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ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a leading cause of diarrhea in pigs
worldwide. Virus isolation and genetic evolutionary analysis allow investigations into
the prevalence of epidemic strains and provide data for the clinical diagnosis and
vaccine development. In this study, we investigated the genetic characteristics of
PEDV circulation in Asia through virus isolation and comparative genomics analysis.
APEDV strain designated HB2018 was isolated from a pig in a farm experiencing a
diarrhea outbreak. The complete genome sequence of HB2018 was 28,138 bp in length.
Phylogenetic analysis of HB2018 and 207 PEDVs in Asia showed that most PEDV strains
circulating in Asia after 2010 belong to genotype GII, particularly GII-a. The PEDV
vaccine strain CV777 belonged to GI, and thus, unmatched genotypes between CV777
and GlI-a variants might partially explain incomplete protection by the CV777-derived
vaccine against PEDV variants in China. In addition, we found the S protein of variant
strains contained numerous mutations compared to the S protein of CV777, and these
mutations occurred in the N-terminal domain of the S protein. These mutations may
influence the antigenicity, pathogenicity, and neutralization properties of the variant
strains.

Subjects Evolutionary Studies, Genomics, Microbiology, Veterinary Medicine, Epidemiology

Keywords Porcine epidemic diarrhea virus, Virus isolation, Genetic evolutionary analysis, Amino
acid mutations, Asia

INTRODUCTION

Porcine epidemic diarrhea (PED) is a high contagious and devastating disease resulting in
the watery diarrhea in suckling pigs with high mortality and morbidity (Zhang et al., 2019).
The causative agent of PED, the porcine epidemic diarrhea virus (PEDV), is an enveloped,
single-stranded, positive-sense RNA virus belonging to the genus Alphacoronavirus in the
family Coronaviridae (Woo et al., 2012). PEDV possesses a 28-kb genome which encodes
seven proteins including ORFla, ORF1b, spike (S) glycoprotein, ORF3 hypothetical
protein, envelop (E) protein, membrane (M) protein and nucleocapsid protein (Guo ef al.,
2019). Among these proteins, the S protein plays a key role in interaction between the virus
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and host cells. S protein consists of 1383-amino acids (Aziz ef al., 2008), and amino acid
changes in S protein may lead to antigenic variations and affect the virus virulence (Gong
et al., 2018; Suzuki et al., 2018). Therefore, this protein is commonly used as an important
target for analyzing genetic variations and molecular epidemiology of PEDV (Hsueh et al.,
2020).

PED outbreaks have been reported continuously in China since 1973. PED was well
controlled since administration of a CV777-derived vaccine (Chen et al., 2019a; Wang,
Fang & Xiao, 2016a). However, recent outbreaks of PED in China since 2010 was due
to the re-emergence of PEDV, and the continuous spread of the virus during the last
10 years has resulted in serious economic losses in the pig industry in Asian countries
(Yang et al., 2013). In these outbreaks, inactivated vaccines and attenuated live vaccines,
which were derived from CV777, were used to control the disease but neither of them
provided effective protection (Sun et al., 2012; Zhou et al., 2012). Moreover, the virus has
evolved since 2010 (Guo et al., 2019; Hsu et al., 2018; Sun et al., 2019), and acquisition of
whole genome features of PEDV provides a convenient tool for the tracking of PEDV
epidemiology (Chen et al., 2019b). In addition, virus isolation and genetic analysis allow
investigations on the prevalence of epidemic strains and will provide information for
diagnosis and vaccine developments (Li et al., 2018). In this study, we isolated a highly
pathogenic PEDV strain HB2018 from a pig in a farm experiencing PED outbreaks in
Hubei province, China, and determined its complete genome sequence. By comparing the
HB2018 genome sequence with the sequences of 207 PEDV isolates circulating in Asia,
which were publicly available in the Genbank data base, this study also aims to elucidate the
evolutionary and genetic characteristics of PEDV currently circulation in different regions
of Asia.

MATERIALS AND METHODS

Virus detection and isolation

In 2018, an outbreak of diarrhea occurred in a CV777-vaccinated pig farm (numbers of
sows > 100) in Hubei Province in China. Many pigs in the farm suffered from severe watery
diarrhea, and some of them died. Samples of intestinal tissues were collected from dead
pigs and sent to the Veterinary Diagnostic Laboratory of Hubei Academy of Agricultural
Sciences in Wuhan, China, for diagnosis. Tissues were immersed with Dulbecco’s modified
Eagle medium (DMEM; Gibco, Grand Island, NY, USA), and were then homogenized
using a QIAGEN TissueLyser II (QIAGEN, Dusseldorf, Nordrhein-Westfalen, Germany).
The sample homogenates were then frozen at —80 °C and thawed for three times. After
that, the supernatants were filtered through a 0.22-pm membrane and were harvested for
RNA and virus isolation. Total RNAs were extracted using TRIzol (Thermo, Waltham,
MA, USA) and were reverse transcribed to cDNA using a Thermo Scientific First Strand
cDNA Synthesis kit (Thermo, Waltham, MA, USA). Viral nucleic acids were detected
by RT-PCR assays using the cDNA as templates and the primers specific for PEDV (F:
5-TTCGGTTCTATTCCCGTTGATG-3', R: 5-CCCATGAAGCACTTTCTCACTATC-3),
TGEV (transmissible gastroenteritis virus) (F: 5'-TTACAAACTCGCTATCGCATGG-3,
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R: 5-TCTTGTCACATCACCTTTACCTGC-3’) and PoRV (porcine rotavirus) (F: 5'-
CCCCGGTATTGAATATACCACAGT-3', R: 5’-TTTCTGTTGGCCACCCTTTAGT-3'),
respectively.

Vero cells (Purchased from ATCC, Manassas, VA, USA) were used for virus isolation.
In brief, homogenate supernatants and trypsin (5 pug/ml) were inoculated into monolayers
of Vero cells, which were then incubated in a 37 °C incubator supplemented with 5% CO,.
Cells with obvious cytopathic effects (CPEs) were harvested, thawed, and refrozen multiple
times. The harvested virus suspension was then inoculated into newly prepared Vero cells
for passages, and the propagation was continuously performed for 20 passages (F20). Virus
RNA was extracted every five passage for RT-PCR detection of the virus nucleic acids.

Virus titration and serum neutralization

Virus titers were measured on 96-well plates using 10-fold serial dilutions of culture
supernatant in triplicate per dilution to determine the quantity of viruses required to
produce CPEs in 50% of cells. After incubating for enough time, no more CPEs appeared,
and TCID50 was calculated using the Reed-Muench method (Reed & Muench, 1983).
The virus titer was also determined by plaque assay using Vero cells and expressed as
plaque-forming units (PFU) per mL. The serum neutralization (SN) test was performed
in 96-well plates with inactivated serum collected from the guinea pigs infected with the
vaccine strain CV777. The virus was diluted in serum-free DMEM to make 200 TCID in
a 50 pL volume, and mixed with 50 pL of 2-fold serial dilution serum. The mixture was
added to cells cultured in 96-well plates and incubated at 37 °C for 1 h. After removing
the mixture and thoroughly washing three times with PBS, the cells were incubated at
37 °C with 5% CO, for 2 days. Neutralization titers were calculated as the reciprocal of the
highest dilution of serum that inhibits CPEs.

Genome sequencing and annotation

Genomic RNA was extracted using the TAKARA RNA extraction kit (Takara, Kusatsu,
Shiga, Japan) following the manufacture instruction. The quantity and quality of the
extracted RNA were measured by using a Nanodrop spectrophotometer (Thermo,
Waltham, MA, USA). The RNA was then subjected to reverse transcription for cONA
using a cDNA synthesis kit (Thermo, Waltham, MA, USA). Genome sequencing was
performed with a paired-end library constructed by using a NEB-Next® DNA Library
Prep Master Mix Set for Illumina (NEB, Ipswich, MA, USA) and subsequently sequenced
on an Illumina NextSeq 500 with 2 x 150 paired end sequencing chemistry. After filtering,
the clean reads were assembled using SPAdes v3.10.1 (Bankevich et al., 2012) and assembled
sequences were mapped to the reference genome. The prediction of the genes and proteins
were conducted with Prokka v1.12 and RAST Serve (http://rast.nmpdr.org) (Aziz et al.,
2008). The complete genome sequence as well as its annotations were deposited into NCBI
GenBank under the accession number MT166307.

Comparative genomics and bioinformatical analysis
The NCBI data was search for “porcine epidemic diarrhea virus” and a total of 207 complete
genome sequences were publicly available for PEDV isolates representing different parts
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of Asia (See Table S1). All of these 207 sequences were downloaded for further analysis.
The average nucleotide sequence identity between the genomes of HB2018 and CV777 was
calculated by ANI calculator (Goris et al., 2007). Sequence alignments were performed using
MAFFT v7.4.02 (Katoh ¢ Standley, 2013). Nucleotide sequence similarity and the putative
recombination sites was assessed by SimPlot v.3.5.1 (Lole ef al., 1999), with a sliding window
size of 500 bp, step size of 100 nucleotides, and 1,000 bootstrap replicates, using gap-stripped
alignments and the F84 (ML) distance model. Phylogenetic trees based on complete genome
sequences were generated by using MEGA X software with 1,000 bootstrapping (Kumar
et al., 2018).The evolutionary history was inferred by using the Maximum Likelihood
method and Tamura-Nei model (Tamura ¢ Nei, 1993). Initial tree(s) for the heuristic
search were obtained automatically by applying Neighbor-Join and BioN]J algorithms to a
matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL)
approach, and then selecting the topology with superior log likelihood value. The tree is
drawn to scale, with branch lengths measured in the number of substitutions per site. A
maximum likelihood tree was also generated using the BEAST 2 package (version 2.6.3)
(Bouckaert et al., 2019). Gamma correction for site heterogeneity and the GTR model
(Gatto, Catanzaro ¢ Milinkovitch, 2007) were selected for the tree generation. Both of the
trees were annotated and visualized by using the iTOL v.4 online tool (Interactive Tree
of Life, http://itol.embl.de/) (Letunic ¢ Bork, 2019). Single nucleotide polymorphisms
(SNPs) between two genome sequences were determined by the MAUVE package (version
2.4.0) (Darling et al., 2004), and the coding effect of these SNPs were analyzed using a
previously reported local Perl command (Peng et al., 2016). Protein structure was generated
using SWISS-MODEL (https://swissmodel.expasy.org). Protein N-glycosylation sites were
predicted using online software (http://www.cbs.dtu.dk/services/NetNGlyc/). Threshold
values of greater than 0.5 and Jury agreement 9/9 were used for the high-specificity
N-glycosylation sites determination (Sagesser et al., 1997).

RESULTS

Isolation of PEDV HB2018 and its genomic characteristics
RT-PCR detection of the viral nucleic acids revealed that the intestinal samples from pigs
suffered and died from severe watery diarrhea were positive for PEDV but negative for
TGEV and PoRV (Fig. S1). Through virus isolation and purification using Vero cells and
determination of PEDV nucleic acids using RT-PCR, a PEDV strain was finally recovered
and designated HB2018. The TCID50/0.1 mL value of HB2018 was 10>, The complete
genome sequence of PEDV strain HB2018 was 28,138 bp in length. This 2.8-kb genome
contained seven open reading frames (ORFs): ORFla (nucleotide positions 281 to 12,634),
ORF1b (positions 12,664 to 20,625), S gene (positions 24,782 to 25,456), ORF3 (positions
25,675 to 25,667), E gene (positions 25,437 to 25,667), M gene (positions 25,675 to 26,355),
and N gene (positions 26,367 to 27,692).

Phylogenetic analysis based on the complete genome sequence showed that HB2018
was phylogenetically distinct from the vaccine strain CV777 (Fig. 1A). According to the
genotyping system based on a full-length genomic sequence analysis (Guo et al., 2019;
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Figure 1 Phylogenetic and genetic characteristics of PEDV strain HB2018. (A) Phylogenetic analysis of
HB2018 and the other PEDV strains based on the whole genome sequence; (B) nucleotide similarity of the

complete genome sequences between PEDV strains HB2018 and CV777; (C) sequence alignment of the

S-NTD regions of PEDV strains HB2018 and CV777; (D) modelling the 3D structure of the S protein of
CV777; (E) modelling the 3D structure of the S protein of HB2018.
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Wang, Fang ¢ Xiao, 2016a), HB2018 and CV777 belonged to two different genotype:
HB2018 was assigned as a type GII strain while CV777 was a GI strain (Fig. 1A). The

average nucleotide identity between the genomes of HB2018 and CV777 (GenBank

accession no. AF353511) was 96.06% (Fig. S2). The ORF1, ORF3, E, M, and N genes of
HB2018 as well as their encoding proteins were highly homologous to those of CV777
(nucleotide identity > 95% for genes; amino acid similarity > 95% for proteins) (Fig. 1B;

Table 1). However, the identity of the S genes and proteins between the two strains was
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Table 1 Sequence comparisons of different ORF regions between HB2018 and CV777.

ORFs HB2018 vs. CV777
Amino acid similarity (%) DNA identity (%)

ORF1 97.73 97.11
S 93.44 93.76
ORF3 95.98 96.44
E 97.40 96.97
M 99.12 97.80
N 96.60 95.48

Table 2 Single nucleotide polymorphism (SNP) analysis and dN/dS ratios of PEDV strains HB2018

and CV777.
OREFs Sum Non-synonymous Synonymous dN/dS
Total 925 262 663 0.395
ORFla 397 118 279 0.423
ORF1b 188 26 162 0.160
HB2018
Vs, 233 88 145 0.607
cv777  ORF3 24 9 15 0.600
E 8 2 6 0.333
M 15 2 13 0.154
N 60 17 43 0.395

relatively low: the homology for nucleotide and amino acid sequences between HB2018
and CV777 were 93.76% and 93.44%, respectively (Figs. 1B & 1C; Table 1). SNP analysis
determined a total of 946 SNPs in the genome sequence of HB2018 when compared to the
genome sequence of the reference strain CV777. Among these SNPs, 925 SNPs including
262 non-synonymous substitutions and 663 synonymous substitutions were located with
the ORF regions, with an overall ratio of nonsynonymous to synonymous substitutions
(dN/dS) of 0.39 (Table 2). The dN/dS ratios in each of the ORFs encoded by the HB2018
genome ranged from 0.15 to 0.61, with the S protein had the highest dN/dS ratio (Table 2).

Compared to the S protein of CV777, the S protein of HB2018 had changes, deletions,
and/or insertions of amino acids at multiple sites (Table S2 and Fig. S3). Notably, most
of these mutations occurred in the N-terminal domain (NTD, 19-233aa) of the S protein
(Fig. 1C; Fig. S3). Interestingly, some of these mutations were located within the neutralizing
epitopes of PEDV (COE (499-638), SS2 (748-755), SS6 (764—771) and 2C10 (1368-1374)).
In addition, these mutations led to a structural change at some parts of the HB2018 S protein
compared to the CV777 S protein (Figs. 1D & 1E).

Phylogenetic analysis of Aisan PEDV isolates

To explore the phylogenic relationships of the PEDVs currently circulating in Asia, we
generated two maximum likelihood trees based on the whole genome sequences, either
by using the MEGA X software with the Tamura-Nei model (Fig. 2A) or by using the

BEAST 2 package with the GTR model (Fig. 2B). Both of the results revealed that the

208 PEDV strains in Asia, representing the 207 genome sequences publicly available in
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PEDV sequences obtained by gene subgroup and year of sampling. Yearly percentages of samples positive
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Full-size Gl DOI: 10.7717/peer;j.10114/fig-2

NCBI and the HB2018 sequence was divided into two genogroups: GI (classical) and GII
(variant). Interestingly, isolates in China before 2010 and the vaccine strain CV777 were
included within the GI genogroup. However, most of the PEDV isolates from China as well
as the other Asian countries after 2010 belonged to GII genogroup (Figs. 2A & 2B). The
phylogenetic trees also showed that the two genogroups consisted of several subgroups:
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the genogroup GI was divided into two subgroups, GI-a and GI-b, while the genogroups
GII was divided into three subgroups, GII-a, GII-b, and GII-c (Figs. 2A & 2B). The GI-a
and GI-b subgroups included isolates from China before 2010 and several Chinese isolates
between 2010 and 2015 (Figs. 2A & 2B). Most of the GII isolates from China and South
Korea and all GII isolates from Japan were included within the GII-a subgroup, while
less proportion of the Chinese GII isolates and most of the GII-a isolates from Southeast
Asia (Vietnam and Thailand) were included within GII-b subgroup (Figs. 2A & 2B).
Interestingly, the GII-c subgroup only consisted of isolates from China (Figs. 2A & 2B).

By analyzing isolation years and genogroups of PEDVs, the history of PEDV and the
evolution in China are speculated. Between 1986 and 2008, only five PEDV strains were
sequenced in China, and all of them belonged to G1 (Figs. 2A & 2B). However, the number
of PEDV sequences increased significantly after 2010 (Fig. 2C). While several PEDV
sequences belonged to genogroup GI after 2010, most sequences from China were GII
strains (Figs. 2A-2C).

Analysis on the S protein

Compared to the S proteins of the Chinese GI-a strains, amino acid changes, deletions,
and/or insertions were observed at multiple sites within the S proteins of the Chinese GI-b
strains (Table S3 and Txt S1). Compared to the S proteins of the Chinese GI strains, the S
proteins of the Chinese GII strains commonly had amino acid changes, deletions, and/or
insertions at several sites (Table S4 and Txt S1). Most these mutations occurred in S-NTD
(19-233aa) of the S protein (Fig. 3A; Txt S1).

Compared to S proteins of the Chinese GII-a strains, S proteins of most isolates from
Japan, South Korea, and Vietnam did not contain characteristic amino acid mutations,
with the exception of S proteins of two Japanese strains (NIG-2/JPN/2014 and KMM-
1/JPN/2014) which had a continuous deletion of 194 amino acids at sites 23-216 (Fig. 3B;
Txt S2). In addition, four isolates from Japan (GenBank accession numbers 1L.C063844—
LC063847) and three isolates from South Korea (KNU-141112-S DEL5, KNU-141112-S
DEL50ORF3, KNU-1406-1) had a continuous deletion of 5 amino acids (GENQG) at sites
56-60 in their S proteins compared to the S proteins of the Chinese GII-a strains (Fig. 3B;
Txt S2). In addition to the GII-a strains, several isolates from China, South Korea, Thailand,
and Vietnam were GII-b strains (Fig. 1). Compared to S proteins of most of the Chinese
GII-b strains, S proteins of the GII-b isolates from Thailand and Vietnam had amino acid
changes at sites 130-131 (SI —DN), 182 (Y —H), 287 (I -M), 324 (N —D), 327 (S —A),
358 (A —T), 367 (I =T), 433 (D —G), 558-559 (TN —PT), 1287 (E —K), and 1317 (L
—F) (Txt S3).

The N-glycosylation sites in the S proteins of the Asian strains studied were investigated
herein. Bioinformatical analysis revealed that most of the 208 Asian isolates contained
7~9 high-specificity N-glycosylation sites in their S proteins. When combining all
high-specificity N-glycosylation sites determined and deleting the duplicates, eleven
sites appeared in most isolates, including 57NSTW60, 112NATA115, 127NKTL130,
212NVTS215, 320NDTS323, 347NSSD350, 510NITV513, 552NVTN555, 777NISI780,
1245NKTL1248, and 1257NRTG1260 (Table 3). Among these sites, 212NVTS215,
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777NIS1780, and 1245NKTL1248 were conserved in almost all of the 208 Asian strains.
However, the N-glycosylation sites at sites 57—60 of some strains were “NSSS” rather than
“NSTW?”. This is because the S proteins of these strains had the 59QGVNG62 deletion
compared to the S proteins of the other strains. Due to the amino acids changes, the
N-glycosylation sites at sites 347-350 in some strains also changed from “NSSD” to
“NSSN” or “NSTN”. The 510NITV513 and 552NVTN555 N-glycosylation sites were
missing in S proteins of the isolates from South Korea and Vietnam. Due to the large
deletion of amino acids at sites 23-216, the 57NSTW60, 112NATA115, 127NKTL130,
and 212NVTS215 N-glycosylation sites were missing in S proteins of two Japanese strains
NIG-2/JPN/2014 and KMM-1/JPN/2014, and seven N-glycosylation sites, including
130NDTS133, 157NSSN160, 494NVTS497, 549NCTE552, 587NISI590, 1055NKTL1058,
and 1067NRTG1070 were retained in these two strains.

Analysis of the ORF3-E-M-N proteins

Unlike the S protein, ORF3 is a conserved protein among the PEDV isolates (Wang et al.,
2016b). However, several PEDV's were found to have characteristic amino acid mutations
in the ORF3 (Fig. 4). Compared to ORF3 proteins of many G1 strains and all GII strains,
nine GI-a PEDVs (ZJUG12013, 85-7, 85-7-mutant 1, 85-7-mutant 2, 85-7-mutant 3,
85-7-mutant 4, 85-7-mutant 5, 85-7-A40, and 85-7-C40) had a continuous deletion of 70
amino acids at their N-terminal (positions 1-70) of ORF3; two Gl-a strains (85-7-mutant
2 and 85-7-mutant 4) had a continuous deletion of 47 amino acids at their C-terminal
(positions 178-224) of ORF3; while nine GI-b strains (JS2008, AH-M, SD-M, SQ2014,
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Table 3 High-specificity N-glycosylation sites predicted in Asian strains.

Country/ Regions  Strain High-specificity N-glycosylation sites”

vrLioL-ead/zL22:01 104 ‘r499d ‘(0202) "l 12 Buer

0c/oL

57
NSTW

112
NATA

127
NKTL

212
NVTS

320
NDTS

347
NSSD

510
NITV

552
NVTN

777
NISI

1245
NKTL

1257
NRTG

22

347

382

421

524

739

869

1198

1274

China

Thailand

Taiwan

South
Korea

Vietnam

Japan

Cv777
HB2018

LZC

DR13

SD-M
AJ1102
FJZz71

LS

CHS
CHHNQX-314
CHYJ130330
CBR1
AVCT12
PT-P5
KNU-1709
KNU-1702
KNU-1305
HUA-14PED96
'VN/JFP1013
Tottori2
OKY-1

IBR-7

NTSA

NSSN

NSSN

NSSN

NSSN

NSSN

NFTD

Notes.

*The high-specificity N-glycosylation sites and their amino acids are summarized, the representative strains from each country/regions are listed. @ means the strain has this high-specificity N-glycosylation
site; —means the strain has no this high-specificity N-glycosylation site; the amino acid sequences means the strain has a high-specificity N-glycosylation in this sits , but the amino acid sequences are dif-
ferent with the common sequences.
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Figure 4 Sequence alignment of ORF3 of PEDV strains.
Full-size Gal DOTI: 10.7717/peerj.10114/fig-4

SC1402, HLJBY, PEDV-SX, JSLS-12015 and JS-22015) had a continuous deletion of 133
amino acids at their C-terminal (positions 92-224) of ORF3 (Fig. 4). Compared to ORF3
proteins of many GI and GII strains, ORF3 protein of a GII-a strain (CHSXYL2016) had a
continuous deletion of 14 amino acids at positions 211-224; ORF3 protein of another GII-a
strain (NW17) had a continuous deletion of 6 amino acids (DLYLAI) at positions 168-173;
while ORF3 proteins of six GII-b strains (YN15, YN30, YN60, YN90, YN144, YN200) had
a continuous deletion of 79 amino acids at their C-terminal (positions 146-224) (Fig. 4).
Compared to ORF3 proteins of the GII-a isolates, more than half of the GII-b isolates had
amino acid changes at positions 25 (L —§), 70 (I -V), 80 (V —F), 107 (C —F), 168 (D
—N), and 182 (Q —H) (Fig. 4). Interestingly, these amino acid changes were also found
in the ORF3 proteins of many GII-c isolates after 2016.

Sequence comparisons revealed that there were no common INDELs or mutations
in E proteins of one subgroup of GII strains compared to E proteins of other subgroups
of GII strains (Fig. 5A). M proteins of most GII-a strains had a glutamine (Q) at site 13;
however, all GII-b strains isolated between 2011 and 2012 had a glutamic acid (E) at the
same position in their M proteins, and this amino acid change (Q —E) occurred frequently
in M proteins of GII-b since 2013 (Fig. 5B). A similar phenomenon was also observed in
the M proteins of the GII-c strains, as most of the GII-c strains isolated before 2016 had
a glutamine (Q) at position 13 in their M proteins, but a Q —E change at position 13
was seen in the M proteins of more frequently in strains isolated after 2016. In addition,
amino acid changes at positions 192 (G —S) and 214 (S —A) appeared simultaneously in
M proteins of some GII-b and GII-c strains. Similarly, in N proteins, amino acid changes
at positions 216 (M —V) and 241 (R —K) appeared simultaneously in many GII strains
(Fig. 5C).

DISCUSSION

As an infectious virus attracted great intention, the PEDV strains were frequently reported
and isolated in Asia. The virus isolation and genetic analysis will provide important
information for PEDV research and vaccine developments. In this study, we isolated a
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GII-a strain HB2018 and determined its genomic characteristics (Fig. 1A). Comparative
genomic analysis revealed that the ORF1, ORF3, E, M, and N genes of HB2018 as well
as their encoding proteins were highly homologous to those of CV777 (Fig. 1B; Table 1).
However, a number of SNPs were determined within these ORFs, with the S proteins
showed the highest dN/dS ratio (Table 2). Since dN/dS ratio is commonly used as a
measure of purifying versus diversifying selection (Rocha et al., 2006), the highest dN/dS
ratio suggests S protein is under diversifying selection, and this diversifying selection might
be associated with its frequent interaction with host cells.

Sequence alignments determined many mutations in the genome sequence of HB2018
compared to that of the reference strain CV777. These mutations, especially in the S protein,
might be the pathogenic determinants for it, because some deletions and insertions in the
S protein may change the antigenicity, pathogenicity and neutralization properties (Chen
et al., 2019a; Sagesser et al., 1997; Zhang et al., 2015). The presence of these mutations in
the NTD of S protein in HB2018 might have an effect on the viral pathogenicity since
the S-NTD domain is proposed to be the region relevant to the virulence of PEDV (Hou
etal, 2017; Su et al., 2018; Su, Hou & Wang, 2019; Suzuki et al., 2018). In addition, the
structural changes led by these mutations in S protein of HB2018 might influence the
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immunogenicity. The distinct phylogenetic relationship between our isolation HB2018
and CV777 might partly explain why vaccination of pigs with CV777 did not provide
effective protection against the infection of HB2018 in the vaccinated pig farm (Figs. 2A
& 2B). The analysis based on isolation years and genogroups of PEDVs in Asia might also
revealed the vaccine CV777 did not match with the pandemic PEDV isolations. Before
2010, all the strains in China belonged to GI (Figs. 2A & 2B). During this period, PEDV
was well controlled in China due to the use of CV777 which was the GI-based vaccine
(Chen et al., 2019a; Yang et al., 2013). The phylogenetic analysis of Asian PEDV isolates
showed that most of the PEDV isolates from Asia after 2010 belonged to GII genogroup,
while the vaccine CV777 were included within GI genogroup. These findings agree with the
results of the other studies (Guo et al., 2019; Wang, Fang ¢ Xiao, 2016a). The unmatched
genotypes between CV777 and PEDV epidemic strains in Asia after 2010 could explain
why vaccination with CV777 could not stop the outbreak of PED in many Asian countries
after 2010 and provide effective protection against the current epidemic strains (Chen et
al., 2019a; Puranaveja et al., 2009; Sun et al., 2012; Zhou et al., 2012).

With the most reported numbers of PEDV strains, China has more genogroups
than other countries. The GII-c subgroup only consisted of isolates from China, these
findings are also in agreement with previous studies (Guo et al., 2019; Wang, Fang ¢ Xiao,
2016a), suggesting that the genotypes of PEDV strains circulating in China might be more
heterogeneous than those of the isolates in other Asian countries. These findings may also
explain why PEDV vaccines developed in China contain more than one strains that generally
include CV777 and at least one more local GII isolate (http://vdts.ivdc.org.cn:8081/cx/#).
The new emerged PEDV in 2010 might accelerate numerous isolations and sequencing of
PEDVs (Li et al., 2012; Yang et al., 2013). In this article, it was found that the number of
PEDV sequences increased significantly after 2010 and most sequences were GII strains.
These results are in good agreement with the findings of the PEDV epidemiological
investigations in China (Chen et al., 2019a; Sun et al., 2018). It has been reported that
PEDV GII isolates were more virulent than GI isolates (Vlasova et al., 2014). This might in
part explain why the traditional vaccines had no to little effect on the control and spread of
PEDV in China after 2010. It is noteworthy that PEDV GII strains are also responsible for
the recent outbreaks of PED in North America and Europe (Choudhury et al., 2016). These
findings suggest the circulation of PEDV GII strains also pose a problem to the global pig
industry.

S protein is the most variable protein of PEDV, the amino acid changes in this protein
may lead to virus variation and affect the virus virulence (Gong et al., 2018; Suzuki et
al., 2018). The mutations between were found between GI-a strains and GI-b strains,
it is still uncertain whether these mutations between them has a biological significance.
While, the mutations occurred in S-NTD of the S protein between GI strains and GII
strains might in part explain why do the PEDV GII isolates be more pathogenic than
the GI isolates (Viasova et al., 2014), as S-NTD is proposed to be the region relevant to
the virulence of PEDV (Hou et al., 2017; Su et al., 2018; Su, Hou ¢ Wang, 2019; Suzuki et
al., 2018). It is worthy note that PEDVs with insertions of amino acids at 167-168 and
deletions of amino acids at 55-58 and 144 in their S proteins are called S-INDEL strains
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(Wang, Byrum & Zhang, 2014). A previous study has found infection of the S-INDEL
strains could induce pro-inflammatory cytokines through the non-canonical NF-xB
signaling pathway by activating RIG-I; however, infection of the non-S-INDEL strains
suppresses the induction of pro-inflammatory cytokines and type-I interferon production
by down-regulation of TLRs and downstream signaling molecules (Temeeyasen et al.,
2018). Whether the continuous deletion of 194 amino acids occurred in Japanese strains
will affect the virulence of these strains are unknown and warrant further exploration. A
previous study however has found that a Japanese strain Tottori2, which had the same
deletion, had non-lethal effects in piglets (Masuda et al., 2015). The mutations also were
found in C domain of S protein, since the NTD and C-domain both can bind to the host
cell receptor and function as the receptor-binding domain, the amino acid changes in
their sequences may have important role for the virus (Li, 2012). It has been reported the
N-linked glycosylation sites on the S protein of some coronaviruses such as SARS-CoV play
a critical role in the viral entry (Han, Lohani ¢ Cho, 2007). The phylogenetic and N-linked
glycosylation sites analysis of S protein may offer reasons for further studies. There was no
too many mutations were found in the ORF3-E-M-N proteins, it might be because some
of them, such as E protein, do not bear too much immune selective pressure since it has
no effect on the host cell growth or cell cycle (Xu et al., 2013).

CONCLUSIONS

In conclusion, through virus isolation and complete genome sequencing, we obtained
PEDV HB2018 strain. Using this virus, we investigated the genetic and phylogenetic
characteristics of PEDV isolates in China as well as in Asia in this study. Phylogenetic
analysis revealed heterogeneous genotypes of PEDVs circulate in Asia, but GII particularly
GII-a genotype represents the main epidemic genotype in the continent. Our study also
revealed that most of the PED Vs currently prevalent in Asian countries displayed a different
genotype as well as a distant relationship from the conventional vaccine strain CV777. This
finding might explain why CV777-derived vaccine provided poor protection against PEDV
epidemics (variant strains) since 2010. In addition, we also identified many mutations in
the S, ORF3, E, M, N proteins of the variant strains (GII) compared to those of the classical
strains (Temeeyasen et al). The presence of these mutations, particularly those determined
in the S proteins, may affect the antigenicity, pathogenicity, and neutralization properties
of the variant strains.
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