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Abstract
Globally, many research works are going on to study the infectious nature of COVID-19 and every day we learn something

new about it through the flooding of the huge data that are accumulating hourly rather than daily which instantly opens hot

research avenues for artificial intelligence researchers. However, the public’s concern by now is to find answers for two

questions; (1) When this COVID-19 pandemic will be over? and (2) After coming to its end, will COVID-19 return again

in what is known as a second rebound of the pandemic? In this work, we developed a predictive model that can estimate the

expected period that the virus can be stopped and the risk of the second rebound of COVID-19 pandemic. Therefore, we

have considered the SARIMA model to predict the spread of the virus on several selected countries and used it for

predicting the COVID-19 pandemic life cycle and its end. The study can be applied to predict the same for other countries

as the nature of the virus is the same everywhere. The proposed model investigates the statistical estimation of the

slowdown period of the pandemic which is extracted based on the concept of normal distribution. The advantages of this

study are that it can help governments to act and make sound decisions and plan for future so that the anxiety of the people

can be minimized and prepare the mentality of people for the next phases of the pandemic. Based on the experimental

results and simulation, the most striking finding is that the proposed algorithm shows the expected COVID-19 infections

for the top countries of the highest number of confirmed cases will be manifested between Dec-2020 and Apr-2021.

Moreover, our study forecasts that there may be a second rebound of the pandemic in a year time if the currently taken

precautions are eased completely. We have to consider the uncertain nature of the current COVID-19 pandemic and the

growing inter-connected and complex world, that are ultimately demanding flexibility, robustness and resilience to cope

with the unexpected future events and scenarios.
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1 Introduction

On 08-Dec-2019, a novel coronavirus disease (COVID-

19), a member of the family of the severe acute respiratory

syndrome coronavirus-2 (SARS-CoV-2), started to infect

people in the city of Wuhan, China [1]. COVID-19 was

declared as pandemic by the World Health Organization

(WHO) on 11-Mar-2020, and since then it invaded almost

all countries of the world [2].

Essentially, COVID-19 is an infectious viral disease that

is transmitted from human-to-human through droplets

whether direct; during coughing, sneezing of the patient or

the carrier of the disease or indirect; through getting in

contact with the patient’s saliva on close contact, shaking

hands, using his personal articles or touching surfaces

soaked with his droplets containing the virus. The virus

finds its way into the human body through the mucus

membranes of the mouth, nose and eyes [2–4].

Clinical picture of the COVID-19 infected patients

varies significantly, from being asymptomatic to having

severe form of the disease. In most cases, high fever,

cough, sore throat, general weakness, fatigue and muscular

pain are manifested in many patients. In the severe cases,

pneumonia, acute respiratory distress syndrome, micro-

coagulopathies, sepsis and septic shock are highly mani-

fested, and in many instances, it could lead to death.

Reports show that clinical deterioration occurs rapidly,

often during the second week of the course of the disease

[5, 6]. Patients with underlying medical conditions such as

cardiovascular disease, diabetes, chronic respiratory dis-

ease, cancer and old-aged people are more likely to expe-

rience serious illness [7].

Since it has been first reported, the COVID-19 invaded

210 countries and territories around the world [8]. As for

10-Aug-2020, in more or less seven months, a total of

20,173,775 confirmed cases of COVID-19 were reported

and its death toll showed about 736,300 deaths.

Many research works are going on to study the infec-

tious nature of COVID-19, and every day we learn some-

thing new about it through the flooding of the huge data

that are accumulating hourly rather than daily [9]. How-

ever, currently, some information is known about COVID-

19; its full characteristics are still unclear. One of the

COVID-19 features is that due to its accelerated genetic

mutations, it changes its behaviour very quickly. Therefore,

scientists are continuously performing observational stud-

ies just to establish facts about COVID-19 that will help in

ending its pandemic. However, the viral genetic mutations

increase the likelihood of having a second wave of the

pandemic in future [9].

After recognizing the high rates of spread of COVID-19,

the severity of cases and its related high death rates,

governments followed the advice of the WHO and took

decisions of lock-down cities, banning local and interna-

tional flights, restricting movements of millions and sus-

pending schools, universities and business operations. Such

decisions made the people feel stressed, depressed and/or

anxious, with variable degrees of psychological impacts.

Moreover, with the long stay at home, the people are get-

ting anxious and looking forward to returning to their

normal life, work and activities [10, 11].

The ARIMA and SARIMA models are widely used

statistical approaches for time-series analysis and fore-

casting. The non-seasonal ARIMA ðp; d; qÞ method is

employed to build the pure seasonal SARIMA ðp; d; qÞ �
ðP;D;QÞs model. Currently, the public’s concern is to find

answers for two questions; (1) When this COVID-19

pandemic will be over? and (2) After coming to its end,

will COVID-19 return again in what is known as a second

rebound of the pandemic? In this work, we have used the

SARIMA statistical model to answer both questions on the

scientific basis of algorithmic modelling.

The main contributions of our research work include:

– Finding the best prediction models for daily confirmed

cases in countries with the highest number of COVID-

19 cases in the world to have more readiness in health

care systems to forecast of the confirmed cases.

– Analysis the risk of second rebound of COVID-19

pandemic

– Estimating the pandemic life cycle and selecting the

optimal parameter of the model using the grid search

method. The proposed method outcomes matched the

updated daily data.

– Significant results are achieved when compared with

the state-of-the-art models. Hence, the proposed

SARIMA model can be extended and used to predict

other countries as it is giving an acceptable performance

when observed its accuracy.

– Mathematical model presents the statistical estimation

of the slowdown period of the pandemic which is

extracted based on the concept normal distribution.

This paper is organized as follows: Sect. 2 presents the

related works. Section 3 presents dataset description with

current statistics. Section 4 introduces the proposed

methodology. Section 5 presents the experimental obser-

vations and detailed discussion. Finally, the conclusions

and possible future works are introduced in Sect. 6.

2 Related work

Lai et al. [12] studied the epidemic nature of COVID-19

incidence in terms of daily cumulative index, mortality rate

and associative status of the countries health care resources
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and economy. With the catastrophic outbreak of COVID-

19 globally, a huge volume of data is generated instantly

and opens a hot research avenue for machine learning and

artificial intelligence researchers.

Luo [13] provided a simple figure for each country to

show the estimated pandemic life cycle together with the

actual data to date and reveals the rate of spread of the

infection and ending phase. The predictions were started

purely driven by personal curiosity regarding when

COVID-19 will end. However, this work needs more

update with more analyses and cases, as well as sharing of

learning and reflections from this exercise, and they did not

use any mathematical model to show the predictive mod-

el’s behaviour.

Dandekar and Barbastathis [14] proposed a method to

capture the current infected curve growth and predict a

halting of infection spread by 20-Apr-2020. This method

has shown that reversing quarantine measures right at this

time can lead to an exponential explosion in the infected

case count, thus annulling the part played by all measures

implemented in the USA since 15-Mar-2020. However, the

model used data of one-month period following the current

US policy, that implies it has lack of sufficient data to make

strong predicts.

The Institute for Health Metrics and Evaluation (IHME)

COVID-19 health service utilization forecasting team,

Christopher [15] peaked daily deaths varies from 30-Mar-

2020 through 12-May-2020 by state in the USA and

27-Mar-2020 through 04-May-2020 by countries in the

European Economic Area (EEA). They have estimated that

through the end of July, there will be 60,308 deaths from

COVID-19 in the USA and 143,088 deaths in the EEA.

Deaths from COVID-19 are estimated to drop below 0.3

per million between 04-May-2020 and 29-Jun-2020 by

state in the USA and between 04-May-2020 and 13-Jul-

2020 by country in the EEA. Timing of the peak required

for hospital resources highly varies across states in the

USA and regions of Europe.

According to the WHO report on guidelines to protect

COVID-19 [16], it infects humans by entering the body via

different parts such as eyes, nose and/or mouth. It shall be

noted that to avoid this infection, the guideline by WHO

suggests not to touch the face with unwashed hands. Proper

washing of hands with detergents such as soap and water

for at least 20 s or cleaning hands thoroughly with alcohol-

based solutions is recommended in all settings. It is also

recommended to stay one meter or more away from one

another to reduce the risk of infection through respiratory

droplets. COVID-19 spreads rapidly in droplets and

somehow surfaces.

Lutfi and Burcu [17] performed Auto-Regressive Inte-

grated Moving Average (ARIMA) model on the European

Centre for Disease Prevention and Control (ECDC)

COVID-19 data to predict the number of confirmed cases

and deaths of COVID-19. The limitation of this particular

study is that a limited number of countries were consid-

ered. However, Tandon et al. [18] developed a model to

use for forecasting future COVID-19 cases in India. The

study indicates an ascending trend for the cases in the

coming days.

Previous researchers were focused on developing

methods to achieve an accurate and time-efficient model

for prediction of the spread of COVID-19. The main

drawbacks of the previous research works were less

accurate prediction in most cases. In reference to the

related work on COVID-19, there were great ideas to

improve and indicate an ascending trend for the cases in the

future. Generally, previous works lack promising features

that could enable us to predict the spread of COVID-19

with better accuracy and manifest the time when it will

slow down.

3 Dataset description

To validate our work, we used the records of COVID-19

data from WHO and Johns Hopkins university official

websites [8]. The data shows confirmed cases, daily

recovery and death rates. In our work, we have considered

COVID-19 datasets for 20 countries that have a maximum

spread of the pandemic as shown in Table 1 that indicates

the updated data as of 10-Aug-2020, and the pie chart in

Fig. 1 shows the distribution of confirmed cases whereby

the top 11 countries confirmed cases are presented in per-

centage. The remaining countries show a small number of

confirmed cases; hence, we do not present them in per-

centage. Table 2 describes the currently active and closed

cases where out of the total infected cases, 99% of the

patients are in mild condition and 1% are in critical con-

dition. In the cases of closed cases, 95% of the patients

have been recovered and 5% of them have died.

3.1 Current statistics

The age factor and death rate due to COVID-19:

Table 3 presents the collected data from New York City

(NYC) Health as of 14-Apr-2020 and 13-May-2020,

[8, 19]. All data in this report are preliminary and are

subject to change as cases continue to be investigated.

These data include cases in NYC residents and foreign

residents treated in NYC facilities. This table shows only

confirmed deaths. A death is considered confirmed when a

person dies after positive COVID-19 laboratory test has

been confirmed. The main underlying illnesses that lead to

high risk of death if one has got infected by COVID-19
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Table 1 The top 20 countries sorted by the number of confirmed cases as of 10-Aug-2020 [8]

Country,

other

Total cases New

cases

Total

deaths

New

deaths

Total

recovered

Active

cases

Serious,

critical

Tot cases/

1M pop

Deaths/

1M pop

Total tests Tests/

1M pop

World 20,173,775 ?146,944 736,300 ?2748 12,996,871 6,440,604 64,740 2588 94.5

USA 5,231,737 ?32,293 165,949 ?332 2,679,401 2,386,387 17,795 15,796 501 66,007,623 199,290

Brazil 3,039,349 ?3767 101,269 ?133 2,118,460 819,620 8318 14,288 476 13,231,548 62,201

India 2,266,954 ?52,817 45,352 ?886 1,580,269 641,333 8944 1641 33 24,583,558 17,795

Russia 892,654 ?5118 15,001 ?70 696,681 180,972 2300 6117 103 30,800,000 211,044

South

Africa

559,859 10,408 411,474 137,977 539 9427 175 3,250,583 54,735

Mexico 480,278 ?4376 52,298 ?292 322,465 105,515 3708 3721 405 1,091,695 8458

Peru 478,024 21,072 324,020 132,932 1488 14,477 638 2,573,691 77,943

Colombia 387,481 12,842 212,688 161,951 1493 7607 252 1,909,111 37,477

Chile 375,044 ?1988 10,139 ?62 347,342 17,563 1276 19,601 530 1,867,367 97,595

Spain 370,060 ?2873 28,576 ?73 N/A N/A 617 7915 611 7,472,031 159,806

Iran 328,844 ?2132 18,616 ?189 286,642 23,586 3992 3910 221 2,711,817 32,243

UK 311,641 ?816 46,526 ?21 N/A N/A 67 4588 685 18,349,668 270,146

Saudi

Arabia

289,947 ?1257 3199 ?32 253,478 33,270 1824 8315 92 3,872,599 111,057

Pakistan 284,660 ?539 6097 ?15 260,764 17,799 776 1286 28 2,147,584 9703

Bangladesh 260,507 ?2907 3438 ?39 150,437 106,632 1580 21 1,273,168 7722

Italy 250,825 ?259 35,209 ?4 202,248 13,368 46 4149 582 7,276,276 120,365

Argentina 246,499 4634 ?28 108,242 133,623 1565 5449 102 856,055 18,922

Turkey 241,997 ?1193 5858 ?14 224,970 11,169 603 2866 69 5,326,035 63,078

Germany 218,353 ?1072 9263 ?3 197,900 11,190 236 2605 111 8,586,648 102,450

France 202,775 ?785 30,340 ?14 82,836 89,599 383 3106 465 4,279,588 65,548

Fig. 1 Distribution of cases as of 10-Aug-2020 for top 11 countries [8]
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include diabetes, lung disease, cancer, immunodeficiency,

heart disease, hypertension, asthma, kidney disease and

liver disease. The death rate is computed as shown in

Eq. 1.

Death Rate ¼ number of deaths=number of cases

¼ probability of dying if infected by the virus (%):

ð1Þ

Preexisting medical conditions (comorbidities) put patients

at higher risk of death from COVID-19 pandemic. Patients

who have no preexisting (comorbidities) medical condi-

tions are having a fatality rate of 0.9%. Table 3 depicts the

rate of death due to COVID-19 for various age range in

New York City. For people in the age range from 0 to 17

years old, the rate of death is insignificant if the patients do

not have an underlying health condition. In the case of

elderly people whose age is 75? years old, the rate of death

rate reaches 14.3%. Generally, as the age increases and if

the patient has an underlying health condition, there is a

high risk of death due to the COVID-19.

Moreover, the data depicts men are highly susceptible to

death compared to that of women. Out of the total death

rates, 61.8% men and 38.2% women die due to COVID-19

in New York City as of 13-May-2020 as shown in Table 4.

Table 5 shows the COVID-19 fatality rate by age in

China. The fatality rate varies depending on the age group.

The percentages shown do not have to add up to 100%, as

they do not represent the share of deaths by age group. It

presents the risk of dying if one is infected with COVID-19

for a person in a given age group. In general, relatively few

fatality cases are seen among children [19].

Table 6 shows the fatality rate in China in terms of sex

ratio. Like the cases in other countries, the probability of

fatality rate by sex ratio in China varies. When reading these

numbers, it must be taken into account that smoking in China

is much more prevalent among males. Smoking increases the

risks of respiratory complications. Hence, males are highly

susceptible to death when compared to females which are

evidenced empirically as 4.7% and 2.8%, respectively.

Table 2 A sample of the top

countries sorted by the number

of confirmed cases in 10-Aug-

2020 [8]

Active cases Closed cases

Currently infected patients 6,440,604 Cases which had an outcome: 13,733,171

In mild condition 6,375,864 (99%) Recovered/discharged 12,996,871 (95%)

Serious or critical 64,740 (1%) Deaths 736,300 (5%)

Table 3 The age factor and death rate due to COVID-19 in New York city health on 13-May-2020 [8]

Age Number of

deaths

Share of

deaths

With underlying

conditions

Without underlying

conditions

Unknown if with

underlying cond.

Share of deaths of

unknown ? w/o cond.

0–17 years old 9 0.06% 6 3 0 0.02%

18–44 years old 601 3.9% 476 17 108 0.8%

45–64 years old 3413 22.4% 2851 72 490 3.7%

65–74 years old 3788 24.9% 2801 5 982 6.5%

75? years old 7419 48.7% 5236 2 2181 14.3%

Total 15,230 100% 11,370 (75%) 99 (0.7%) 1551 (24.7%) 25.3%

Table 4 Sex ratio of death rate due to COVID-19 in New York city health on 13-May-2020 [8]

Sex Deaths Share of

deaths

With underlying

conditions

Share within

this category

Without

underlying

conditions

Share within

this category

Unknown if

with cond.

Share within

this category

Male 4095 61.8% 3087 62.2% 96 72.2% 912 59.5%

Female 2530 38.2% 1.873 37.8% 37 27.8% 620 40.5%

Table 5 Death rate in China due to COVID-19 by age group [19]

Age Death rate confirmed

cases (%)

Death rate

all cases (%)

80? years old 21.9 14.8

70–79 years old 8.0

60–69 years old 3.6

50–59 years old 1.3

40–49 years old 0.4

30–39 years old 0.2

20–29 years old 0.2

10–19 years old 0.2

0–9 years old No fatalities
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Table 7 shows COVID-19 fatality rate by comorbidity

in China. This probability differs depending on the pre-

existing condition. The percentage shown in the table does

not represent in any way the share of deaths by a preex-

isting condition. Rather, it represents, for a patient with a

given preexisting condition, the risk of dying if infected by

COVID-19.

4 Methodology

In the subsequent subsections, the proposed Auto-Regres-

sive Integrated Moving Average (ARIMA) have been

described. The ARIMA is a statistical and econometric

model applicable in time-series analysis-related problems

mainly to understand the data or to predict future points in

the series [20].

4.1 The ARIMA models

A time-series Yt is described as a series of independent

variables based on time, where t is a time step [21]. A

deterministic time-series is expressed by the function,

Yt ¼ f ðtÞ. While the stochastic time series is expressed by

Yt ¼ XðtÞ, where X is a random variable. The ARMA

model developed by Box et al. [22] has been used for the

forecasting process in the stationary time series. Box-

Jenkins (ARMA) forecasting model is very popular as it

has high prediction efficiency in the stationary time series

analysis [23]. An autoregression AR ðpÞ is a known time

series method used to predict the future value by using

observations from previous p-time steps as inputs to the

regression equation multiplied by the appropriate coeffi-

cients / of AR [24, 25]. Besides, the sum is extended by

adding the mean of the series l and white noise x that is a

random error. The AR ðpÞ model is given in the form

shown in Eq. 2.

ARðpÞ : yt ¼ lþ
Xp

i¼1

ð/iyt�iÞ þ xt ð2Þ

The polynomial function of the Moving Average MA ðqÞ
method is not included for any variable from a time-series

[26]. It consists of three parts that include: the first part is

the mean of the series l, the second part is the summation

of the multiplication of a finite number of MA coefficients,

h, and model residuals x, and the third part is the white

noise xt. The MA ðqÞ model is given in Eq. 3.

MAðqÞ : yt ¼ lþ
Xq

i¼1

ðhixt�iÞ þ xt ð3Þ

The ARMA ðp; qÞ model composes of two main polyno-

mials which are AR ðpÞ and MA ðqÞ [27]. Mathematically

it is represented as shown in Eq. 4.

yt ¼ lþ
Xp

i¼1

ð/iyt�iÞ þ
Xq

j¼1

ðhjxt�jÞ þ xt ð4Þ

or

/ðBÞyt ¼ lþ hðBÞxt ð5Þ

The notation ARMA ðp; qÞ represents the order of an

ARMA method, described as follows:

– yt stands for predicted value at time t,

– p: is the order of AR polynomial indicating number of

autoregressive lags,

– q: stands for the order of MA model presenting the

number of moving average model lags,

– /i: The AR ðpÞ coefficients has to estimate

ði ¼ 1; 2; . . .; pÞ,
– hj: MA ðqÞ coefficients (parameters) that need to

estimate, ðj ¼ 0; 1; 2; . . .; qÞ,
– l: represents the mean value of the time series data,

– d: represents the number of differences and is calcu-

lated based on the equation Dyt ¼ yt � yt�1

– xt: represents the white noise of the time-series at time

t.

The ARIMA ðp; d; qÞ model is a widely used statistical

method used in stationary time-series analysis such as

forecasting [28]. To build such a model, the primary step is

to investigate whether the statistical stationery of a time-

series can be satisfied or not. Then, the next phase is

estimating the numerical values of p and q parameters for

Table 6 Sex ratio of death rate due to COVID-19 in China on

13-May-2020 [8]

Sex Death rate confirmed cases (%) Death rate all cases (%)

Male 4.7 2.8

Female 2.8 1.7

Table 7 Fatality rate by comorbidity in China [8]

Preexisting condition Death rate confirmed

cases (%)

Death rate all

cases (%)

Cardiovascular

disease

13.2 10.5

Diabetes 9.2 7.3

Chronic respiratory

disease

8.0 6.3

Hypertension 8.4 6.0

Cancer 7.6 5.6

No preexisting

conditions

0.9
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AR and MA models. Thus, the essential idea of the

ARIMA model is based on the assumption that the pre-

dicted value of the variable yt is generated from a linear

equation of several previous observations with random

errors [29]. A process Xt is an ARIMA ðp; d; qÞ when it

satisfies the form in Eq. 6.

rdXt ¼ ð1� BÞdXt ð6Þ

In other words, the process Xt should be stationary after

differencing a non-seasonal process d times. During the

training step of the ARIMA model using the available

dataset, the values of p, d, and q are continually changing

until the end and the last values are considered for the

forecasting of the future values. The mathematical

description of the model is presented as shown in Eq. 7.

/pðBÞð1� BÞdXt ¼ lþ hðBÞxt ð7Þ

4.2 Seasonal ARIMA model

The non-seasonal ARIMA model (p, d, q) is vital in

building pure seasonal SARIMAðp; d; qÞ � ðP;D;QÞs
model, whereby the term (p, d, q) presents the non-sea-

sonal part of the model and ðP;D;QÞs describes the sea-

sonal part of the model [30, 31]. The mathematical

description of the model is presented as shown in Eq. 8.

/pðBÞUPðBsÞWt ¼ hqðBÞHQðBsÞxt ð8Þ

The notation of Eq. 8 is described as follows: p, d and q

are represented in the previous Eq. 4, P presents the order

of seasonal AR model, D indicates the number of seasonal

differencing, Q refers to the order of seasonal MA, and s is

the length of the season (periodicity). Besides, the xt and

B are the white noise value at period t, and the backward

shift operator, respectively.

Equation 8 presents the seasonal components of SAR-

IMA which can be expanded mathematically after substi-

tuting the value of Wt ¼ rdðBÞrD
s ðBÞXt.

/pðBÞUPðBsÞð1� BÞdð1� BsÞDXt ¼ hqðBÞHQðBsÞxt

ð9Þ

The components of seasonal SARIMA can be written as:

– non-seasonal

AR:/pðBÞ ¼ 1� /1B� /2B
2 � /3B

3 � � � � � /pB
p;

– non-seasonal MA:

hqðBÞ ¼ 1� h1B� h2B2 � h3B3 � � � � � hqBq;

– seasonal AR:

UPðBsÞ ¼ 1� U1B
s � U2B

2s � U3B
3s � � � � � UpB

ps;

– seasonal MA:

HQðBsÞ ¼ 1�H1B
s �H2B

2s �H3B
3s � � � � �HQB

Qs

and

– BsXt ¼ Xt�s,

– rsXt ¼ rsðBÞXt ¼ ð1� BsÞXt ¼
Xt � BsXt ¼ Xt � Xt�s;

– rdðBÞXt ¼ ð1� BÞdXt;

– rD
s ðBÞXt ¼ ð1� BsÞDXt

Considering the relationship within the data,

SARIMAðp; d; qÞ � ðP;D;QÞs model is successfully

applied to different time-series because of the order of

SARIMA is a relatively small number. The period value of

time-series s (seasonality) is based on the dataset. For

instance, s ¼7,30,365 for weekly, monthly and yearly data

respectively. The d and D indicate the order of the non-

seasonal and seasonal differencing and its values are not

more than 1 and 2 total of seasonal difference, respectively

(i.e., 0� d;D� 1).

4.3 Model selection

There are three steps in ARIMA model creation namely

identification, parameter estimation, and diagnostic

checking [32]. The identification process of the model

deals with determining proper differencing to get stationary

time-series, the order of the model desired and the auto-

correlation (ACF) and partial autocorrelation (PACF)

functions that are used to recognize the temporal correla-

tion structure of the transformed data. ACF is a statistical

metric of the correlation that is used to check if previous

values in the time-series analysis have a certain relation-

ship with the latest values or not. For all low order lags,

PACF represents the value of the correlation coefficient

between the variable and its time lag [33].

The two main methods commonly used to select

appropriate models are Akaike’s Information Criterion

(AIC) and the Bayesian Information Criterion (BIC) of

Schwarz which are presented in Eqs. 10 and 11 for AIC

and BIC, respectively [34, 35].

AIC ¼� 2 logðLÞ þ 2k ¼ �2 logðLÞ
þ 2ðpþ qþ Pþ QÞ

ð10Þ

BIC ¼� 2 logðLÞ þ k lnðnÞ ¼ �2 logðLÞ
þ ðpþ qþ Pþ QÞ lnðnÞ

ð11Þ

In this regard, n refers to the size of the series, and k pre-

sents the number of the parameters of the ARIMA method.

It is experimentally proved that our model becomes effi-

cient when the value of AIC is smaller. According to [22],

an optimal forecasting model is selected based on the best

fitting that has the minimum AIC value of the group.
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4.4 Data normalization

In this work, data normalization using the min-max scalar

function which is available in the scikit-learn library has

been applied. Scaling data is a vital task to stabilize the

value of variance. Generally, data normalization enhances

performance and minimal computational complexity.

Equation 12 is used to normalize all datasets before start-

ing to train the model where Yi presents the scaled datasets,

xi refers to the actual data, and the terms minðxiÞ and

maxðxiÞ presents the minimum and maximum values of the

actual dataset, respectively.

Yi ¼
xi � minðxiÞ

maxðxiÞ � minðxiÞ
ð12Þ

5 Experimental results and evaluation

In the subsequent subsections, the experimental results of

the proposed method are presented. The experimental

results are presented in terms of simulated results and

tabular form and comparative study with state-of-the art

methods also are carried out.

5.1 Experimental results

To carry out the experiments, the following machine

learning libraries such as scikit-learn and Stat are used. The

experimentations are executed on the Kaggle environment

that provides the required packages. The COVID-19 data-

set is collected starting from 22-Jan-2020 to the present

time from official websites and data repositories such as

WHO and world meter [3, 8]. To attain the best prediction,

different parameters of the proposed model are tuned using

a grid search technique. The values of parameters have

been selected based on the collected data from the corre-

sponding countries. For each country, the best parameters

of the SARIMA model are identified and used to forecast

for the next 60 days.

The SARIMA model can predict the current time and

forecasts the future. In this study, the model is used to

forecast the number of confirmed in the next few weeks. It

can estimate the full pandemic life cycle and visualize its

corresponding curves. The model is fitted with the training

data set followed by validation using the test set. After

estimating the full life cycle curve for each country, it

determines the peak point in the bell-shaped curve to show

when the pandemic will stop. For each model, the initial

phase creates a set of parameters and initializes them with a

bunch of values. Then, the grid search is applied to find out

the optimal model that has minimum values of AIC. Next,

the model selects the best combination of parameters that

can provide minimum error (AIC) and assigned to the best

model.

The proposed method is used to estimate the pandemic

life cycle. To select the best parameter of the model, the

grid search method is applied to each country’s data. The

proposed method updates the daily data with the newest

version. Table 8 presents the experimental results of the

proposed method for the diagnostics test on the global

dataset. Moreover, Table 9 shows the experimental results

of the diagnostic test using the SARIMA model for the

global data that have p-values � 0:05, that indicates min-

imum values of the AIC of each model.

In this work, we have experimentally proved that the

model parameters vary from country to country as the data

for each country substantially differs. Considering the

Table 8 The experimental results of the diagnostics test on the global COVID-19 data using the proposed SARIMA model

(p, d, q) (P, D, Q, s) AIC MAPE MAE MPE MSE RMSE Corr MinMax

(9, 0, 8) (0, 0, 0, 3) -2199.02 14.5343 1.57071 -0.00496 2.48513 1.57643 0.99759 0.887658

(9, 0, 8) (0, 0, 0, 7) -2199.02 14.5343 1.57071 -0.00496 2.48513 1.57643 0.99759 0.887658

(9, 0, 8) (0, 0, 0, 12) -2199.02 14.5343 1.57071 -0.00496 2.48513 1.57643 0.99759 0.88765

(6, 0, 8) (0, 0, 0, 3) -2185.95 14.7139 1.61634 0.07944 2.64173 1.62534 0.99858 0.89227

Table 9 Experimental results of the diagnostics test for SARIMA models that have p-values less than 0.05 for Global

(p, d, q) (P, D, Q, s) AIC MAPE MAE MPE MSE RMSE Corr MinMax

(9, 0, 0) (0, 0, 2, 3) -2159.78 14.7057 1.61697 0.0855918 2.64438 1.62616 0.99866 0.892429

(9, 0, 0) (0, 0, 1, 7) -2158.26 14.7219 1.61975 0.0898155 2.65398 1.6291 0.998662 0.892665

(9, 0, 1) (0, 0, 1, 7) -2117.39 14.6918 1.61123 0.0802179 2.62402 1.61988 0.998488 0.891833

(9, 0, 0) (0, 0, 1, 12) -2114.51 14.6787 1.61202 0.0774122 2.62729 1.62089 0.998648 0.891992

(9, 0, 1) (0, 0, 2, 3) -2104.37 14.712 1.61476 0.0857744 2.63616 1.62362 0.998492 0.89214
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relationship within the data, the SARIMA model

ðp; d; qÞ � ðP;D;QÞs is successfully applied to different

time-series data. The period value of time-series s (sea-

sonality) is considered based on the dataset. Since the daily

data for a few months have been used, the value of s is

assigned to be 3,7,12. The best forecasting SARIMA model

parameters are selected based on the minimum values of

AIC, and P-values that are less than 0.05. Table 8 presents

the AIC values of different forecasting models. The fol-

lowing SARIMAð9; 0; 8Þ � ð0; 0; 0; 3Þ model has the low-

est AIC values as shown in Table 9. The best combination

of the parameters ð9; 0; 8Þ � ð0; 0; 0; 3Þ is considered to be

the best for the corresponding model.

To train and validate the proposed SARIMA model, We

have split the COVID-19 data into training and testing

dataset on the basis of 70% and 30% ratio for training and

validation for testing for each country. The training set

comprises data from 22-Jan-2020 to 15-Jun-2020 and the

testing set is from 15-Jun-2020 to current day. Table 10

presents the forecasting values with lower and upper con-

fidence limits that are calculated using the proposed model

for the period from 15-Jun-2020 to current day. Figure 2

Table 10 Experimental results for the proposed SARIMAð9; 0; 8Þ � ð0; 0; 0; 3Þ Model (from 14-Jul-2020 until 12-Aug-2020) with 95% CI

Date Actual Predict Lower Upper Date Actual Predict Lower Upper

14-Jul-2020 13215902 13210010 13194410 13225600 29-Jul-2020 16907684 16902060 16886470 16917660

15-Jul-2020 13446597 13453240 13437640 13468830 30-Jul-2020 17187933 17203880 17188290 17219480

16-Jul-2020 13698747 13692050 13676450 13707640 31-Jul-2020 17477354 17471090 17455500 17486690

17-Jul-2020 13940201 13944210 13928610 13959800 01-Aug-2020 17727758 17733930 17718340 17749530

18-Jul-2020 14177487 14166590 14151000 14182190 02-Aug-2020 17956551 17955820 17940220 17971410

19-Jul-2020 14391785 14386690 14371090 14402280 03-Aug-2020 18158766 18184260 18168670 18199860

20-Jul-2020 14597751 14605150 14589550 14620740 04-Aug-2020 18416559 18410800 18395200 18426390

21-Jul-2020 14830792 14826130 14810530 14841720 05-Aug-2020 18687247 18701040 18685440 18716630

22-Jul-2020 15110912 15087820 15072220 15103420 06-Aug-2020 18971993 18978590 18963000 18994190

23-Jul-2020 15393012 15386550 15370960 15402150 07-Aug-2020 19252210 19247700 19232100 19263290

24-Jul-2020 15673428 15663950 15648360 15679550 08-Aug-2020 19511342 19503500 19487900 19519090

25-Jul-2020 15928573 15933060 15917470 15948660 09-Aug-2020 19735209 19727920 19712320 19743510

26-Jul-2020 16141458 16167220 16151630 16182820 10-Aug-2020 19962254 19954320 19938720 19969920

27-Jul-2020 16367174 16367310 16351710 16382900 11-Aug-2020 20216340 20216720 20201130 20232320

28-Jul-2020 16619072 16623080 16607480 16638680 12-Aug-2020 20492606 20504110 20488510 20519700

Fig. 2 Comparison between the observed and predicted values (one-step ahead result) for SARIMA model on COVID-19 dataset
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shows the observed (marked in blue line) or training set

from 22-Jan-2020 to 15-Jun-2020 and the testing set from

15-Jun-2020 to present-day and values for one step ahead

forecasting is presented by the red line. In Fig. 3, the

forecasted values marked in the red line, actual values

marked in blue line and grey shading area are used for the

confidence intervals with lower and upper confidence

limits.

The proposed model predicts the number of the con-

firmed cases of the next few days or months using the

previously observed data as shown in Table 11 with lower

and upper confidence limits. Although the increasing trend

is visible, the proposed model has better performance for

the testing set. Generally, the forecast performance is

acceptable when the MSE and RMSE values for the testing

set from 15-Jun-2020 to present day are 2.48513 and

1.57643, respectively.

5.2 The risk of second rebound of COVID-19
pandemic

Epidemiologically, the history of the deadly pandemic viral

infection demonstrates that after getting to the end, they are

usually followed by waves of significant spread and deaths.

For instance, the Spanish flu first appeared in the USA and

then transmitted to Europe via World War I participant

soldiers in early Mar-1918. It had all the hallmarks of the

seasonal flu, that is highly contagious and infectious

strains. Yet the first wave of the virus did not appear to be

particularly deadly, with symptoms like high fever and

malaise usually lasting only three days. There was hope at

the beginning that the virus had finalized its course.

However, somewhere in Europe, a mutated strain of the

Spanish flu virus had emerged. This mutated virus got

spread by the end of wartime troop movements from

England to France, Africa and the USA causing the fatal

severity of the Spanish flu’s ‘‘second rebound’’ [36, 37].

Another example was the H7N9 pandemic. Since its

emergence in Mar-2013, novel avian influenza A H7N9

virus has triggered five epidemics of human infections in

China. This raises concerns about the pandemic threat of

this quickly evolving H7N9 subtype for humans [38–41].

The worrying thing is that many countries are preparing

to ease their lockdowns while planning to continuously

monitor potential new cases to prevent a second deadly

outbreak. The uneven progress of countries’ efforts to

control the virus has led health researchers to warn that

nations will have to monitor closely for new infections and

adjust the measures in place until the availability of vac-

cine. China’s aggressive control over the daily life have

nearly brought the first wave of COVID-19 to an end;

however, the danger of a second wave remains uncertain

[3, 4].

While these control measures appear to have reduced the

number of infections to some extent, without herd immu-

nity against COVID-19, cases could easily resurge as

businesses, factory operations and schools gradually

resume and increase social mixing, particularly given the

increased risk of imported cases from overseas as COVID-

19 continues to spread globally. World leaders and health

Fig. 3 The forecasted values for the COVID-19 new cases over the globe until 15-Nov-2020
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officials are warning that hard-won gains must not be

risked by people relaxing physical distancing measures

[42, 43].

From the outset of this worldwide pandemic, multiple

models have been developed by different organizations and

research institutions. Generally, models present the worst-

case and best-case scenarios, under different sets of cir-

cumstances. With each model, the timing, height, and

width of the peak of confirmed COVID-19 cases and deaths

rates are uncertain. This is due to complexity and ran-

domness in the dynamics of virus transmission and

uncertainty in key epidemiological parameters [44].

As presented in Fig. 4, the green line depicts the health

care system capacity. The part of the red line of the bell

curve above the ideal green line shows that if social dis-

tancing is not respected, millions of people may die due to

the pandemic. On the other hand, if the social distancing

measures are strictly followed, only thousands of people

may die before the end of the pandemic (as depicted by the

blue coloured bell-shaped line). Besides lowering the

morbidity and mortality indices, social distancing measures

aim to ensure there is less burden to the health care system

[44, 45].

With due acknowledgement to the uncertain nature of

the ongoing COVID-19 pandemic and our growing inter-

connected and complex world, what is eventually and

fundamentally required are the flexibility, robustness and

resilience to deal with unexpected future events and

scenarios.

Moreover, the proposed model forecasts that there is a

chance of the second rebound of the pandemic in a year

time if the prevention guidelines and precautions are not

followed. We have to consider the uncertain nature of the

current COVID-19 pandemic and the growing inter-con-

nected and complex world, that are ultimately demanding

flexibility, robustness and resilience to cope with the

Table 11 The forecasted values

of daily confirmed cases for 60

days using

SARIMAð9; 0; 8Þ � ð0; 0; 0; 3Þ
model with 95% CI

Date Predicted Lower Upper Date Predicted Lower Upper

13-Aug-2020 20792367 20776772 20807963 12-Sep-2020 29188539 28260321 30116756

14-Aug-2020 21084923 21058525 21111321 13-Sep-2020 29435471 28457387 30413554

15-Aug-2020 21345577 21309105 21382049 14-Sep-2020 29678949 28650726 30707172

16-Aug-2020 21574054 21526767 21621341 15-Sep-2020 29957835 28878513 31037158

17-Aug-2020 21802821 21742548 21863094 16-Sep-2020 30285328 29153157 31417500

18-Aug-2020 22058307 21984681 22131933 17-Sep-2020 30638542 29451469 31825615

19-Aug-2020 22348910 22259069 22438751 18-Sep-2020 30975118 29731554 32218682

20-Aug-2020 22659604 22549663 22769545 19-Sep-2020 31264945 29964175 32565716

21-Aug-2020 22960884 22828738 23093030 20-Sep-2020 31513451 30155353 32871548

22-Aug-2020 23227743 23073035 23382450 21-Sep-2020 31758282 30342636 33173927

23-Aug-2020 23462762 23284968 23640556 22-Sep-2020 32041177 30567071 33515284

24-Aug-2020 23695762 23493979 23897545 23-Sep-2020 32376197 30841935 33910459

25-Aug-2020 23957641 23730778 24184504 24-Sep-2020 32738483 31142078 34334888

26-Aug-2020 24258265 24004081 24512448 25-Sep-2020 33082355 31422266 34742443

27-Aug-2020 24580351 24295972 24864730 26-Sep-2020 33375605 31651144 35100067

28-Aug-2020 24890891 24574346 25207436 27-Sep-2020 33624359 31835435 35413283

29-Aug-2020 25164510 24815110 25513910 28-Sep-2020 33869239 32015671 35722807

30-Aug-2020 25404653 25022092 25787213 29-Sep-2020 34155078 32235989 36074167

31-Aug-2020 25641999 25225753 26058245 30-Sep-2020 34496799 32510528 36483071

01-Sep-2020 25910170 25459144 26361195 01-Oct-2020 34867421 32812015 36922826

02-Sep-2020 26220390 25732602 26708178 02-Oct-2020 35217714 33091666 37343763

03-Sep-2020 26553448 26026491 27080405 03-Oct-2020 35513214 33315859 37710568

04-Sep-2020 26873196 26305281 27441112 04-Oct-2020 35760795 33492077 38029512

05-Sep-2020 27153072 26543451 27762693 05-Oct-2020 36004315 33664089 38344542

06-Sep-2020 27397194 26745661 28048727 06-Oct-2020 36291935 33879352 38704519

07-Sep-2020 27638128 26944324 28331931 07-Oct-2020 36639469 34152887 39126052

08-Sep-2020 27912053 27174956 28649151 08-Oct-2020 37017636 34455122 39580151

09-Sep-2020 28231258 27449030 29013487 09-Oct-2020 37373405 34733470 40013339

10-Sep-2020 28574713 27745179 29404247 10-Oct-2020 37669881 34951892 40387871

11-Sep-2020 28903208 28024702 29781714 11-Oct-2020 37914764 35118699 40710830
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unexpected future events and scenarios. Our study shows

the pandemic rebound is in line with the current scenario in

some countries such as India, Brazil and the USA as their

social distancing and related measures are relaxed (See

Tables 12 and 14).

5.3 Estimation of slowdown of COVID-19

The COVID-19 is similar to other pandemics in terms of

life cycle pattern which includes the outbreak, slowdown,

stoppage phases and infection peak point. Based on the

various phases of the life cycles of COVID-19 at a specific

point in time, each country has a different starting date of

the first phase based on the first confirmed case. For

example, the first confirmed cases in the USA and Italy is

on 15-Jan-2020, and on 31-Jan-2020, respectively [8].

The basic idea of our assessment is based on the

assumption that the data follows the concept of normal

distribution. The proposed predictive model enables to

estimate the expected period that the virus can be slowed

down and ultimately stopped. The inflection’s peak point is

specified as it appears like the peak point in the bell-shaped

curve that depicts a possible slowdown and stoppage of the

pandemic based on the normal distribution as shown in

Fig. 5. However, estimating the ending date varies based

on different considerations such as the first confirmed case

and protective measures. Theoretically, one can define the

end date as the one with the last predicted case in the

pandemic life cycle curve, and others may consider an

early date as the end date from businesses, schools or

governments when most of the predicted infections (indi-

cated by the regressed pandemic life cycle curve) have

been actualized and only a small portion of the total pre-

dicted epidemic population is left.

The following mathematical Equations present the sta-

tistical estimation of the slow down period of the pandemic

which is extracted based on the concept of normal distri-

bution. It explains how to calculate the area under the curve

between lþ 2r and lþ 3r corresponding to the period

that the pandemic can stop.

pðlþ 2r\X\lþ 3rÞ ¼ pðlþ 2r� l
r

\ Z\
lþ 3r� l

r
Þ

¼ pð2r
r
\Z\

3r
r
Þ

¼ pð2\Z\3Þ ¼ 2:1%

Figure 6 shows the confidence intervals (CI) for the

expected total cases that have been identified and calcu-

lated as follows:

pðl� 2r\Z\lþ 2rÞ ¼ 95:46%

pðl� 3r\Z\lþ 3rÞ ¼ 99:73%

The final predictions of the proposed model provide the

following three estimates of end dates: (1) The estimated

period from lþ 2r to lþ 3r with probability 2.1% pre-

sents the last expected cases have identified. (2) The esti-

mated period from l� 2r to lþ 2r presents 95.46% of

the expected total cases that have been identified. (3) The

estimated period from l� 3r to lþ 3r presents the date

when 99.73% of the expected cases have been identified as

shown in Fig. 6.

Fig. 4 Death flatten curve
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Table 12 presents the experimental results of the pro-

posed model that shows the expected deadline of specified

countries. The topmost affected countries in the first are the

USA, Spain, Italy, France, the UK, Germany and Russia. In

the second rebound of the pandemic, the model generates

the countries namely the US, Brazil, India, Spain, Italy,

France, the UK, Germany and Russia. Table 12 presents

estimation without forecasting or with forecasting (for one

month ahead) in the first rebound. Similarly, in the second

rebound, the model generates estimation without forecast-

ing or with forecasting (for one month ahead). The

table has the names of the attributes such as country, date

of the first confirmed case, the peak point (top of the bell-

shaped graph), the start date is the first expected date with a

confidence interval of 95%, the end date which is the last

expected date with a confidence interval of 99%, start value

(the corresponding value of the start date) and the end

value is the corresponding value of the end date.

The proposed method exhibits different forecasting

results for the first and second rebounds of the pandemic

for various countries. To make the forecasted results more

updated and in line with reality, we are describing the

second rebound cases. Table 12 shows the estimated time

for the USA by applying forecasting approach. The

expected number of confirmed cases for the USA will be

701996 on 08-Dec-2020, and after one and a half month

Table 12 Expected deadline for some countries in the first and second rebounds

Country First

confirmed

case

Estimation without forecasting Estimation with Forecasting

Peak

point

Start

date 95%

End date

99%

Start

value

End

value

Peak

point

Start

date 95%

End date

99%

Start

value

End

value

The first

rebound

USA 22-Jan-

2020

06-May-

2020

06-Jul-

2020

06-Aug-

2020

402 11 30-May-

2020

23-Aug-

2020

01-Oct-

2020

13747 11

Spain 01-Feb-

2020

06-May-

2020

21-Jun-

2020

18-Jul-

2020

2277 2 09-Jun-

2020

07-Aug-

2020

12-Sep-

2020

49515 2

Italy 31-Jan-

2020

06-May-

2020

22-Jun-

2020

20-Jul-

2020

12462 3 08-Jun-

2020

09-Aug-

2020

14-Sep-

2020

69176 3

France 24-Jan-

2020

06-May-

2020

03-Jul-

2020

02-Aug-

2020

1136 6 01-Jun-

2020

20-Aug-

2020

27-Sep-

2020

12758 11

United

Kingdom

31-Jan-

2020

06-May-

2020

22-Jun-

2020

20-Jul-

2020

459 9 08-Jun-

2020

09-Aug-

2020

14-Sep-

2020

8164 9

Germany 27-Jan-

2020

06-May-

2020

29-Jun-

2020

28-Jul-

2020

1176 14 04-Jun-

2020

15-Aug-

2020

22-Sep-

2020

24873 16

Russia 31-Jan-

2020

06-May-

2020

22-Jun-

2020

20-Jul-

2020

28 2 08-Jun-

2020

09-Aug-

2020

14-Sep-

2020

495 2

The second rebound

US 22-Jan-

2020

12-Aug-

2020

08-Dec-

2020

05-Feb-

2020

701996 13 12-Sep-

2020

24-Jan-

2021

02-Apr-

2021

1072667 15

Brazil 26-Feb-

2020

12-Aug-

2020

14-Oct-

2020

01-Dec-

2020

135773 793 12-Sep-

2020

30-Nov-

2020

26-Jan-

2021

291579 2247

India 30-Jan-

2020

12-Aug-

2020

25-Nov-

2020

21-Jan-

2021

21370 3 12-Sep-

2020

12-Jan-

2021

18-Mar-

2021

46437 3

Spain 01-Feb-

2020

12-Aug-

2020

22-Nov-

2020

17-Jan-

2021

213024 15 12-Sep-

2020

09-Jan-

2021

14-Mar-

2021

219329 120

Italy 31-Jan-

2020

12-Aug-

2020

24-Nov-

2020

19-Jan-

2021

187327 453 12-Sep-

2020

10-Jan-

2021

16-Mar-

2021

213013 1694

France 24-Jan-

2020

12-Aug-

2020

05-Dec-

2020

01-Feb-

2021

148086 12 12-Sep-

2020

21-Jan-

2021

29-Mar-

2021

167305 12

United

Kingdom

31-Jan-

2020

12-Aug-

2020

24-Nov-

2020

19-Jan-

2021

141540 37 12-Sep-

2020

10-Jan-

2021

16-Mar-

2021

196780 94

Germany 27-Jan-

2020

12-Aug-

2020

30-Nov-

2020

26-Jan-

2021

147065 16 12-Sep-

2020

16-Jan-

2021

23-Mar-

2021

165664 46

Russia 31-Jan-

2020

12-Aug-

2020

24-Nov-

2020

19-Jan-

2021

57999 2 12-Sep-

2020

10-Jan-

2021

16-Mar-

2021

155370 2

123

Neural Computing and Applications (2021) 33:2929–2948 2941



that is on 05-Feb-2020, the number of confirmed cases

will decrease to 13 as shown in Fig. 7. Moreover, for the

second rebound when forecasting approach is applied, the

expected number of confirmed cases will be 1072667 on

24-Jan-2020, and after three months that is on 02-Apr-

2020, the number of confirmed cases will decrease to 15 as

shown in Fig. 8.

Table 12 presents the estimated values of the end date of

the pandemic in India. When forecasting approach is

applied, the proposed method exhibited different results.

Fig. 5 A normal distribution within 1 standard deviation (r) from the mean (l) using SARIMA

Fig. 6 A normal distribution within 1 standard deviation (r) from the mean (l)
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Hence, the expected number of confirmed cases will be

21370 on 25-Nov-2020, and after two months, that is on

21-Jan-2021, the number of confirmed cases will decrease

to 3 as shown in Fig. 9

As presented in Table 12, for the case of Brazil, when

forecasting approach is applied, the proposed method

exhibits various results. The expected number of confirmed

cases will be 135773 on 14-Oct-2020, and after two

months, that is on 01-Dec-2020, the number of confirmed

cases will decrease to 793 as shown in Fig. 10.

Table 12 shows the prediction of the deadline to end the

pandemic for France using the real data, and the results

showed that expected number of confirmed cases will be

148084 on 02-Dec-2020, and after two months that is on

28-Jan-2021, the number of confirmed cases will decrease

to 12 without applying forecasting approach. When

Fig. 7 Expected dead line for the USA without forecasting

Fig. 8 Expected deadline for the USA in the second rebound with forecasting
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forecasting approach is applied, the proposed method

exhibits different results. The expected number of con-

firmed cases will be 12758 on 20-Aug-2020, and after a

month that is on 27-Sep-2020, the number of confirmed

cases will decrease to 11 as shown in Fig. 11.

China was successful in halting the COVID-19 epidemic

as the government applied early quarantine strategy. The

confirmed cases trend in China becomes stable and

frequently remains between zero and one. This fact indi-

cates that quarantine worked well to reduce human expo-

sure and succeeded to control the epidemic. Moreover, the

study shows Brazil and India had unstable trends. Finally,

the expected confirmed cases for the top countries will be

manifested between Dec-2020 to Apr-2020 as shown in

Table 12. Moreover, these predictions may vary based on

Fig. 9 Expected deadline for the India in the second rebound without forecasting

Fig. 10 Expected deadline for the Brazil in the second rebound without forecasting
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many factors such as the lockdown period or developing an

effective vaccine against COVID-19.

5.4 Comparison with state-of-the-art models

In our work, we have carried out a comparative study with

state-of-the-art methods as presented in Table 13. The

comparative study is carried in the following models

namely ARIMA, Machine learning (Random Forest) and

deep learning model (LSTM). The performance of each

model is evaluated using various metrics such as root-

mean-square error (RMSE) and mean absolute error

(MAE) on the test dataset. Based on the experimental

results of the proposed SARIMA model, it is indicated that

significant results are achieved when compared with the

state-of-the-art models. Hence, the proposed SARIMA

model can be extended and used to predict other countries

as it is giving an acceptable performance when observed its

accuracy.

Table 14 presents the comparison with the state-of-the-

art model for the top countries on the first rebound. The

estimation of COVID-19 end dates for top countries with

forecasting approach as of Oct-2020 is 99.73% percent-

age. For example, the end date based on a the-state-of-art

method for the USA is 27-Aug-2020 [13] while our mod-

el’s prediction date is on 15-Oct-2020 which is statistically

more accurate. In any case, prediction and specifying an

end date is arbitrary. Alternatively, estimation as a range of

dates might make sense for such uncertain predictions. The

estimated date range is expected to become narrower as the

countries continually evolve along the pandemic life cycle

curve to its end date.

In any prediction tasks, more data are needed to achieve

better performance from the models underuse. The best

predictive models can help in predicting future confirmed

Fig. 11 Expected deadline for the France in the second rebound without forecasting

Table 13 A comparative study of the proposed method with the state-of-the-art models in terms of confirmed cases

The state-of-the-art models The proposed model (SARIMA)

Country Metrics (RMSE/MAE) Value Country Metrics (RMSE/MAE) Value

ARIMA [17] Spain RMSE 379.89 Spain RMSE 0.68588

ARIMA [20] India MAE 47.42 India MAE 4.06187

Machine learning (Random Forest) [46] worldwide MAE 368.821 worldwide MAE 1.61697

Deep learning (LSTM) [47] worldwide RMSE 30758 worldwide RMSE 1.57643

Deep learning (LSTM) [48] US RMSE 324.61 US RMSE 1.25634
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cases if the spread of the virus does not change radically. It

is known that the pandemic COVID-19 virus is novel and

can be transmitted easily. This can affect all the predic-

tions, but to the best of our knowledge and in the time of

writing, our proposed model is best compared to the state-

of-the-art methods.

6 Conclusion

This research work investigates the answer to the most

important questions raised today: when will the COVID-19

pandemic end and is there a possibility for the second

rebound in case of returning to daily routine life. Despite

accelerated virus mutation and the nature of the dataset

based on time and date, the work done tried to reduce the

variability of the data by taking only the dataset from WHO

and John Hopkins University. The proposed model pro-

vides a statistical estimate of the slowing down of the

pandemic, which is derived based on the normal distribu-

tion principle. The work done helped in estimating the life

cycle of the pandemic and selecting the optimal model

parameter using the grid search method. The experimental

results of the proposed method match with the daily data to

show the realistic nature of the proposed model.

The results pointed out to the likelihood that there will

be a second rebound of the pandemic in a year time if the

currently taken precautions are eased completely. This

study will have a significant benefit in helping governments

in making decisions and planning for the future to reduces

anxiety and prepare the minds of people for the next phases

of the pandemic. The proposed work has some limitations.

Hence, we believe that it could lead to the next research

avenue on COVID-19 pandemic and can be a good starting

point considering the uncertain nature of the pandemic and

our growing inter-connected and complex world. What is

eventually and fundamentally needed is the flexibility,

robustness and resilience to deal with unexpected future

events and scenarios. The future work of this research will

focus on improving the performance of our model by using

a huge data and applying the proposed model to more

countries. Moreover, we plan to update this study with

more analyses and cases, by fine-tuning the prediction and

visualization methodology.

Compliance with ethical standards

Conflict of interest The authors declare that there is no conflict of

interest.

References

1. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR (2020) Severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and

coronavirus disease-2019 (COVID-19): the epidemic and the

challenges. Int J Antimicrob Agents 55(3):105924. https://doi.

org/10.1016/j.ijantimicag.2020.105924

2. WHO (2020) Coronavirus. https://www.who.int/health-topics/

coronavirus. Accessed 13 April 2020

3. WHO (2020) Rolling updates on coronavirus disease (COVID-19).

https://www.who.int/emergencies/diseases/novel-coronavirus-

2019/events-as-they-happen. Accessed 15 April 2020

4. WHO (2020) Coronavirus disease 2019 (COVID-19) situation

report-97. 2020. https://www.who.int/docs/default-source/cor

onaviruse/situation-reports/20200426-sitrep-97-covid-19.

pdf?sfvrsn=d1c3e800_6. Accessed 24 April 2020

5. Qiu H, Wu J, Hong L, Luo Y, Song Q, Chen D (2020) Clinical

and epidemiological features of 36 children with coronavirus

disease 2019 (COVID-19) in zhejiang, china: an observational

cohort study. Lancet Infect Dis. https://doi.org/10.1016/s1473-

3099(20)30198-5

6. Wu J, Liu J, Zhao X, Liu C, Wang W, Wang D, Xu W, Zhang C,

Yu J, Jiang B, Cao H, Li L (2020) Clinical characteristics of

imported cases of coronavirus disease 2019 (COVID-19) in

jiangsu province: a multicenter descriptive study. Clin Infect Dis.

https://doi.org/10.1093/cid/ciaa199

7. WHO (2020) Coronavirus. https://www.who.int/health-topics/

coronavirus. Accessed 30 April 2020

Table 14 Comparison of the proposed model with the state-of-the-art method on the first rebound

Countries The state-of-the-art models [13] The proposed model (the first wave)

Turning Date End 99% End 100% Turning date End 99% End 100%

France 3-Apr-2020 18-May-2020 5-Aug-2020 01-Jan-2020 27-Sep-2020 13-Oct-2020

Italy 29-Mar-2020 21-May-2020 25-Aug-2020 08-Jan-2020 14-Sep-2020 01-Oct-2020

US 10-Apr-2020 24-May-2020 27-Aug-2020 30-May-2020 01-Oct-2020 15-Oct-2020

Russia 24-Apr-2020 28-May-2020 20-Jul-2020 08-Jan-2020 14-Sep-2020 01-Oct-2020

United Kingdom 12-Apr-2020 27-May-2020 14-Aug-2020 08-Jan-2020 14-Sep-2020 01-Oct-2020

123

2946 Neural Computing and Applications (2021) 33:2929–2948

https://doi.org/10.1016/j.ijantimicag.2020.105924
https://doi.org/10.1016/j.ijantimicag.2020.105924
https://www.who.int/health-topics/coronavirus
https://www.who.int/health-topics/coronavirus
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200426-sitrep-97-covid-19.pdf?sfvrsn=d1c3e800_6
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200426-sitrep-97-covid-19.pdf?sfvrsn=d1c3e800_6
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200426-sitrep-97-covid-19.pdf?sfvrsn=d1c3e800_6
https://doi.org/10.1016/s1473-3099(20)30198-5
https://doi.org/10.1016/s1473-3099(20)30198-5
https://doi.org/10.1093/cid/ciaa199
https://www.who.int/health-topics/coronavirus
https://www.who.int/health-topics/coronavirus


8. Worldometer (2020) COVID-19 CORONAVIRUS PANDEMIC.

https://www.worldometers.info/coronavirus/. Accessed 9 May

2020

9. Yang P, Liu P, Li D, Zhao D (2020) Corona virus disease 2019, a

growing threat to children? J Infect. https://doi.org/10.1016/j.jinf.

2020.02.024

10. Cao W, Fang Z, Hou G, Han M, Xu X, Dong J, Zheng J (2020)

The psychological impact of the COVID-19 epidemic on college

students in china. Psychiatry Res 287:112934. https://doi.org/10.

1016/j.psychres.2020.112934

11. Ho CS, Chee CY, Ho RC (2020) Mental health strategies to

combat the psychological impact of covid-19 beyond paranoia

and panic. Ann Acad Med Singapore 49(1):1–3

12. Lai CC, Wang CY, Wang YH, Hsueh SC, Ko WC, Hsueh PR

(2020) Global epidemiology of coronavirus disease 2019

(COVID-19): disease incidence, daily cumulative index, mortal-

ity, and their association with country healthcare resources and

economic status. Int J Antimicrob Agents 55(4):105946. https://

doi.org/10.1016/j.ijantimicag.2020.105946

13. Luo J (2020) Data-driven innovation lab, when will COVID-19

end? Data-driven prediction. http://ddi.sutd.edu.sg

14. Dandekar R, Barbastathis G (2020) Quantifying the effect of

quarantine control in covid-19 infectious spread using machine

learning. medRxiv. https://doi.org/10.1101/2020.04.03.20052084

15. Murray CJ (2020) Forecasting the impact of the first wave of the

COVID-19 pandemic on hospital demand and deaths for the USA

and European economic area countries. medRxiv. https://doi.org/

10.1101/2020.04.21.20074732

16. Organization WH (2020) Rational use of personal protective

equipment for coronavirus disease (covid-19): interim guidance,

27 february 2020. Technical report. World Health Organization

17. Bayyurt L, Bayyurt B (2020) Forecasting of COVID-19 cases and

deaths using ARIMA models. medrxiv. https://doi.org/10.1101/

2020.04.17.20069237

18. Tandon H, Ranjan P, Chakraborty T, Suhag V (2020) Coron-

avirus (covid-19): arima based time-series analysis to forecast

near future. 2004.07859

19. Organization WH (2020) Report of the WHO-China joint mission

on coronavirus disease 2019 (COVID-19). https://www.who.int/

docs/default-source/coronaviruse/who-china-joint-mission-on-

covid-19-final-report.pdf. Accessed 28 Feb 2020

20. Anne R (2020) ARIMA modelling of predicting COVID-19

infections https://doi.org/10.1101/2020.04.18.20070631

21. Brockwell PJ, Davis RA (2016) Introduction to time series and

forecasting. Springer, New York

22. Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series

analysis: forecasting and control. Wiley, Hoboken

23. Paolella MS (2018) ARMA model identification. In: Linear

models and time-series analysis. Wiley, Hoboken, p 405–442.

https://doi.org/10.1002/9781119432036.ch9

24. Sarıca B, Eğrioğlu E, Aşıkgil B (2016) A new hybrid method for

time series forecasting: AR–ANFIS. Neural Comput Appl

29(3):749–760. https://doi.org/10.1007/s00521-016-2475-5

25. Diop ML, Kengne W (2021) Piecewise autoregression for general

integer-valued time series. J Stat Plan Inference 211:271–286.

https://doi.org/10.1016/j.jspi.2020.07.003

26. (2014) The moving average models MA(1) and MA(2). In: Basic

data analysis for time series with R. Wiley, Hoboken, p 51–57.

https://doi.org/10.1002/9781118593233.ch6

27. Al-Douri Y, Hamodi H, Lundberg J (2018) Time series fore-

casting using a two-level multi-objective genetic algorithm: a

case study of maintenance cost data for tunnel fans. Algorithms

11(8):123. https://doi.org/10.3390/a11080123

28. Chintalapudi N, Battineni G, Amenta F (2020) COVID-19 virus

outbreak forecasting of registered and recovered cases after sixty

day lockdown in Italy: a data driven model approach. J Microbiol

Immunolo Infect. https://doi.org/10.1016/j.jmii.2020.04.004

29. Ryabko D (2019) Asymptotic nonparametric statistical analysis

of stationary time series. Springer, New York. https://doi.org/10.

1007/978-3-030-12564-6

30. Liang YH (2008) Combining seasonal time series ARIMA

method and neural networks with genetic algorithms for pre-

dicting the production value of the mechanical industry in taiwan.

Neural Comput Appl 18(7):833–841. https://doi.org/10.1007/

s00521-008-0216-0

31. Soares F, Silveira T, Freitas H (2020) Hybrid approach based on

SARIMA and artificial neural networks for knowledge discovery

applied to crime rates prediction. In: Proceedings of the 22nd

international conference on enterprise information systems.

SCITEPRESS - Science and Technology Publications. https://doi.

org/10.5220/0009412704070415

32. Eze N, Asogwa O, Obetta A, Ojide K, Okonkwo C (2020) A time

series analysis of federal budgetary allocations to education

sector in Nigeria (1970–2018). Am J Appl Math Stat 8(1):1–8

33. Rebala G, Ravi A, Churiwala S (2019) An introduction to

machine learning. Springer, New York

34. Chakrabarti A, Ghosh JK (2011) AIC, BIC and recent advances

in model selection. Philosophy of statistics. Elsevier, Amsterdam,

pp 583–605. https://doi.org/10.1016/b978-0-444-51862-0.50018-

6

35. Chen P, Niu A, Liu D, Jiang W, Ma B (2018) Time series

forecasting of temperatures using SARIMA: an example from

Nanjing. IOP Conf Ser Mater Sci Eng 394:052024. https://doi.

org/10.1088/1757-899x/394/5/052024

36. Davis RA (2013) Of borders and bodies: the second wave begins.

The Spanish flu. Palgrave Macmillan, London, pp 47–68. https://

doi.org/10.1057/9781137339218_3

37. Molgaard CA (2019) Military vital statistics the spanish flu and

the first world war. Significance 16(4):32–37. https://doi.org/10.

1111/j.1740-9713.2019.01301.x

38. Taubenberger JK, Morens DM (2006) 1918 Influenza: the mother

of all pandemics. Emerg Infect Dis 12(1):15–22. https://doi.org/

10.3201/eid1209.05-0979

39. Guarner J (2020) Three emerging coronaviruses in two decades.

Am J Clin Pathol 153(4):420–421. https://doi.org/10.1093/ajcp/

aqaa029

40. Quan C, Shi W, Yang Y, Yang Y, Liu X, Xu W, Li H, Li J, Wang

Q, Tong Z, Wong G, Zhang C, Ma S, Ma Z, Fu G, Zhang Z,

Huang Y, Song H, Yang L, Liu WJ, Liu Y, Liu W, Gao GF, Bi Y

(2018) New threats from h7n9 influenza virus: spread and evo-

lution of high- and low-pathogenicity variants with high genomic

diversity in wave five. J Virol 92(11):e00301–18. https://doi.org/

10.1128/jvi.00301-18

41. Contini C, Nuzzo MD, Barp N, Bonazza A, Giorgio RD, Tognon

M, Rubino S (2020) The novel zoonotic COVID-19 pandemic: an

expected global health concern. J Infect Dev Ctries

14(03):254–264. https://doi.org/10.3855/jidc.12671

42. Yan Y, Shin WI, Pang YX, Meng Y, Lai J, You C, Zhao H,

Lester E, Wu T, Pang CH (2020a) The first 75 days of novel

coronavirus (SARS-CoV-2) outbreak: recent advances, preven-

tion, and treatment. Int J Environ Res Public Health 17(7):2323.

https://doi.org/10.3390/ijerph17072323

43. Yan Y, Chang L, Wang L (2020b) Laboratory testing of SARS-

CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): current sta-

tus, challenges, and countermeasures. Rev Med Virol. https://doi.

org/10.1002/rmv.2106

44. Cohen J (2020) Accuracy of estimate Of 100,000 To 240,000

Covid-19 deaths hinges on key assumptions. https://www.forbes.

com/sites/joshuacohen/2020/04/02/accuracy-of-estimate-of-

100000-to-240000-covid-19-deaths-hinges-on-key-assumptions/

#41150b03144e. Accessed 2 April 2020

123

Neural Computing and Applications (2021) 33:2929–2948 2947

https://www.worldometers.info/coronavirus/
https://doi.org/10.1016/j.jinf.2020.02.024
https://doi.org/10.1016/j.jinf.2020.02.024
https://doi.org/10.1016/j.psychres.2020.112934
https://doi.org/10.1016/j.psychres.2020.112934
https://doi.org/10.1016/j.ijantimicag.2020.105946
https://doi.org/10.1016/j.ijantimicag.2020.105946
http://ddi.sutd.edu.sg
https://doi.org/10.1101/2020.04.03.20052084
https://doi.org/10.1101/2020.04.21.20074732
https://doi.org/10.1101/2020.04.21.20074732
https://doi.org/10.1101/2020.04.17.20069237
https://doi.org/10.1101/2020.04.17.20069237
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
https://doi.org/10.1101/2020.04.18.20070631
https://doi.org/10.1002/9781119432036.ch9
https://doi.org/10.1007/s00521-016-2475-5
https://doi.org/10.1016/j.jspi.2020.07.003
https://doi.org/10.1002/9781118593233.ch6
https://doi.org/10.3390/a11080123
https://doi.org/10.1016/j.jmii.2020.04.004
https://doi.org/10.1007/978-3-030-12564-6
https://doi.org/10.1007/978-3-030-12564-6
https://doi.org/10.1007/s00521-008-0216-0
https://doi.org/10.1007/s00521-008-0216-0
https://doi.org/10.5220/0009412704070415
https://doi.org/10.5220/0009412704070415
https://doi.org/10.1016/b978-0-444-51862-0.50018-6
https://doi.org/10.1016/b978-0-444-51862-0.50018-6
https://doi.org/10.1088/1757-899x/394/5/052024
https://doi.org/10.1088/1757-899x/394/5/052024
https://doi.org/10.1057/9781137339218_3
https://doi.org/10.1057/9781137339218_3
https://doi.org/10.1111/j.1740-9713.2019.01301.x
https://doi.org/10.1111/j.1740-9713.2019.01301.x
https://doi.org/10.3201/eid1209.05-0979
https://doi.org/10.3201/eid1209.05-0979
https://doi.org/10.1093/ajcp/aqaa029
https://doi.org/10.1093/ajcp/aqaa029
https://doi.org/10.1128/jvi.00301-18
https://doi.org/10.1128/jvi.00301-18
https://doi.org/10.3855/jidc.12671
https://doi.org/10.3390/ijerph17072323
https://doi.org/10.1002/rmv.2106
https://doi.org/10.1002/rmv.2106
https://www.forbes.com/sites/joshuacohen/2020/04/02/accuracy-of-estimate-of-100000-to-240000-covid-19-deaths-hinges-on-key-assumptions/#41150b03144e
https://www.forbes.com/sites/joshuacohen/2020/04/02/accuracy-of-estimate-of-100000-to-240000-covid-19-deaths-hinges-on-key-assumptions/#41150b03144e
https://www.forbes.com/sites/joshuacohen/2020/04/02/accuracy-of-estimate-of-100000-to-240000-covid-19-deaths-hinges-on-key-assumptions/#41150b03144e
https://www.forbes.com/sites/joshuacohen/2020/04/02/accuracy-of-estimate-of-100000-to-240000-covid-19-deaths-hinges-on-key-assumptions/#41150b03144e


45. Donovan J (2020) Social-media companies must flatten the curve

of misinformation. Nature. https://doi.org/10.1038/d41586-020-

01107-z

46. Malki Z, Atlam ES, Hassanien AE, Dagnew G, Elhosseini MA,

Gad I (2020) Association between weather data and COVID-19

pandemic predicting mortality rate: machine learning approaches.

Chaos Solitons Fractals 138:110137. https://doi.org/10.1016/j.

chaos.2020.110137

47. Direkoglu C, Sah M (2020) Worldwide and regional forecasting

of coronavirus (covid-19) spread using a deep learning model.

https://doi.org/10.1101/2020.05.23.20111039

48. Tian Y, Luthra I, Zhang X (2020) Forecasting COVID-19 cases

using machine learning models. https://doi.org/10.1101/2020.07.

02.20145474

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

123

2948 Neural Computing and Applications (2021) 33:2929–2948

https://doi.org/10.1038/d41586-020-01107-z
https://doi.org/10.1038/d41586-020-01107-z
https://doi.org/10.1016/j.chaos.2020.110137
https://doi.org/10.1016/j.chaos.2020.110137
https://doi.org/10.1101/2020.05.23.20111039
https://doi.org/10.1101/2020.07.02.20145474
https://doi.org/10.1101/2020.07.02.20145474

	ARIMA models for predicting the end of COVID-19 pandemic and the risk of second rebound
	Abstract
	Introduction
	Related work
	Dataset description
	Current statistics

	Methodology
	The ARIMA models
	Seasonal ARIMA model
	Model selection
	Data normalization

	Experimental results and evaluation
	Experimental results
	The risk of second rebound of COVID-19 pandemic
	Estimation of slowdown of COVID-19
	Comparison with state-of-the-art models

	Conclusion
	References




