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Abstract

Neuronal excitotoxicity is the major cause of alcohol-related brain damage, yet the underlying 

mechanism remains poorly understood. Using dopaminergic-like PC12 cells, we evaluated the 

effect of N-methyl-D-aspartate receptors (NMDAR) on acetate-induced changes in PC12 cells: cell 

death, cytosolic calcium, and expression levels of the pro-inflammatory cytokine tumor necrosis 

factor alpha (TNFα). Treatment of PC12 cells with increasing concentrations of acetate for 4 h 

caused a dose-dependent increase in the percentage of cells staining positive for cell death using 

propidium iodide (PI) exclusion and cytosolic reactive oxygen species (ROS) using cell ROX 

detection analyzed via flow cytometry. The EC50 value for acetate was calculated and found to be 

4.40 mM for PI and 1.81 mM for ROS. Ethanol up to 100 mM had no apparent changes in the 

percent of cells staining positive for PI or ROS. Acetate (6 mM) treatment caused an increase in 

cytosolic calcium measured in real-time with Fluo-4AM, which was abolished by coapplication 

with the NMDAR blocker memantine (10 μM). Furthermore, cells treated with acetate (6 mM) for 

4 h had increased expression levels of TNFα relative to control, which was abolished by 

coapplication of memantine (10 μM). Co-application of acetate (6 mM) and memantine had no 

apparent reduction in acetate-induced cell death. These findings suggest that acetate is capable of 

increasing cytosolic calcium concentrations and expression levels of the pro-inflammatory 

cytokine TNFα through an NMDAR-dependent mechanism. Cell death from acetate was not 

reduced through NMDAR blockade, suggesting alternative pathways independent of NMDAR 

activation for excitotoxicity.
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INTRODUCTION

Alcohol-induced neurodegeneration has been well-established in the literature for both 

chronic and/or binge models in rats1–4 and post-mortem in human brains.5,6 Precisely how 

alcohol consumption leads to the development of neurodegeneration is still undetermined; 

however, a majority of research suggests it is at least in part due to excitotoxicity through the 

N-methyl-D-aspartate receptor (NMDAR).4,7,8 The NMDAR is primarily a calcium-specific, 

glutamate ligand-gated ion channel, that when activated results in an influx of Ca2+ across 

the neuronal membrane, depolarizing the neuron. Large influxes of Ca2+ ions are capable of 

initiating many complex pathways, including apoptosis,9–11 the release of neurotransmitter,
12–14 and an influx in large quantities can result in glutamate-induced excitotoxicity.4,10,11

With this in mind, the current consensus among alcohol researchers is that ethanol (EtOH) 

blocks the NMDAR channel, leading to an increase in NMDAR surface expression15,16 and, 

upon EtOH clearance, triggers NMDAR inward currents.4,17 Interestingly, a majority of the 

research has noted that the excitotoxic insult occurs mainly during the withdrawal/clearance 

phase.18,19 Because these rat models are in vivo models, a confounding factor is EtOH 

metabolism to acetic acid/acetate, which has yet to be accounted for. A recent study reported 

blood alcohol concentrations (BAC) and acetate concentrations following ethanol 

consumption. The major findings were that EtOH BAC and acetate concentrations rise 

rapidly during alcohol consumption followed by a sharp decline of EtOH BAC, which 

eventually returns to undetectable levels. Acetate concentrations, however, spike and then 
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remain elevated at a steady state concentration for nearly 12–24 h post EtOH consumption.
20,21

Circulating concentrations of acetate in the peripheral system following alcohol 

consumption have been reported in the range of 1–2 mM21 and substantially higher in the 

brain.22 Wang and colleagues reported acetate concentrations following EtOH infusion of 

4.09 ± 0.24 mM with sustained steady state acetate concentrations of 3.51 ± 0.20 mM in 

unconditioned alcohol rats.22 This alcohol research data suggests that the main culprit that 

contributes to excitotoxicity may be the EtOH metabolite acetate.

Indeed, nonalcohol research has established that acetate contributes to an inflammatory 

response in humans,23,24 and acetic acid is toxic in human cell lines.25 The use of acetate in 

older hemodialysis solutions was found to increase tumor necrosis factor alpha (TNFα), 

endothelial nitric oxide synthase (eNOS),23 and interleukin 1-β (IL-1β)24 in humans. It was 

noted that many of the hemodialysis patients undergoing treatment with acetate-based 

solutions experienced headache, nausea, vomiting, extreme flushing, and vision 

disturbances.23,26 These symptoms are very similar to those experienced during an alcohol 

hangover, and at least in rats, acetate was suggested as being the causative factor.27 

Additionally, Kendrick and colleagues reported acetate was the key inflammatory mediator 

in acute alcohol hepatitis,28 and our lab has reported that acetate microinjection into the 

central nucleus of the amygdala in anesthetized rats caused a sympathoexcitatory response 

that was primarily driven through activation of NMDAR.29 We therefore hypothesized that 

the EtOH metabolite acetate may be the primary contributing agent to excitotoxicity through 

NMDAR activation.

RESULTS AND DISCUSSION

Acetate Increases Cell Death in NGF-Derived PC12 Cells.

NGF-derived PC12 cells exposed to increasing concentrations of acetate (0, 2, 6, 15, 30 

mM) for a duration of 4 h had a significantly (P < 0.05) greater percentage of cells staining 

positive for propidium iodide (PI) (26.5 ± 0.8, 26.5 ± 1.7, 33.3 ± 0.7, 35.5 ± 1.3, and 36.1 ± 

1.9%, respectively) compared to NGF-derived PC12 cells treated without acetate (Figure. 

1B). Because PI is a common stain used for DNA and only able to penetrate compromised 

cell membranes, it is a convenient and well-utilized method for examining cell death through 

increases in PI-stained cells.30 A dose-response curve was constructed correlating acetate 

concentrations (0, 2, 6, 15, and 30 mM) with increased percentage of PI staining (Figure 

1C). From the dose-response curve, an EC50 value of 4.40 mM acetate was determined. In a 

separate experiment, we examined differences between control and acetate (4.40 and 6 mM). 

There was no significant difference between percentage of PI staining between acetate (4.40 

and 6 mM); however, acetate (6 mM) significantly increased PI staining compared to control 

(N = 5, data not shown). Acetate (4.40 mM) increased PI staining (3 out of 5 groups, data 

not shown) compared to control and acetate (6 mM) (5 out of 5 groups, data not shown). We 

therefore determined 6 mM acetate to be the Emax value. All subsequent experiments 

utilized 6 mM acetate for investigation of pro-inflammatory cytokine mRNA expression, 

real-time calcium imaging, and NMDAR blockade. These cytotoxicity data suggest that the 

ethanol metabolite acetate is capable of increasing cell death in NGF-derived PC12 cells in a 
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dose-dependent manner at physiologically relevant acetate concentrations post ethanol 

consumption.22

Ethanol Has No Effect on Cell Death in NGF-Derived PC12 Cells.

NGF-derived PC12 cells treated with increasing concentrations of ethanol (0, 2, 6, 15, 50, 

and 100 mM) for 4 h had no increase in PI staining compared to NGF-derived PC12 cells 

without ethanol (35.8 ± 1.0, 36.2 ± 2, 36.6 ± 0.9, 38.1 ± 1.0, 36.6 ± 0.9, and 37.6 ± 1.4%), 

respectively (Figure 2B). This data suggests that, at least in dopaminergic-like PC12 cells, 4 

h of ethanol exposure has no effect on any apparent increases in PI staining.

Acetate Increases Cytosolic Reactive Oxygen Species.

NGF-derived PC12 cells were treated with increasing concentrations of acetate (0, 2, 6, 15, 

and 30 mM) for 4 h and then stained with Cell ROX Orange and analyzed via flow 

cytometry. Acetate increased cytosolic reactive oxygen species fluorescence in a dose-

dependent manner with an EC50 value of 1.81 mM (Figure 3C). Acetate (6 mM) 

significantly (**P < 0.01) increased cytosolic reactive oxygen species fluorescence intensity 

compared to control, 43.1 ± 1.4 vs 33.3 ± 1.5% cells (Figure 3B).

Ethanol Has No Apparent Increase in Cytosolic Reactive Oxygen Species.

NGF-derived PC12 cells were treated with increasing concentrations of ethanol (0, 2, 6, 15, 

50, and 100 mM) for 4 h and then stained with Cell ROX Orange and analyzed via flow 

cytometry. Ethanol had a trend at lower doses (2, 6, and 15) to lower cytosolic ROS, 

although this was not statistically significant. There were no apparent increases in cytosolic 

reactive oxygen species fluorescence compared to control treatment (Figure 4).

Acetate Increases TNFα mRNA Expression through Activation of NMDAR.

NGF-derived PC12 cells incubated with acetate (6 mM) for 4 h had significantly (p < 0.05) 

increased mRNA expression levels of the pro-inflammatory cytokine TNFα (Figure 5E) 

compared to control. Co-application of acetate (6 mM) and memantine (10 μM) completely 

abolished the acetate-induced increase in TNFα (Figure 5E). Memantine (10 μM) had no 

effect on TNFα mRNA expression relative to control. This data suggests that acetate 

increases the mRNA expression levels of the pro-inflammatory cytokine TNFα through an 

NMDAR-mediated mechanism.

In a separate experiment, NGF-derived PC12 cells were incubated with acetate (0 and 6 

mM) (Figure 5A and B), acetate (6 mM) and memantine (10 μM) (Figure 5C), or memantine 

(10 μM) (Figure 5D) for 4 h and then stained for TNFα protein expression using a specific 

antibody and analyzed for immunochemistry staining. Acetate (6 mM) significantly (P < 

0.05) increased TNFα immunochemistry-corrected fluorescence intensity compared to 

control (0 mM acetate) (Figure 5F). Co-application of acetate and memantine (Figure 5C) 

significantly (P < 0.05) attenuated TNFα immunochemistry-corrected fluorescence intensity 

compared to acetate (6 mM) (Figure 5F). Memantine alone had no effect on baseline TNFα 
immunochemistry relative to control (Figure 5F). This data suggests that acetate increases 

both mRNA and protein expression of TNFα, which can be abolished by the NMDAR 

blocker memantine.
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Acetate Increases Cytosolic Calcium in PC12 Cells, Which Is Abolished by the NMDAR 
Antagonist.

NGF-derived PC12 cells incubated with acetate (6 mM) for 4 h had significantly (p < 0.05) 

higher Fluo-4AM corrected fluorescence intensity (CFIT) compared to that of control 

(0.3451 ± 0.03869 vs 0.1441 ± 0.01088 CFIT), which is indicative of a greater amount of 

cytosolic calcium (Figure 6). Co-application of acetate (6 mM) and memantine (10 μM) 

completely abolished the acetate-induced increase in cytosolic calcium CFIT (0.1681 ± 

0.0235 vs 0.3541 ± 0.03869 CFIT) (Figure 6). Memantine (10 μM) alone had no apparent 

impact on changes in baseline calcium CFIT compared to control (0.09932 ± 0.0240 vs 

0.1441 ± 0.01088). This data indicates that acetate is capable of increasing cytosolic calcium 

through activation of NMDAR.

NMDAR Antagonist Memantine Slightly Reduces the Acetate-Induced Increase in Cell 
Death.

NGF-derived PC12 cells treated with acetate (6 mM) significantly (P < 0.05) increased PI 

staining compared to control (31.2 ± 1.6 vs 20.5 ± 1.2%). Treatment with both acetate (6 

mM) and memantine (10 μM) slightly reduced the acetate-induced increases in PI staining 

when compared to acetate (6 mM) alone (26.8 ± 0.7 vs 31.2 ± 1.6%) (P < 0.05, unpaired t 
test) (Figure 7). Memantine (10 μM) also significantly (P < 0.05) increased NGF-derived 

PC12 PI staining compared to control (31.2 ± 2.3 vs 20.5 ± 1.2%) (Figure 7). This data 

suggests that acetate increases PI staining, which is reduced in the presence of the NMDAR 

blocker memantine (10 μM). Furthermore, calcium is extremely important in regulating 

NGF-derived PC12 cell viability as NMDAR blocker alone also significantly increased PI 

staining.

After seeing that memantine (10 μM) alone caused increases in PI staining, we ran a dose 

curve to explore what concentrations of memantine were cytotoxic to NGF-derived PC12 

cells (Figure 8). What we found was that PC12 cells exposed to concentrations of 

memantine (0.5–5 μM) for 4 h had no significant increase in PI staining fluorescence. 

Consistent with our previous experimental findings (Figure 7), memantine (10 μM) for 4 h 

was cytotoxic to NGF-derived PC12 cells (Figure 8A). We then examined whether nontoxic 

doses of memantine (0.5–5 μM) with acetate (6 mM) would have an effect on reducing cell 

death. What we found again was that acetate (6 mM) treatment of NGF-derived PC12 cells 

for 4 h increased cell death and that coapplication with memantine (0.5–5 μM) had no 

apparent effect on reducing cell death relative to control (Figure 8B). This data suggests that 

there are alternative NMDAR independent mechanisms contributing to acetate-induced 

PC12 cell death.

DISCUSSION

The present study evaluated the toxic effects of both EtOH and acetate on dopaminergic-like 

PC12 cells. Although a majority of the literature has investigated the effects of ethanol-

induced excitotoxicity, general consensus on a mechanism has yet to be fully understood. 

Ethanol metabolism to acetate and the effect acetate has on the brain is much less explored. 
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As such, we report for the first time, at least in regard to alcohol use, the cytotoxic and 

inflammatory effects of acetate on dopaminergic-like PC12 cells.

Using flow cytometry, we confirmed that NGF-derived PC12 cells incubated with acetate for 

4 h increased cell death in a dose-dependent manner (Figure 1). The construction of a dose-

response curve revealed an EC50 value of 4.40 mM acetate (Figure 1C). Wang and 

colleagues reported acetate concentrations following EtOH infusion of 4.09 ± 0.24 mM with 

sustained steady state acetate concentrations of 3.51 ± 0.20 mM in unconditioned alcohol 

rats.22 Our EC50 concentration for acetate-induced increases in cell death closely 

corresponds to the apparent peak and steady-state brain concentrations reported by Wang’s 

group. Because acetate is capable of remaining elevated 12 plus hours post alcohol 

consumption20,21 while EtOH concentrations return to undetectable levels31,32 suggests that 

the chemical compound more likely to be contributing to alcohol-induced excitotoxicity is 

acetate.

To evaluate the effects of EtOH on cytotoxicity, we also treated NGF-derived PC12 cells for 

4 h with EtOH concentrations from 0 to 100 mM. The 100 mM concentration 

physiologically would be considered a near lethal dose in nonheavy drinkers (BAC of 

~0.45%, 0.08% is considered legally drunk). What we observed was that, at high EtOH 

concentrations, there was no apparent change in cell death in PC12 cells (Figure 2). 

Although this does not mean that EtOH is not cytotoxic, at least in NGF-derived PC12 cells, 

4 h exposure was not enough time to produce an effect. Various groups routinely incubate 

cell cultures with EtOH in the 40–100 mM concentration range for 24 h to observe cytotoxic 

effects15,33 or physiological effects.34–36

A study published by Jiang and colleagues also reported elevated brain uptake and 

metabolism of acetate in heavy drinkers.21 It was reasoned that the acetate was an alternative 

energy source in the brain and may facilitate a reward mechanism in the form of caloric 

benefit or alteration in adenosinergic signaling.37,38 From a cytotoxic standpoint, perhaps an 

additional reason for this apparent increased brain uptake and oxidation of acetate in heavy 

drinkers is to mitigate the excitatory insult from constant brain acetate following alcohol 

consumption. Moreover, Maxwell’s group was able to show that acetate caused hangovers in 

rats,27 suggesting that the hangover symptoms are likely a result of excitatory insult to the 

brain. Our data, at least in PC12 cells, corroborates their data as hangovers are likely due to 

over excitation of neurons. Behaviorally, acetate is suggested to play a role in reduced 

locomotion,39 which implies acetate may propagate responses in addition to neurotoxic 

effects.

Next, we explored the impact both acetate and ethanol had on the production of cytosolic 

reactive oxygen species following a 4 h exposure. Acetate consistently increased cytosolic 

reactive oxygen species in a dose-dependent manner (Figure 3). Our dose-response curve for 

acetate indicated an EC50 value of 1.81 mM acetate (Figure 3C). Oppositely, ethanol had no 

apparent effect on cytosolic ROS; however, there was a trend for lower concentrations (2, 6, 

and 15 mM) of ethanol to have a reduction in cytosolic ROS. There is some literature to 

suggest that low doses of ethanol can inhibit the formation of ROS via inhibition of NLR 

Family Pyrin Domain Containing 3 (NLRP3) protein. The action was independent of 
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NMDAR or GABA ion channels, which suggests at least a partial alternative pathway for 

ethanol inhibition of ROS at low doses.40 Another possibility is that low doses of ethanol 

inhibit NMDAR ion channels, which would inhibit the calcium-calmodulin-NO synthase 

cascade,41 and that higher doses of ethanol have nonspecific effects. Dizon and colleagues 

reported that ethanol did increase ROS production in PC12 cells after 24 h treatment at 

concentrations >50 mM, which would be the equivalent of a sustained BAC of 0.08% for 24 

h. Furthermore, they found that 24 h ethanol treatment <25 mM had little or no effect on 

increased ROS.42 Whether low doses of ethanol inhibit NLRP3, reducing ROS in PC12 cells 

will need to be examined in the future.

It was not surprising for us to see increases in cytosolic ROS following acetate treatment, as 

this has been established in the literature from mitochondrial-generated ATP.43,44 Acetate is 

widely accepted as a precursor for the generation of acetyl-CoA through acetyl-CoA 

synthetase.45,46 Because a majority of cells express monocarboxylate transporters 

(transporters of primarily pyruvate, lactate and acetate),47–49 we expected that bath 

application would result in increased mitochondrial oxidation of acetate and the generation 

of cytosolic ROS. We were expecting similar responses with ethanol, as it has been 

documented that ethanol application causes increased ROS generation as well.50–52 This was 

not the case, at least in PC12 cells.

A majority of ethanol-related ROS are generated in the liver,51,52 at least in part due to liver 

cells having high amounts of alcohol and acetaldehyde dehydrogenase enzymes.53,54 This 

generates acetate, which further feeds into the generation of ATP via acetyl-CoA synthetase,
45,46 although further oxidation of acetate in the liver does not appear to proceed at an 

appreciable rate.55,56 This suggests that a majority of the conversion of acetate to CO2 and 

ATP occurs elsewhere with brain21,57,58 and skeletal muscles59,60 as major sources of 

metabolism. Thus, we speculate that PC12 cells lack the metabolizing enzymes required for 

the generation of large quantities of acetate from ethanol.

We next investigated whether acetate was able to increase cytosolic calcium and pro-

inflammatory cytokine TNFα through NMDAR activation. Our major findings indicate that, 

in NGF-derived PC12 cells, acetate was capable of increasing cytosolic calcium after 4 h 

treatment through activation of NMDAR (Figure 6). Chen and colleagues reported that 

treatment of developing neuromuscular synapses with acetate increased calcium influx by 

potentiating NMDAR and increasing spontaneous synaptic currents.61 Similarly, our lab 

reported that microinjection of acetate and ethanol into the central nucleus of the amygdala 

increased sympathetic nerve activity through activation of NMDAR.29 Collectively, this 

suggests that acetate is able to increase cytosolic calcium, thereby increasing neuronal 

activity. Treatment of NGF-derived PC12 cells with a cocktail of acetate and memantine 

attenuated the increase in calcium compared to that of acetate alone (Figure 6C). Because 

there is evidence for a pro-inflammatory cytokine/calcium interaction,62,63 we then explored 

whether NMDAR activation caused increases in TNFα. What we found, consistent with our 

calcium imaging, was that acetate (6 mM) significantly increased TNFα mRNA expression 

levels (Figure 5E) and protein expression (Figure 5F) and was effectively abolished by 

coapplication of acetate with memantine (Figure 5C). This data suggests that, at least in 

NGF-derived PC12 cells, acetate-induced increases in cytosolic calcium through NMDAR 
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activation directly increases mRNA and protein expression levels of TNFα. Thus, this 

supports the notion that acetate is a noxious stimulus in the brain.

The last portion of the study explored what contribution the NMDAR had to the excitotoxic 

effects from acetate (Figure 7). Co-application of acetate (6 mM) and memantine (10 μM) 

showed a trend for a slight reduction in cell death; however, this was not significant (one-

way ANOVA) (Figure 7B). An interesting observation was that memantine (10 μM) alone 

also significantly increased cell death (Figure 7B). We therefore conducted a dose-dependent 

response of memantine alone (Figure 8A). We found that doses of memantine (0.5–5 μM) 

displayed no apparent cytotoxic effect (Figure 8A). We then used those doses of memantine 

(0.5, 1, 2, and 5 μM) and coapplied them with acetate (6 mM) (Figure 8B). We found that 

coapplication of acetate (6 mM) with varying, nontoxic doses of memantine was unable to 

abolish any acetate-induced increase in cell death (Figure 8B). This suggests that there are 

alternative mechanisms independent of NMDAR activation that contributes to cell death. On 

the basis of our preliminary data, we speculate that the generation of cytosolic ROS may be 

a contributing factor, although future studies will be needed to determine the extent with 

which ROS contributes to alterations in cell signaling and cell death.

Another possibility for acetate-induced cell death through NMDAR bypass is the 

monocarboxylate transporter (MCT). MCT, as the name suggests, is a transporter of small 

organic compounds that contain one carboxylic functional group. It is primarily known for 

the transport of pyruvate and lactate47 but is also capable of transporting short chain fatty 

acids such as acetic acid, propionic acid, and butyric acid.47–49,64,65 Once transported across 

cell membranes, the acidic hydrogen dissociates where it can acidify the intracellular space.
14,61 The fluctuations in external and internal pH are capable of modulating many ion 

channels such as the voltage-gated sodium, calcium, and potassium channels.66,67 Cytosolic 

acidification is also a common precursor prior to downstream signaling for apoptosis.68,69 It 

is therefore plausible that, in addition to acetate-induced NMDAR activation, MCT transport 

of acetic acid is a likely contributor to acetate-induced cell death.

Another interesting finding is that memantine at higher concentrations (10 μM) induces cell 

death (Figures 7 and 8). Neurite outgrowth is dependent on calcium perturbations in either 

direction directly affecting neurite outgrowth.70,71 Thus, at higher concentrations of 

memantine, we may be reducing cytosolic calcium enough to inhibit neurite outgrowth, 

reducing anchoring and possibly leading to cell death. Although acetate and memantine (10 

μM) are both cytotoxic to PC12 cells independently, their combined effects are not additive 

and in fact show a slight trend to reduce toxicity. This suggests acetate may counteract 

memantine-induced toxicity, possibly through pH-dependent regulation of voltage-gated ion 

channels66,67 as mentioned above, although future work will be needed to determine if this 

is the case.

Taken together, the results of this study demonstrate that acetate at physiologically relevant 

concentrations produced from alcohol consumption and metabolism are capable of 

increasing excitotoxic insult in dopaminergic-like PC12 cells. Second, acetate increased 

cytosolic Ca2+ and upregulated TNFα via an NMDAR-dependent mechanism. NMDAR 

blockade was unable to abolish the acetate-induced increase in cell death. Furthermore, 
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varying doses of ethanol had no apparent effect at 4 h on PC12 cellular death or cytosolic 

ROS. Collectively, this suggests that a major contributor in alcohol-induced excitotoxicity is 

at least in part due to the ethanol metabolite acetate. Future studies will be needed to 

determine the different cellular responses initiated by (1) acetate-induced increases in 

cytosolic calcium and (2) acetate-induced increases in cytosolic ROS.

METHODS

Chemicals.

All chemicals and cell culture reagents/supplies were obtained from Thermo Fisher 

Scientific (USA) except for nerve growth factor (NGF, Sigma-Aldrich).

Cell Culture.

PC12 cells obtained from ATCC (USA) were suspended in plating media (PM) consisting of 

50 mL of Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% horse 

serum (HS), 5% fetal bovine serum (FBS), 1% antibiotics (penicillin and streptomycin), and 

nerve growth factor (NGF) at 20 ng/mL. Cells were grown to 80% confluency in a 75 cm2 

tissue culture flask at which time the cells were detached with 0.25% trypsin 

(Thermofisher); the trypsin was neutralized with an equal volume of PM, and a portion of 

the cell suspension was mixed with 10% DMSO (Sigma, USA) and frozen for 2 days in a 

−80 °C freezer before transfer into liquid N2 for future passages. The cells in PM were 

transferred to 24-well plates (Costar) and placed in a humidified CO2 incubator (5% CO2) at 

37.5 °C and grown to 80% confluency. PC12 cells were passaged for 10 passages before 

using new cells. Prior to use in experiments, cells were examined for their health and proper 

neurite outgrowth.

PC12 Cell Treatment.

After checking PC12 cell viability, the PM was aspirated and cells were washed with 12.5 

mL of artificial cerebrospinal fluid (ACSF)72 to remove any residual serum (0.5 mL/well). A 

stock solution of sodium acetate was created (1 M) by dissolving sodium acetate in ultrapure 

water (Thermofisher) and filter sterilizing through a 0.2 μm sterile syringe filter 

(Thermofisher). The stock solution of sodium acetate was added into DMEM to the desired 

acetate concentration, heated to 37.9 °C, and then added to the 24-well plate (0.5 mL/well). 

The PC12 cells were then placed back into the humidified CO2 incubator (5% CO2) heated 

at 37.5 °C for 4 h. Similar preparations were used for ethanol treatments and acetate and 

memantine treatments. After 4 h, the cells were used for either flow cytometry, RT-PCR or 

real-time imaging experiments.

Cytotoxicity and ROS Assay via Flow Cytometry.

For the effect of acetate on cell death and ROS to be studied, PC12 cells were subjected to a 

PI exclusion assay for cell death and Cell ROX orange for cytosolic ROS. Both assays were 

conducted using flow cytometry. After checking PC12 cell viability, the PM was aspirated 

and cells were washed with 12.5 mL of artificial cerebrospinal fluid (ACSF) to remove any 

residual serum (0.5 mL/well). After aspirating the ACSF, 12.5 mL of trypsin (at 37.9 °C) 

was added to the culture dish (0.5 mL/well) and gently agitated to loosen cells from the 
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bottom of the plate. The trypsin was then neutralized by the addition of 12.5 mL of the PC12 

cell media (DMEM, horse serum, antibiotics, no NGF), and this mixture was then 

transferred to individual centrifuge tubes (1.5 mL). Tubes were centrifuged for 2 min at 1000 

rpm. The supernatant was aspirated from each tube; cells were resuspended in 12.5 mL (0.5 

mL per tube) of live cell imaging solution (LCIS, Thermofisher), and 1 drop of propidium 

iodide (PI) ReadyProbes (Thermofisher) was added to each individual tube. The tubes were 

vortexed briefly to break up the cell pellets created by the centrifugation, covered with 

aluminum foil to protect from light, and allowed to incubate with the PI for 20 min at room 

temperature before data collection. Flow cytometry was conducted using a BD Accuri C6 

(BD Bioscience) flow cytometer. Experiments were conducted in at least triplicate at 10,000 

cells per run. Percentages of PI staining were based off controls, and the same parameters 

for analysis were used for the treatment groups to compare relative to control.

For cytosolic reactive oxygen species, the same protocol above was used except that for PI 

we used Cell ROX Orange (Thermofisher). The Cell ROX Orange reagent was prepared 

according to the manufacturer’s instructions in LCIS and added to the cells in each 

individual 1.5 mL centrifuge tubes (0.5 mL per tube). The cells were incubated at room 

temperature for 40 min. Following staining, the tubes were centrifuged for 2 min at 1000 

rpm, and the staining solution was aspirated. Fresh LCIS was added back into the tubes 

containing the cells (0.5 mL per tube), vortexed briefly, and then analyzed on the flow 

cytometer. Single cells were only included in the analysis by gating on forward scatter vs 

side scatter.

Calcium Imaging.

NGF-derived PC12 cells were incubated with DMEM, acetate (6 mM) in DMEM, or acetate 

(6 mM) and memantine (10 μM) for 4 h. The treatment solution was aspirated, and the cells 

then were incubated for 30 min with Fluo-4AM (Thermofisher, 3 μM final concentration) in 

artificial cerebral spinal fluid containing (in mM) 125 NaCl, 2 KCl, 2 MgSO4, 1.25 

NaH2PO4, 26 NaHCO3, 2 CaCl2, 10 D-glucose, and 0.4 ascorbic acid (osmolality: 295–302 

mosmol L−1; pH 7.3–7.4). Following Fluo-4AM treatment, the solution was aspirated, and 1 

mL of LCIS was added to each well and then viewed under an inverted microscope (Leica) 

equipped with a mercury burner, correct fluorescence filter, and a digital camera (Leica) 

connected to a computer with image capture software (Leica). Images were captured for 

each well in a 24-well plate. The backgrounds of images used for fluorescence quantification 

were normalized across images. Fluorescence intensity was analyzed and quantified using 

ImageJ software73 on six randomly selected cells for each treatment, and corrected 

fluorescence intensity was compared between treatment groups. Quadruplicates of each 

treatment were compared and all showed similar trends.

Proinflammatory Cytokine TNFα mRNA Level Measurement.

NGF-derived PC12 cells were treated with vehicle control, acetate (6 mM), acetate (6 mM) 

and memantine (10 μM), or memantine (10 μM) for 4 h. Cells were collected, and mRNA 

was extracted using an RNA extraction kit (Qiagen) according to the manufacturer’s 

instructions and converted to cDNA using Superscript VILO (Thermofisher). cDNA 

concentrations were normalized to 250 ng/μL, and real time PCR (Step-one plus real time 

Chapp et al. Page 10

ACS Chem Neurosci. Author manuscript; available in PMC 2020 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PCR system, Applied Biosystems) was performed to measure mRNA levels of GAPDH and 

TNFα using specific primers (Applied Biosystems). Each set of experiments was performed 

in quadruplicate, and the data were analyzed with Data Assist V. 3.01 (Applied Biosystems) 

for changes in mRNA expression levels of TNFα using GAPDH as a selected control.

TNFα Immunoreactivity Assessment.

PC12 cells were rinsed with cold PBS and fixed with 4% paraformaldehyde for 10 min and 

then rinsed with cold PBS and treated with 100% methanol (−20 °C) for 1 min. Following 

methanol, the cells were rinsed with PBS three times. The cells were then incubated with 

mouse anti-TNFα (1:200 dilution) (Santa Cruz, Biotechnology, CA, USA) in PBS 

containing 0.5% Triton X-100 and 5% horse serum overnight at 4 °C. Cells were washed 

with PBS three times for 5 min each and then incubated with Alexa Fluor 488 donkey 

antimouse IgG (Thermofisher, MA, USA) for 4 h at room temperature. The cells were 

observed under an inverted fluorescence microscope (Leica) equipped with a mercury lamp 

and the correct fluorescent filters and a digital camera (Leica) equipped to a computer with 

photo software (Leica). Photos were taken and analyzed offline with ImageJ Software (NIH, 

Bethesda, USA). Image backgrounds were normalized using ImageJ software.

Statistical Analysis.

Data values were reported as means ± SE. Depending on the experiments, group means were 

compared using either unpaired Student’s t-test or one-way ANOVA. Differences between 

means were considered significant at p < 0.05. Where differences were found, Bonferroni 

post hoc tests were used for multiple pairwise comparisons. All statistical analyses were 

performed with a commercially available statistical package (GraphPad Prism, version 5.0).
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ABBREVIATIONS

NMDAR N-methyl-D-aspartate receptor

TNFα tumor necrosis factor alpha

PI propidium iodide

ROS reactive oxygen species

EtOH ethanol

BAC blood alcohol concentration

eNOS endothelial nitric oxide synthase

NGF nerve growth factor

DMEM Dulbecco’s modified Eagle media
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FBS fetal bovine serum

ACSF artificial cerebrospinal fluid

PM plating media

LCIS live cell imaging solution
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Figure 1. 
Acetate dose-dependent response to increases in cell death in PC12 cells. (A) Representative 

flow cytometry charts for varying concentrations of acetate (left to right: 0, 2, 6, 15, 30 mM) 

and the corresponding percentage of PC12 cells staining positive for PI. Control had a mean 

PI percentage of 26.6 ± 0.8%. All measurement settings were based off controls (red line on 

chart). (B) Bar graph summary data for control vs acetate (6 mM) on percentage of PI 

positive PC12 cells (**P < 0.01). (C) Dose-response curve of acetate in log10 concentration 

of acetate (mM). On the basis of our dose-dependent response, acetate had an EC50 value of 

4.40 mM. (N = number of wells per treatment; each well analyzed for 10,000 events per 

well.)
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Figure 2. 
Ethanol has no effect on PC12 cell death. (A) Representative flow cytometry charts for 

varying concentrations of EtOH (left to right: 0, 2, 6, 15, 50, 100 mM). There was no 

difference observed between control and any doses of EtOH tested. (B) Summary data for 

varying concentrations of EtOH. No statistical difference (one-way ANOVA; F5,36 = 0.48) 

was noted between any EtOH concentrations and control in PC12 cells for PI staining. (N = 

number of wells per treatment; each well analyzed for 10,000 events per well.)
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Figure 3. 
Acetate increases cytosolic reactive oxygen species. (A) Representative flow cytometry 

charts for cytosolic ROS fluorescence with various concentrations of acetate. (B) Summary 

data for acetate (6 mM) on increases in cytosolic ROS production. Acetate (6 mM) 

significantly (**P < 0.01) increased cytosolic ROS percentage, 44.1 ± 1.4%, compared to 

baseline values of 33.3 ± 1.5%. (C) Dose-response curve for acetate on changes in cytosolic 

ROS. EC50 value calculated from the dose-response curve indicating a value of 1.81 mM 

acetate. (N = number of wells per treatment; each well analyzed for 10,000 events per well.)
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Figure 4. 
Ethanol has no apparent effect on cytosolic reactive oxygen species. (A) Representative flow 

cytometry charts for various doses of ethanol on cellular ROS. (B) Summary data for various 

doses of ethanol on changes in cytosolic ROS. Ethanol had no statistical effect (one-way 

ANOVA; F5,18 = 1.61) on alterations in cytosolic ROS; however, there was a trend for lower 

doses (2, 6, and 15 mM) to reduce ROS production. (N = number of wells per treatment; 

each well analyzed for 10,000 events per well.)
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Figure 5. 
Acetate increases TNFα through activation of NMDAR. Representative immunochemistry 

staining for TNFα in PC12 cells from (A) control, (B) acetate (6 mM), (C) acetate (6 mM) 

and memantine (10 μM), and (D) memantine (10 μM). (E) Summary data of varying 

treatments of acetate (0, 6 mM), acetate (6 mM) and memantine (10 μM), and memantine 

(10 μM) alone on mRNA expression levels of TNFα. Acetate (6 mM) significantly increased 

mRNA expression of TNFα compared to control (1.4 ± 0.08 vs 1.0 ± 0.004 fold). Co-

application of acetate (6 mM) and memantine (10 μM) abolished (††P < 0.01 vs control, one-

way ANOVA; F3,12 = 17.66) the acetate-induced increase in mRNA expression of TNFα. 

Memantine (10 μM) had no effect on baseline mRNA expression of TNFα compared to 

control (**P < 0.01 vs acetate (6 mM), one-way ANOVA; F3,12 = 17.66). (F) Summary data 

for immunochemistry staining fluorescence of TNFα quantified using ImageJ software (††P 
< 0.01 vs control, *P < 0.05 vs acetate (6 mM), one-way ANOVA; F3,21 = 6.20). (For 

mRNA summary data (E), N = number of wells per treatment; for fluorescence intensity 

quantification (F), N = number of cells analyzed.)
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Figure 6. 
Real-time cytosolic calcium measurements in PC12 cells. Representative cytosolic calcium 

fluorescence in NGF-derived PC12 cells at (A) control (0 mM acetate), (B) 4 h post acetate 

(6 mM) treatment, and (C) 4 h post acetate (6 mM) and memantine (10 μM) treatment. (D) 

Memantine (10 μM) had no effect on baseline cytosolic calcium. (E) Summary data for 

cytosolic calcium measured with Fluo-4AM and quantified using ImageJ software. Acetate 

(6 mM) significantly (†††P < 0.05 vs control, one-way ANOVA; F3,20 = 16.91) increased the 

cytosolic calcium fluorescence after 4 h of treatment, whose response was abolished by 

coapplication of acetate (6 mM) and memantine (10 μM) (**P < 0.01, ***P < 0.001 vs 

acetate (6 mM), one-way ANOVA). (N = number of cells analyzed.)
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Figure 7. 
Effect of NMDAR blocker on the acetate-induced increase in cell death in PC12 cells. (A) 

Representative flow cytometry charts of the effect of (left to right: 0, 6 mM acetate, acetate 

(6 mM) and memantine (10 μM), and memantine (10 μM). (B) Acetate (6 mM) caused a 

significant (††P < 0.01 vs control, one-way ANOVA) increase in PI staining compared to that 

of control (31.2 ± 1.6 vs 20.5 ± 1.2%). Acetate (6 mM) and memantine (10 μM) had a trend 

for at least partially reducing acetate-induced increases in PI staining (26.8 ± 0.7 vs 31.2 ± 

1.6%). Memantine (10 μM) alone had a significant (††P < 0.01 vs control, one-way ANOVA; 

F3,20 = 6.72) increase in PI staining compared to that of control (31.2 ± 2.3 vs 20.5 ± 1.2%). 

(N = number of wells per treatment; each well analyzed for 10,000 events per well.)
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Figure 8. 
NMDAR blocker dose-response with and without acetate. Summary data for NMDAR 

antagonist and antagonist with acetate. (A) NMDAR antagonist memantine dose-response 

curve for cell death. Concentrations of 0.5–5 μM memantine were not cytotoxic (**P < 0.01 

vs control; F5,18 = 8.31). (B) Acetate (6 mM) was incubated with varying doses of NMDAR 

antagonist memantine to determine if lower doses of memantine could decrease acetate-

induced cell death. Memantine was unable to abolish the acetate-induced increase in cell 

death (*P < 0.05, **P < 0.01, ***P < 0.001 vs control; F6,26 = 6.20). (N = number of wells 

per treatment; each well analyzed for 10,000 events per well.)

Chapp et al. Page 23

ACS Chem Neurosci. Author manuscript; available in PMC 2020 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	INTRODUCTION
	RESULTS AND DISCUSSION
	Acetate Increases Cell Death in NGF-Derived PC12 Cells.
	Ethanol Has No Effect on Cell Death in NGF-Derived PC12 Cells.
	Acetate Increases Cytosolic Reactive Oxygen Species.
	Ethanol Has No Apparent Increase in Cytosolic Reactive Oxygen Species.
	Acetate Increases TNFα mRNA Expression through Activation of NMDAR.
	Acetate Increases Cytosolic Calcium in PC12 Cells, Which Is Abolished by the NMDAR Antagonist.
	NMDAR Antagonist Memantine Slightly Reduces the Acetate-Induced Increase in Cell Death.

	DISCUSSION
	METHODS
	Chemicals.
	Cell Culture.
	PC12 Cell Treatment.
	Cytotoxicity and ROS Assay via Flow Cytometry.
	Calcium Imaging.
	Proinflammatory Cytokine TNFα mRNA Level Measurement.
	TNFα Immunoreactivity Assessment.
	Statistical Analysis.

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.

