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Abstract

Polycystic ovary syndrome (PCOS) is a heterogeneous familial disorder often emerging during the 

peri-pubertal years concomitantly with the onset of gonadarche and adrenarche. Both gonadarche 

and PCOS reflect functional changes in the hypothalamic-pituitary-ovarian axis. During this 

transition, normal girls manifest features consistent with PCOS such as irregular menses, mild 

hyperandrogenism, and multi-follicular ovary morphology. Themes common to puberty and 

PCOS, neuroendocrine features, androgen exposure, and insulin sensitivity, will be considered to 

address the possibility that PCOS interferes with the normal pubertal transition.
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Introduction

Polycystic ovary syndrome (PCOS) is a heterogeneous familial disorder often emerging 

during the peri-pubertal years. In humans, pubertal transition involves two distinct 

components, gonadarche and adrenarche. Gonadarche reflects the initiation of 

hypothalamic-pituitary-ovarian (HPO) axis activity triggered by a reactivation of robust 

pulsatile GnRH release evidenced by increased gonadotropin secretion. Adrenarche, the 

pubertal maturation of the adrenal cortex, is accompanied by increased adrenal zona 

reticularis C19 steroid secretion and precedes gonadarche.
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Both gonadarche and PCOS reflect functional changes in the neuroendocrine axis regulating 

the ovary (HPO axis). Increased LH secretion is commonly found in women with PCOS, 

and some data suggest that premature onset of adrenarche precedes development of PCOS. 

Hence, both components of puberty are intertwined with PCOS. Indeed, confirming a 

diagnosis of PCOS during the peri-pubertal period is challenging in that normal girls 

manifest features consistent with PCOS such as irregular menses, mild hyperandrogenism, 

and multi-follicular ovary morphology [1].

This begs the question as to whether PCOS interferes with normal pubertal transition? Does 

puberty activate an imprinted organizational susceptibility to develop PCOS? Does excessive 

persistent ovarian or adrenal C19 androgen secretion influence GnRH and LH secretion? Or 

perhaps, excessive anti-Mullerian hormone (AMH) secretion from the PCOS ovary disrupts 

the pubertal transition? Brief reviews of PCOS, gonadarche, and adrenarche to ascertain 

potential points of intersection are discussed.

PCOS

PCOS is a heterogeneous multifactorial familial disorder affecting 6–15% of reproductive 

aged women depending on the diagnostic criteria [2,3]. PCOS is characterized by irregular 

menses, anovulation, hyperandrogenism, polycystic ovary morphology, infertility, and 

insulin resistance/hyperinsulinemia. Women with PCOS have increased risks for type 2 

diabetes, obesity, dyslipidemia, and depression [4,5]. From an evolutionary perspective, 

PCOS appears to be an ancient disorder [6,7]. Most clinical studies tend to recruit patients 

with greater symptom severity confounding investigation of the pathophysiology [8].

The HPO axis dysfunction typical of PCOS often begins during the peripubertal years. 

Increased LH pulse frequency occurs in adolescent girls with hyperandrogenemia [9]. 

Daughters of women with PCOS manifest features associated with PCOS such as higher 

LH, androgen, and AMH concentrations as well as pancreatic β-cell dysfunction [10,11,12]. 

Two biomarkers, longer anogenital distance and increased sebum production, associated 

with increased in utero androgen exposure have been described among daughters of women 

with PCOS suggesting excessive prenatal androgen exposure [13,14]. In the Swedish 

nationwide register-based longitudinal cohort, daughters of women with PCOS had a 

fivefold increased risk to develop PCOS [15].

Twin studies reported high hereditability for PCOS consistent with a role for genetic factors 

[16,17]. Genome-wide association studies (GWAS) have identified at least 26 replicated loci 

associated with PCOS. The underlying genetic architecture for PCOS is similar irrespective 

of diagnostic criteria, NIH or Rotterdam [18]. Identified loci are associated with 

neuroendocrine, metabolic, and reproductive pathways [18,19].

Gonadarche

Gonadarche represents the culmination of development of the hypothalamic-pituitary-

gonadal (HPG) axis, which begins in utero when sex differences are first noticed. In man 

and other higher primates, male fetuses demonstrate robust GnRH pulsatility as reflected by 

LH secretion, testicular testosterone secretion, and negative feedback control of 
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gonadotropin release by the fetal testis. This in utero testicular testosterone secretion 

programs or imprints the GnRH pulse generator in male fetuses. The fetal testis also secretes 

AMH which promotes degeneration of the Mullerian ducts. Towards the end of pregnancy, 

GnRH and gonadotropin secretion are suppressed by the elevation of estradiol and other 

feto-placental hormones.

Following parturition this hormonal inhibition of GnRH secretion is removed resulting in 

transient increased gonadotropin secretion labeled as the “mini-puberty” of infancy. 

Fundamental sex differences in hypothalamic GnRH pulse generator activity are likely 

operational during this period. [20]. Despite gonadotropin stimulation, gametogenesis does 

not occur during this time. Subsequently, during the childhood years, the ovary acquires the 

ability to respond to gonadotropin stimulation. However, the neurobiological “brake” 

imposed on the GnRH pulse generator maintains low circulating LH and FSH concentrations 

that guarantee the relative quiescence of the prepubertal ovary until the GnRH pulse 

generator is reactivated at the time of gonadarche [21,22].

While compelling evidence indicates that kisspeptin expressed by neurons in the 

infundibular nucleus relays the output of the GnRH pulse generator to the GnRH neuronal 

network, the molecular mechanisms underlying the onset, duration and inter-pulse interval 

of intermittent kisspeptin discharges are less well established [23]. At least one stimulatory 

peptide, neurokinin B, and one inhibitory peptide, dynorphin, appear to be involved. 

Available data indicate that kisspeptin is not the trigger for puberty onset. Rather, upstream 

regulatory mechanisms integrate a variety of signals communicating nutritional, metabolic, 

genetic, and environmental status [22,24]. Kisspeptin neurons in the infundibular nucleus 

transduce these signals from higher centers and relay them to the GnRH neurons. Kisspeptin 

neurons also express progesterone receptors (PR), estrogen receptor-α (ERα), and androgen 

receptors (AR); these neurons may be involved in steroid hormone feedback. GnRH neurons 

express ERβ receptors and GABA receptors, but do not express AR or ERα receptors [25].

During normal pubertal development, insulin sensitivity temporarily declines with a nadir in 

mid-puberty [26]. This is accompanied by increased glucose-stimulated insulin secretion 

[27]. The growth hormone (GH)/IGF-1 axis likely contributes to the insulin resistance of 

puberty [28].

Genetic and epigenetic influences appear to affect the timing of gonadarche [29,30]. Studies 

of inherited GnRH-dependent precocious puberty have found that the MKRN3 gene 

suppresses GnRH pulse generator activity [31]. A loss of function mutation in another gene 

associated with central precocious puberty, delta-like homolog 1 (DLK1), was identified in 

two sisters who had early menarche and PCOS [32].

With onset of gonadarche, LH stimulates theca cell androgen synthesis while FSH 

stimulates aromatase expression and estrogen synthesis by granulosa cells. A normal 

menstrual cycle is characterized by rising estradiol sufficient to provoke the LH surge and 

ovulation followed by progesterone secretion by the corpus luteum which slows GnRH 

frequency and therefore that of LH. The gonadal hormones, estrogen and progesterone, 

feedback to the hypothalamic-pituitary components of the HPG axis [33]. During the first 
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two gynecologic years, most menstrual cycles are anovulatory. Subsequently, coordinated 

maturation of HPO axis occurs culminating in monthly ovulatory cycles [34]. Despite this 

transient period of oligomenorrhea, most girls subsequently develop normal HPG axis 

function.

AMH, a glycoprotein secreted by granulosa cells, modulates ovarian function. AMH slows 

the transition from primordial to primary follicles to avoid over-recruitment of growing 

follicles [35,36,37]. In the normal ovary, the delicate balance between AMH, theca cell 

derived androgens, and estradiol governs follicular growth and dominant follicle selection 

[38,39]. Circulating AMH concentrations are higher in women with PCOS compared to 

women without PCOS [40]. The increased serum AMH concentrations are attributed to both 

an increased number of ovarian secondary preantral follicles and increased AMH secretion 

per follicle in women with PCOS [41,42]. Higher AMH concentrations persist during 

pregnancy especially among lean hyperandrogenic women with PCOS [43,44]. It has been 

suggested that elevated maternal AMH concentrations during pregnancy facilitate placental 

transfer of maternal androgens contributing to a hyperandrogenic environment for the female 

fetus [45]. Preclinical data have demonstrated that AMH increases GnRH and LH secretion 

suggesting that AMH can influence GnRH neuronal migration and GnRH secretion [46, 47, 

48].

Adrenarche

Adrenarche is characterized by the development of pubic hair, apocrine body odor, axillary 

hair, and acne. Adrenarche begins between ages 6–8 years when DHEAS concentrations 

rise. The proximate signals responsible for the onset of adrenarche remain unknown and 

appear to be distinct from the signals regulating gonadarche [49]. The physiologic 

mechanisms governing adrenal zona reticularis C19 steroid secretion also remain unknown; 

no initiating factors, feedback loops, or regulatory mechanisms have been validated. 

Available data regarding the relationships between early/premature adrenarche and PCOS 

are inconsistent [1].

Several common themes emerge when considering features of puberty in girls and PCOS. 

These themes, neuroendocrine features, androgen exposure, and insulin sensitivity will be 

discussed below.

Neuroendocrine features

Despite the ongoing mystery regarding the proximate stimulus for puberty, the onset of this 

developmental period reflects the dynamic integration of stimulatory and inhibitory factors 

incorporating a variety of inputs to modulate GnRH secretion via the GnRH pulse generator. 

Sophisticated neuroendocrine networks integrate hormonal, metabolic, nutritional, and 

environmental signals.

Whereas LH and FSH are synthesized in the same cell, GnRH pulse frequency modulates 

LH and FSH secretion. Increased GnRH pulse frequency is associated with increased LH 

secretion relative to FSH secretion [50]. Most women with PCOS have persistent rapid LH 

pulse frequency, increased LH pulse amplitude, and increased GnRH-stimulated LH 
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response. These increased GnRH and LH pulse frequencies drive the theca cells to produce 

androgens. The increased GnRH pulse frequency decreases FSH concentrations leading to 

diminished granulosa cell aromatase expression, insufficient conversion of androgens to 

estradiol and failure to select a dominant follicle.

Women with PCOS required higher concentrations of estradiol and progesterone to suppress 

LH secretion [51]. Flutamide treatment restored the ability of estradiol and progesterone to 

suppress LH secretion suggesting that androgens interfere with estrogen and progesterone 

negative feedback inhibition [52]. However, progesterone insensitivity was inconsistent 

among obese hyperandrogenic mid-late pubertal girls (Tanner 3–5) [53].

Androgens may influence feedback regulatory loops during different developmental 

windows and may affect neuronal sites likely upstream of the GnRH neurons. The 

importance of AR-mediated action in development of PCOS is evident because prenatally 

androgenized AR knockout mice did not develop PCOS like symptoms [54]. Curiously, 

neuron-specific AR knockout mice failed to develop PCOS-like symptoms emphasizing the 

likely importance of neuroendocrine interactions in the development of PCOS [55].

In nonhuman primates, administration of a GABA receptor blocker, bicuculline, led to 

increased kisspeptin production and earlier onset of gonadarche suggesting that GABA may 

be a component of the neurobiological brake that delays the onset of gonadarche [56]. Using 

GnRH-GFP prenatally androgenized mice, increased GABAergic post-synaptic currents in 

GnRH neurons, elevated dendritic spine density, increased GABAergic contact to GnRH 

neurons were found in prepubertal female mice indicating that prenatal androgen exposure 

was able to direct physical changes in the female GnRH neuronal network [57,58]. Anti-

androgen treatment reversed these changes suggesting system plasticity; partial restoration 

of reproductive cycles also occurred [57].

The specific neurobiologic mechanisms and neuronal populations responsible for increased 

GnRH and LH pulse frequencies in women with PCOS are poorly defined. Consistent with 

the hypothesis that NKB plays a role in GnRH pulse generation, short term treatment of 

women with PCOS with an NK3 receptor antagonist, AZD4901, decreased LH pulsatility 

and testosterone concentrations [59].

Available clinical data also suggest that GABA influences GnRH neuron activity either 

directly or indirectly. Women with PCOS have higher CSF concentrations of GABA [60]. 

Medications such as valproate are associated with increased CNS GABAergic tone and risk 

to develop PCOS-like clinical features. These findings suggest that increased NKB and/or 

GABA signaling could modulate hypothalamic neurobiology to promote increased GnRH 

and LH secretion. This finding introduces a potential conundrum in that GABA appears to 

interfere with LH secretion as a component of the neurobiologic brake to delay gonadarche 

while later promoting GnRH and LH secretion in women with PCOS.
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Androgen Exposure

Ovarian androgen

During puberty, circulating androgen concentrations increase due to increasing ovarian (and 

adrenal) androgen secretion. Clinical manifestations include acne, apocrine body odor, and 

sexual hair growth. The function and the molecular signature of PCOS theca cells differ 

from normal theca cells [61]. Specific primary differences include increased expression of 

CYP17A1, CYP11A1, and vascular cell adhesion molecule 1 (VCAM1) and increased 

androgen biosynthesis [62].

GWAS have identified several loci near genes that could modulate theca cell androgen 

production including DENND1A, LHCGR and RAB5B. Expression of the alternatively 

spliced variant, DENND1A.V2, is higher in theca cells obtained from women with PCOS 

compared to theca cells from normal women. Forced over-expression of this splice variant, 

DENND1A.V2, in normal theca cells recapitulated a PCOS phenotype with increased 

androgen production and increased CYP17A1 expression. Conversely, knockdown of this 

variant in PCOS theca cells decreased androgen production and CYP17A1 expression [63].

Available data suggest that LHCGR, RAB5B, and DENND1A.V2 interact to promote 

ovarian theca cell androgen synthesis [64]. Comparison of miRNA expression profiles from 

women with and without PCOS showed decreased miR-130b-3p expression in PCOS theca 

cells; decreased miR-130b-3p was correlated with increased DENND1A.V2 and CYP17A1 

expression and DHEA accumulation [65]. The molecular basis for the increased 

DENNDA1.V2 expression, decreased miR-130b-3p expression, and the dissimilar 

transcriptome signatures in PCOS theca cells are poorly defined. These findings are 

consistent with the ovary being a primary source of androgen excess in PCOS [66]. 

However, the possibility that excessive ovarian androgen production is secondary to 

neuroendocrine influences cannot be excluded.

Congenital Adrenal Hyperplasia (CAH)

The virilizing CAHs are autosomal recessive disorders characterized by decreased 

glucocorticoid synthesis, increased ACTH secretion, and increased C19 adrenal steroid 

secretion [67]. The most common form is 21-hydroxylase deficiency due to mutations in the 

21-hydroxylase (CYP21A2) gene. Women on adequate hormone replacement therapies 

generally have monthly menses and normal gonadotropin concentrations. Daughters of 

women with CAH are not virilized at birth due to the efficiency of placental aromatase to 

prevent placental transfer of maternal androgens.

However, some women with CAH develop secondary ovarian hyperandrogenism associated 

with elevated adrenal C19 steroid and progesterone concentrations [68]. In this situation, the 

finding of elevated progesterone concentrations in CAH raise questions regarding the 

mechanisms responsible for the proposed progesterone insensitivity in hyperandrogenic 

women [69]. Women with CAH may be predisposed to secondary ovarian 

hyperandrogenism as a consequence of prenatal androgen programming [70]. Another 

possibility is that persistently increased post-natal C19 adrenal steroid secretion disrupts 

neuroendocrine feedback leading to increased GnRH and LH pulse frequency [71].
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Developmental origins of disease are well established [72,73]. For female fetuses, maternal 

and fetal exposures to excessive androgen concentrations, nutritional excess, hyperglycemia, 

and other factors during critical prenatal developmental windows could program 

neurobiological circuitry [74]. In other words, hormones and other factors organize an 

enduring property (organizational effects) that may be induced by specific subsequent 

exposures (activational effects) [75,76]. For example, maternal metabolic dysfunction could 

compromise placental function resulting in fetal hyperandrogenism and hyperinsulinemia for 

the female fetus [77]. Another example involves the small for gestational age (SGA) infants 

who manifest increased DHEAS concentrations, functional ovarian hyperandrogenism, 

hyperinsulinemia, and rapid post-natal weight gain [78]. The Northern Finland Birth Cohort 

Study reported with women with PCOS had lower birth weights, earlier adiposity rebound, 

and greater BMI values [79].

Transgender

Female to male transgender patients are treated with testosterone to induce masculinization 

and suppression of menses. Most transmales aim to maintain testosterone concentrations in 

the normal male range. Testosterone, in this scenario, decreases LH concentrations leading 

to amenorrhea. Uncertainties and inconsistencies exist regarding how testosterone treatment 

affects ovarian morphology and ovarian function. Data are accumulating to resolve questions 

about the effects of testosterone treatment on HPO axis function. Successful oocyte retrieval 

was reported for 16 transmales on testosterone treatment who desired fertility and stopped 

testosterone 4–6 months prior to undergoing oocyte retrieval. In this small cohort, several 

years of gender-affirming testosterone treatment did not prevent successful oocyte retrieval 

[80]. Planned pregnancies, successful oocyte retrieval and live births have been reported in 

transmen following female-to-male gender transition [81,82]. Thus, in the natal female 

lacking in utero testosterone exposure/imprinting, the HPO axis readily resumes normal 

function when testosterone therapy is discontinued. These data suggest that testosterone 

treatment in adult post-pubertal females does not permanently program or activate the 

neuroendocrine mechanisms controlling GnRH and gonadotropin secretion. Thus, 

resumption of ovulatory cycles in transgender males emphasizes the importance of ongoing 

androgen exposure to induce and maintain a PCOS phenotype.

Preclinical Models

Numerous animal models involving prenatal, neonatal, juvenile, and peri-pubertal androgen 

excess have been studied.[83] Early-to mid-gestation prenatal androgen exposure in 

nonhuman primates led to reproductive and metabolic PCOS-like features including 

irregular menses, adipogenic restraint, and pancreatic dysfunction [84,85,86]. Additional 

studies have expanded and developed the hypothesis that in utero androgen exposure plays a 

substantial role in the molecular pathogenesis of PCOS [87]. Recently, a naturally occurring 

hyperandrogenic nonhuman primate population has been reported and detailed investigation 

of this interesting cohort in the future offers the potential to clarify the hormonal, genetic, 

epigenetic, and environmental factors associated with PCOS-like traits [88,89].
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Hyperinsulinemia, Insulin Resistance, and Obesity

Women with PCOS experience insulin resistance, hyperinsulinemia, and obesity. The extent 

of the insulin resistance is independent of obesity or changes in body composition [90,91]. 

Lean women with PCOS have insulin resistance and hyperinsulinemia. The insulin 

resistance and hyperinsulinemia have been attributed to impaired insulin signal transduction 

with compensatory increased pancreatic beta cell insulin secretion. Alternatively, however, 

primary hyperinsulinemia can precede development of peripheral tissue insulin resistance. In 

addition, androgens may impair insulin clearance contributing to hyperinsulinemia [92]. It is 

beyond the scope of this article to contrast these perspectives [93].

Insulin resistance is characterized by impaired insulin actions affecting glucose and lipid 

metabolism whereas its mitogenic actions are generally unimpaired contributing to the 

paradox of insulin signaling in PCOS. Despite impaired insulin action affecting liver, 

skeletal muscle, and adipose tissue, the pituitary and steroid secreting tissues remain insulin 

sensitive [94,95]. Elevated insulin concentrations act as a co-tropic hormone at the ovary and 

the adrenal to promote C19 steroid secretion. Weight gain appears to be one exacerbating 

factor in the pathogenesis of PCOS; in one series of 15 year old girls, higher BMI values 

were associated with persistent oligomenorrhea at age 18 years [96]. The important roles of 

insulin resistance and hyperinsulinemia in the pathophysiology of PCOS are evident when 

insulin sensitivity is improved by weight loss or pharmacologic agents, decreased insulin 

and androgens concentrations and improved ovarian function ensue [97].

Studies suggest that beta cell function and insulin sensitivity may differ beginning in 

childhood and early adolescence for girls likely to develop PCOS [98,99]. First degree 8–12 

year old relatives of women with PCOS have insulin resistance and beta cell dysfunction 

when compared to age- and BMI-matched girls unrelated to women with PCOS [10,100]. 

One preclinical study found that adult female rats exposed to androgen excess developed 

hyperinsulinemia due to increased insulin gene transcription in pancreatic β cells [101].

Adipose tissue secretes hormones influencing the liver, skeletal muscle, pancreas, and brain 

[102]. Per the adipose tissue expandability hypothesis, nutrient excess and insufficient 

adipose tissue fat storage lead to hypoxia, lipotoxity, inflammatory changes, insulin 

resistance, ectopic fat storage, de novo hepatic lipogenesis, and hepatic steatosis [103,104]. 

Importantly, a bidirectional mendelian randomization study showed that increasing BMI 

leads to PCOS whereas, conversely, PCOS does not intrinsically increase BMI [105,106].

Adipocytes express enzymes that activate and inactivate androgen precursors such as aldo-

ketoreductase type 1C (AKR1C3) which converts androstenedione to testosterone. Insulin 

increased AKR1C3 expression and androgens increased lipid accumulation in adipocytes 

[107]. Androgens inhibit early-stage human subcutaneous abdominal adipogenesis in vitro; 

if this occurs in vivo, the stage is set for ectopic fat distribution and lipotoxicity [108]. 

Hence, increasing BMI leading to systemic hyperinsulinemia could initiate a persistent cycle 

of adipocyte androgen production, lipotoxicity, and metabolic dysfunction ultimately 

affecting neuroendocrine function [109].

Witchel and Plant Page 8

Curr Opin Endocr Metab Res. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusions

Beginning during early post-menarcheal years, some girls enter a trajectory towards 

persistent hyperandrogenism, irregular menses, anovulation, and polycystic ovary 

morphology [110,111]. This PCOS trajectory seems to be activated concurrently with the 

onset of gonadarche and adrenarche associated with increasing circulating LH, FSH, and 

C19 steroid concentrations. Eventually, girls maturing along the PCOS trajectory may 

evolve to fulfill diagnostic criteria for the definitive syndrome [1].

The full biology underlying development of PCOS is remains unclear. Genetic and 

epigenetic factors, prenatal programming particularly by androgen exposure, hypothalamic 

mechanisms governing GnRH pulsatility, chronic exposure to mildly elevated postnatal 

androgen concentrations, hyperinsulinemia, and nutritional excess have been implicated in 

the pathophysiology of PCOS [112]. Persistent hyperandrogenism, hyperinsulinemia, insulin 

resistance, elevated AMH concentrations, nutrient excess, and other factors likely maintain 

this self-perpetuating cycle. At the current time, prevention of this vicious cycle of HPO axis 

dysfunction through healthy lifestyle interventions is essential [113].

Resumption of HPO axis function in transgender males treated with gender affirming 

testosterone treatment following withdrawal of androgen replacement has been reported. 

Hence, post-pubertal androgen excess alone does not appear to imprint the neuroendocrine 

axis governing gonadarche and HPO axis function. Returning to the question, does PCOS 

interfere with normal pubertal transition? Based on available data, especially regarding 

resumption of HPO axis function in transmen, pubertal HPO axis function appears to 

activate the transition to PCOS in those with underlying and ongoing susceptibility factors. 

Further investigation will be helpful to delineate the specific mechanisms and interactions 

between gonadarche, adrenarche, and PCOS.
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Areas for investigation:

1. What is the underlying neurobiology driving the increased GnRH and LH 

secretion associated with PCOS? Specifically, are the kisspeptin neurons in 

the infundibular nucleus programmed by in utero androgen exposure? If so, 

what causes the prenatal androgen exposure?

2. Are androgens downstream mediators of primary neuroendocrine 

dysregulation?

3. What, if anything, is the role of progesterone insensitivity? What is the 

mechanism of progesterone insensitivity? Does GABA signaling affect 

progesterone sensitivity? Does GABA signaling differ before and after 

gonadarche?

4. What is the molecular basis for insulin resistance in PCOS and what is its 

relationship to the transient insulin resistance during puberty ?

5. What factors influence outcomes: normal reproductive function vs PCOS?

6. How can high risk adolescent girls be identified, and when can preventative 

measures be instituted to safeguard reproductive and metabolic health in 

adulthood?
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