the biggest impact on ILI. HLI and DI would be expected to blur 

out regions of heterogeneity within the tumor, while ILI may detect them. As expected, ILI 

provided sharper transitions in stiffness between the normal brain and tumor than DI and 

HLI (Figure 9).

This study suggests that ILI potentially possesses advantages over previously described 

inversion algorithms. LFE techniques estimate instantaneous spatial frequency by applying a 

set of filters to the displacement data and developing an estimate based on the energy in each 

filter band (Clayton et al., 2013; Knutsson et al., 1994). It also assumes local homogeneity 

and has limited spatial resolution (Manduca et al., 2001). Most DI techniques, which solve 

the equations of motion in a viscoelastic medium (Oliphant et al., 2001; Papazoglou et al., 

2008; Romano et al., 1998), assume homogeneity (Manduca et al., 2001). As they rely on 

second derivatives, their major drawback is voxel-level numerical instability, especially in 

the presence of noise, which requires additional filtering of the displacement data that 

negatively impacts spatial resolution. One recent approach has removed the local 
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homogeneity assumption, but at the cost of requiring MRE data at multiple frequencies, 

which would increase scan time (Barnhill et al., 2018). Another approach uses a finite 

element based inversion technique that does not assume homogeneity but needs further 

evaluation in vivo (Honarvar et al., 2013). Nonlinear inversion is an iterative technique that 

uses finite element models to jointly estimate displacements and tissue mechanical 

parameters within subzones of the displacement image (McGarry et al., 2012; Van Houten et 

al., 2001). It does not assume local homogeneity. An adaptation to NLI adds soft prior 

regularization, which incorporates spatial information into the inversion by penalizing 

heterogeneity within specified subregions (McGarry et al., 2013). The spatial information 

comes from a segmentation that is provided to the algorithm. This method can produce sharp 

stiffness gradients at boundaries and decrease measurement uncertainty in small ROIs 

(Johnson et al., 2016; McGarry et al., 2013), but is sensitive to the underlying segmentation 

and favors homogeneity within some region of interest. Due to its iterative approach that 

requires solving many small finite element simulations, NLI reconstruction time is on the 

order of hours. The ILI network presented in this study took approximately 3 days to train (1 

day to generate training data, and two days to train the ANN), but could reconstruct the 

included phantom and brain MRE studies in under 10 minutes. GPU acceleration would 

markedly reduce the time to invert images, and may accelerate generation of training data.

Neural network inversions (NNIs, including both HLI and ILI) could easily be implemented 

into a clinical workflow. Each NNI is limited to processing data at the resolution, frequency, 

and stiffness range at which it was trained. While it takes days to generate an NNI, it can 

then be used to invert any MRE data at its trained resolution and frequency when its stiffness 

range is appropriate. Training an NNI for a particular resolution, frequency, and stiffness 

range is simply accomplished by adapting the parameters in the CHO simulations used to 

generate training data. Further, as was done in this study for the in-vivo data, MRE data 

acquired at a different resolution could be resampled to the resolution of the NNI before 

inversion. In practice, acquisition parameters of MRE protocols for specific applications 

remain mostly constant over time, and after an initial set of NNIs has been trained for 

regularly acquired frequencies and resolutions, the need to train new NNIs should be 

infrequent.

The primary limitation of this study is in the CHO simulation used to generate training data. 

The CHO simulation has important limitations, and it is possible that training an ANN on 

simulated wave data from a model obeying the full Navier equations of motion in linear 

elastic materials would offer improved results. Particularly pertinent to this study, the CHO 

simulation does not contain longitudinal waves, and as such cannot accurately simulate 

mode conversion at interfaces. We selected the CHO model because it can be solved more 

rapidly, providing a sufficiently sized training set in a reasonable period of time. Despite its 

simplicity, our results indicate that the CHO model is accurate enough to offer an 

improvement over existing inversion algorithms, and the incorporation of a model obeying 

the Navier equations for linear elastic materials that provides the full vector displacement 

field is a planned future direction.

We also note that ANNs are inherently good at interpolation and bad at extrapolation. This is 

potentially beneficial in MRE, as it produces a stable inversion, but it does limit accurate 
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parameter estimation to the range used to train the ANN. This makes NNI-based stiffness 

estimates sensitive to parameter selection. The distribution of parameters in the training set 

must be sufficiently wide to capture the clinical information of interest, though a parameter 

range that is too wide will sacrifice accuracy within the range of interest. In this study, we 

chose to have a maximum stiffness cutoff of 15 kPa, as the clinical utility of an estimate 

higher than 15 kPa is unclear in the applications presented here.

In conclusion, the results of this study confirm that neural network-based inversion 

algorithms for MRE can improve stiffness estimates in materials with spatially varying 

stiffness. These results provide motivation for further development of neural network-based 

inversion algorithms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Summary of training data generation.
(a) Piecewise smooth input stiffness maps are generated by smoothing 3D Gaussian noise 

fields with 3D Gaussian kernels of randomly chosen x, y, and z dimensions. (b) Point-source 

wave sources are placed at the boundary of the simulation and the forward problem is solved 

to generate a wave image. (c) A 9×9×9 voxel patch, one such patch shown in the white 

square in (a) and (b), is taken from near the center of the simulation. The temporal first 

harmonic is taken after each patch has had noise added to generate the input features for the 

neural network.
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Figure 2. ILI is more accurate than HLI and DI in its test set.
DI, top row, HLI, middle row, and ILI, bottom row, results in a test set of 30,000 patches. 

Results for noise-free patches (first column) and noise added patches (second column) are 

shown. The spatial footprint that maximized the correlation coefficient in the noisy case is 

shown for each inversion (11×11×11 for DI, 9×9×9 for HLI, and 9×9×9 for ILI).
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Figure 3. Summary results from Coupled Harmonic Oscillators (CHO) experiment.
Each plot shows the error in inclusion estimate (estimated stiffness in the inclusion - true 

stiffness in inclusion) vs the inclusion contrast (true inclusion stiffness - true background 

stiffness) in 1000 CHO simulations. For a perfect inversion all points would be along the 

zero-error line. If an inversion completely fails to detect the inclusion points will be along 

the diagonal labeled “No Contrast”. The color of the data points corresponds to inclusion 

size.
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Figure 4. ILI more clearly depicts stiff inclusions in a brain-simulating phantom.
Top left: Photograph of the PVC phantom. Inclusion diameters, proceeding counter 

clockwise from the inclusion labeled with the asterisk, are 1.75, 2, 2.25, 2.5, 2.75, and 3cm. 

Top Middle: MRE magnitude image. Bottom left: Direct inversion after 3×3×3 median 

filtering. Bottom middle: HLI. Bottom right: ILI. The measured stiffness of the background 

and inclusions was 3.42 and 7.09 kPa, respectively.
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Figure 5. ILI provides higher contrast to noise ratio (CNR) in the phantom.
Calculated CNRs for the inversions shown in Figure 4. The size of the circles represents the 

driver power (3, 5 or 7 percent).
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Figure 6. ILI provides sharper transitions at inclusion boundaries.
Negative values on the x-axis represent distance from the boundary into the background 

while positive values show distance into the inclusion. Dashed lines connect median values 

at each position while solid lines show the 2.5th and 97.5th percentiles for each inversion.
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Figure 7. T1-weighted image and inversion results in two meningioma cases.
For Case 1, the superior tumor was described as stiff throughout and the posterior tumor was 

described as having heterogeneous stiffness on resection (only the superior tumor was 

included in group analysis). In Case 2, the tumor was described as very stiff throughout at 

resection. Regions of interest outline the tumor extent as manually traced on the T1-

weighted image.
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Figure 8. Dice coefficient results in 17 meningioma cases.
ILI produces a significantly higher Dice coefficient than DI with 9×9×9 quartic smoothing. 

There is no significant difference between HLI and ILI Dice coefficients (p=0.15). Dashed 

lines connect the individual cases across the inversions. *p<0.001, ns = nonsignificant, two-

tailed paired t-tests.
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Figure 9. ILI provides sharper transitions at boundaries of stiff tumors in vivo.
Negative values on the x-axis represent distance from the boundary into normal brain while 

positive values show distance into the tumor. The zero position is the first voxel labeled as 

tumor. Dashed lines connect median values at each position while solid lines show the 2.5th 

and 97.5th percentiles for each inversion.

Scott et al. Page 24

Med Image Anal. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Scott et al. Page 25

Table 1.
Inversion performance in the ILI test set.

Pearson correlation coefficient between the inversion estimate and true stiffness at the center of the patch. 

Noisy data had SNRs ranging from 1 to 20.

DI HLI ILI

Spatial Footprint Noise-free Noisy Noise-free Noisy Noise-free Noisy

5×5×5 0.749 0.387 0.801 0.657 0.904 0.785

7×7×7 0.768 0.605 0.811 0.756 0.967 0.904

9×9×9 0.758 0.685 0.821 0.798 0.979 0.94

11×11×11 0.728 0.707
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Table 2.
Inversion estimate accuracy in CHO simulations.

Root Mean Square Error (RMSE, kPa) between median stiffness and true stiffness of the entire patch 

(homogeneous simulations) and the inclusion (inclusion simulations). The mean across all simulations of the 

interquartile range (IQR) of the voxel-level percent error in each simulation is reported as IQR. Inclusion 

diameter ranged from 1 to 5 cm. SNRs are median values in the 41×41×41 patch.

RMSE In Inclusion Experiment

DI HLI ILI

Spatial Footprint Noisefree SNR20 SNR5 Noisefree SNR20 SNR5 Noisefree SNR20 SNR5

5×5×5 7.19E-10 3.7328 5.4256 1.3362 1.7725 3.0137 1.2373 1.5792 2.7431

7×7×7 0.9834 1.7884 4.0786 1.8134 1.854 2.3575 1.2368 1.3431 1.7192

9×9×9 1.9016 2.0078 2.9958 2.2744 2.2963 2.4481 1.0537 1.139 1.6173

11×11×11 2.5865 2.6144 2.8483

RMSE in Homogeneous Experiment

DI HLI ILI

Spatial Footprint Noisefree SNR20 SNR5 Noisefree SNR20 SNR5 Noisefree SNR20 SNR5

5×5×5 3.99E-10 0.5044 3.1563 0.5345 0.7375 1.5011 0.7623 0.9234 1.8283

7×7×7 3.99E-10 0.05 0.614 0.2737 0.3518 0.8082 0.4059 0.492 0.8934

9×9×9 3.99E-10 0.0099 0.1234 0.2257 0.2562 0.4568 0.3748 0.4231 0.6769

11×11×11 4.10E-10 0.048 0.2092

IQR in Homogeneous Experiment

DI HLI ILI

Spatial Footprint Noisefree SNR20 SNR5 Noisefree SNR20 SNR5 Noisefree SNR20 SNR5

5×5×5 2.80E-12 0.3245 0.7177 0.0914 0.1687 0.4061 0.1087 0.1955 0.4921

7×7×7 2.80E-12 0.0963 0.345 0.0646 0.1043 0.2659 0.0833 0.1309 0.3094

9×9×9 2.81E-12 0.0381 0.1497 0.0535 0.079 0.1902 0.0861 0.1328 0.2902

11×11×11 3.57E-12 0.0331 0.1219
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