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Abstract

Focused ultrasound (FUS) has recently emerged as a modulator of the tumor microenvironment, 

paving the way for FUS to become a safe yet formidable cancer treatment option. Several 

mechanisms have been proposed for the role of FUS in facilitating immune responses and 

lowering drug delivery barriers. However, with the wide variety of FUS parameters used in diverse 

tumor types, it is challenging to pinpoint FUS specifications that may elicit the desired anti-tumor 

response. In order to clarify FUS bioeffects, we summarize four mechanisms of action, including 

thermal ablation, hyperthermia, mechanical perturbation, and histotripsy, each inducing unique 

vascular and immunological effects. Notable tumor responses to FUS include enhanced vascular 

permeability, increased T cell infiltration, and tumor growth suppression. Herein, we have 

categorized and reviewed recent methods of using therapeutic ultrasound to elicit an anti-tumor 

immune response with examples that reveal specific solutions and challenges in this new research 

area.

1. Introduction

A. Tumor microenvironment

The tumor microenvironment (TME) refers to normal tissue components around tumor cells, 

including extracellular matrix (ECM), stroma, blood and lymphatic vascular networks, and a 

variety of immune cell types (1, 2). These components work together to form harsh 

conditions that can promote tumor growth by limiting the function of normal immune cells. 

The TME can be broadly grouped into two classes: immunologically “cold” and “hot”. Cold, 

poorly immunogenic tumors, contain immune cells throughout the TME but lack cytotoxic 
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lymphocytes in the tumor core potentially due to defects in the tumor-associated vasculature 

or lack of priming and T cell recruitment (3). Immunologically hot TMEs have higher 

numbers of potential neoantigens and increased infiltration of cytotoxic lymphocytes.

Tumors are sites of chronic inflammation, fibrosis, angiogenesis, and essential cells that 

comprise the TME including immune cells, fibroblasts, vasculature, neuroendocrine cells 

and adipose cells (2). A multitude of mechanisms have been described, where cancer cells 

escape immune surveillance either by preventing antigen presentation and/or suppressing T 

cell activity (3). These include downregulation of major histocompatibility complex (MHC) 

levels on cancer cells, recruitment of regulatory cells including Tregs, myeloid-derived 

suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) (4). Dysfunction of 

dendritic cells (DCs) contributes to poor T cell responses as CD4+ and CD8+ T cells can 

become anergic or self-inactivate due to the lack of co-stimulation (5). Cancer-associated 

fibroblasts form a tangled web of extracellular matrix fibers, which may block immune cells 

and drugs from entering the TME (6). In addition, neuroendocrine cells prevent cytotoxicity 

and migration of natural killer (NK) cells and cancer-associated adipose tissue establishes a 

pro-inflammatory environment (7,8). Together, cellular components of the TME contribute 

to an immunosuppressive environment and have been the target of several immunotherapies 

(9).

The TME is deeply intertwined with harsh biological and mechanical tumor properties, such 

as rigid stroma, high interstitial fluid pressure (IFP) and hypoxia. Matrix produced by 

cancer-associated fibroblasts contributes to the immunosuppressive environment by acting as 

a physical barrier to drugs and immune cells (10). High IFP is caused in part by stroma 

production and leaky vasculature (11). Compared to normal tissue pressure, which is 

typically around 0 mmHg, human tumor IFP can be anywhere from 10–40 mmHg 

depending on tumor type and stage (11–13), This drives interstitial flow within the tumor, 

promoting invasion of the lymphatic system, continuing the cycle of stroma stiffening and 

tumor progression (12). A major consequence of high IFP is synergy with lymphatic 

drainage, in which the tumor draining lymph node acts as a site for immune privilege and 

metastasis. Hypoxia, or limited tissue oxygenation, occurs due to the abnormal function and 

structure of blood vessels supplying the tumor and high oxygen consumption (15). Hypoxia 

causes tumor cells to release immunosuppressive molecules that suppress T-cell function, 

induce the differentiation of TAMs into M2 macrophages, suppress DC maturation and 

block receptors needed for cytotoxic NK cell activity (16). The components of the TME 

work together to protect tumor cells against the immune system, support tumor cell growth, 

facilitate metastasis, and contribute to a lack of efficacy of immunotherapy (17). 

Understanding the extent of tumor-specific immune surveillance and tumor heterogeneity 

can help predict responsiveness to immunotherapy, which is essential for improving upon 

and developing new approaches to cancer treatment.

B. Therapeutic Ultrasound

Therapeutic ultrasound has recently emerged as a modulator of the TME. Focused 

ultrasound (FUS) is typically performed using focused transducers that propagate 

mechanical waves focused to a small region, which results in high energy density absorbed 
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at the treatment spot (18). In contrast with diagnostic parameters, which utilize low energy 

to image a region without the introduction of bioeffects, therapeutic FUS is intended to 

generate biological effects such as tissue heating and mechanical stimulation, with potential 

for release of antigens and DAMPs that could stimulate immune responses (19–21). The 

combination of ultrasound parameters, type of tissue being treated, and the inclusion of 

microbubbles ultimately dictate the induced bioeffects. As summarized in Table 1, 

parameters that can be varied to generate bioeffects include frequency, pressure, duty cycle 

and treatment time. These parameters demonstrate significant overlap due to varying 

considerations including treatment depth, tissue type, presence of microbubbles and desired 

treatment effects. Frequency refers to the number of sound wave cycles emitted over a 

period of time, commonly measured in Hz (cycles per second). High frequency waves give 

high spatial resolution but lack penetration depth. Low frequency waves can penetrate deep 

into tissue with minimal attenuation. This is particularly important for clinical therapeutic 

ultrasound applications, such as treatment of uterine fibroids, in which mechanical waves 

penetrate 4–10 cm without damaging surrounding tissue (22). Ultrasound pressure, 

measured in Pascals, refers to the force emitted on a perpendicular surface area, and is equal 

to the amplitude of the sound wave. Ablative treatments require higher pressures, while non-

ablative treatments use lower pressures (23). Duty cycle is equal to the percentage of time 

that ultrasound is on when operating in a pulsed on-and-off scheme. Because ultrasound 

attenuates rapidly in tissue to produce heat, thermal treatments use longer pulse lengths and 

non-thermal treatments require shorter, rapid pulsed treatments to avoid heating (24). The 

treatment time refers to the total amount of time it takes to scan the desired treatment area. 

The combination of these four parameters determines the total energy transmitted onto 

tissue. Because there is a large number of ultrasound parameter combinations that can 

generate both mechanical and thermal stresses, there is a continuum of bioeffects and 

immune responses that can be elicited. In order to better understand this, we have grouped 

four broad conceptual FUS treatment groups based on the type of stress induced: (1) thermal 

ablation, which causes coagulative tissue necrosis; (2) hyperthermia and thermal stress, 

which heats cells mildly without coagulation; (3) mechanical stimulation without thermal 

effects; and (4) histotripsy, which mechanically destroys tissue (Figure 1). The terms high-

intensity focused ultrasound (HIFU), typically referring to destructive regimes such as 

thermal ablation and histotripsy, and low-intensity focused ultrasound (LOFU), typically 

referring to non-ablative thermal and mechanical effects, are commonly used when 

describing therapeutic ultrasound treatments. HIFU causes a high ratio of cell lysis to 

apoptosis and instantaneous cell death, while LOFU causes a high ratio of cell apoptosis to 

lysis, especially in short-pulsed treatments (25). It should be noted that HIFU and LOFU can 

elicit both thermal and mechanical effects and that the intensity range for each varies greatly 

on the application. The authors found ranges from 0.1–1000 W/cm2 for LOFU and 35–

10000 W/cm2 for HIFU (26, 27).

Any FUS regime can be combined with intravenously administered microbubbles or phase 

change contrast agents (PCCA) to amplify and localize mechanical or thermal effects, 

allowing for the use of lower acoustic intensities and more accurate treatment localization in 

practice (Figure 2) (36–38). Microbubbles are gas-filled particles that oscillate rapidly and 

nonlinearly in response to acoustic waves, called cavitation (39,40). Although cavitation is a 

Joiner et al. Page 3

J Immunol. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



complex phenomenon with a range of physical manifestations, scientists typically categorize 

microbubble cavitation into two regimes: stable and inertial. Stable cavitation exists when 

microbubbles gently and continuously oscillate as a response to FUS (41,42). This causes 

fluid convection called microstreaming, which generates moderate shear stress and increases 

intracellular Ca2+ concentration (43, 44). Inertial cavitation occurs when microbubbles 

expand and collapse violently, which generates high temperature and pressure within the 

bubble core, reactive oxygen species, and microjets that can permanently damage cells and 

tissue (45–47). When ultrasound waves come into contact with tissues, microbubbles, and 

cellular components, acoustic radiation force pushes oscillating microbubbles into vascular 

walls, increasing the quantity and magnitude of mechanical stress (48,49). In thermal 

regimes, bubbles or droplets can localize treatment and accelerate the rate of heating through 

shear flow at the bubble-tissue interface and energy generation at higher harmonic 

frequencies caused by bubble oscillation (50,51). In non-ablative regimes, microbubble 

oscillation can generate local shear which can modulate vasculature or disrupt cell 

membranes via sonoporation (52,53). The range of microbubble effects can be potentially 

utilized to achieve desired bioeffects and immune effects in combination with ultrasound 

parameters.

The bioeffects produced by each modality have been proposed to initiate release of stress 

signals, increase availability of antigens, and potentiate trafficking of dendritic cells, which 

may boost an immune response against the tumor (52). FUS can also affect aspects of tumor 

biology such as hypoxia, vascular permeability and interstitial fluid pressure (55,56). 

Responses to monotherapy FUS, however, tend to be transient and do not display robust 

systemic activation of anti-tumor immunity and/or T-cell memory (21,57). Recent advances 

in cancer immunotherapy have encouraged new studies to combine FUS with 

immunotherapy to produce systemic immune effects as shown in tables in this review. 

Surprisingly, few studies factor tumor-type intrinsic differences in TME, such as tumor cell 

cellularity and composition of stroma, in qualifying tumor FUS-responsiveness and 

determining the best course of treatment. Better understanding of how pre-treatment TME 

biology relates to efficacy may enable stratification and understanding of contributing 

mechanisms. For example, a recent study that compared FUS treatment with a range of 

pressures in two different models (B16F10 and 4T1) both demonstrated decreases in TGF-β 
and IL-10 and increases in ICAM expression for both models, but differed in cytokine, 

chemokines and trophic factor (CCTF) expression between models (58). Combination of 

FUS treatments with immunotherapy, such as checkpoint blockade in pre-clinical models, 

has recently led to more durable abscopal immune responses, effect on metastasis and 

response to tumor re-challenges (59–62). Scenarios in which tumor burden is high may 

require the addition of systemic chemotherapy into immunotherapy-FUS treatment protocols 

(63). Linking specific parameters to immune outcomes is difficult at present due to 

inconsistent parameter reporting between groups and limited amount of studies in general. 

There are many more publications testing the immune effects of HIFU and thermal FUS 

than purely mechanical ultrasound treatments. In this review, we have categorized and 

summarized pre-clinical and clinical studies from the past 5 years using FUS therapy to 

elicit an immune response. These studies highlight advances in the field and consider the 

complex biological effects that FUS can provide to treat a variety of tumor types.
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2. Thermal Ablation

Thermal ablation is the most utilized and characterized form of therapeutic ultrasound to 

date and the only FDA-approved form in cancer applications (64). Ultrasound in these 

regimes, typically referred to as HIFU, can be used as an alternative to surgery to 

noninvasively ablate tumors without damaging surrounding tissue (65). The transmission of 

sound waves at high pressure and duty cycle results in energy absorbed by the tissue at the 

focal spot that is converted to heat, resulting in rapid heating to temperatures of 60–85oC 

(65). This causes tissue coagulation and cell necrosis. Nearby tissue outside of the focal spot 

is heated to lower temperatures, causing cells to undergo thermal stress and eventually 

apoptosis (21). Cavitation of small bubbles in biological fluids and microbubbles or 

nanodroplets can be advantageous by providing focused and accelerated heating and 

additional mechanical damage (66,67). Passive cavitation detection (PCD) can be used to 

monitor cavitation effects and prevent unwanted mechanical damage to healthy tissue (68). 

Pre-clinical and clinical systems can produce lateral lesions in the millimeter size-range, 

allowing for precise treatment (69). Because tissue heating is dependent on ultrasound 

parameters, tissue density and local blood flow, image guidance and thermal monitoring is 

performed with ultrasound or magnetic resonance imaging (MRI) (70). Figure 3 depicts the 

relationship between ultrasound exposure time, temperature and tissue bioeffects. FDA-

approved applications for HIFU include uterine fibroid ablation, essential tremor treatment, 

prostate tumor ablation and bone metastases pain treatment, paving the way for additional 

research in tumor treatment (71–74). Thermal ablation of tumors has the potential to be 

advantageous over conventional surgery and radiotherapy due to the precise treatment 

regime, lack of ionizing radiation, and obviation for incisional surgery, resulting in reduced 

complications due to infection and radiation-induced toxicity (75,76). HIFU is commonly an 

outpatient procedure, which can decrease patient time in the hospital compared to current 

surgical procedures (77). Due to the commonality of cancer recurrence and metastasis, a 

need to produce long-term anti-tumor effects, and the surge in cancer immunotherapy 

research, several clinical and preclinical studies which seek to understand the immune effect 

of tumor ablation have been published in recent years. Previously, the most common studies 

have used thermally ablated tumor debris as a vaccine, however HIFU alone has not yet 

proven sufficient to produce sufficient long-lasting systemic immunity.

A summary of the most recent studies using thermal ablation to modulate the tumor 

microenvironment is in Table 2. Thermal ablation causes specific cellular and vascular 

effects, including irreversible cell growth arrest, protein denaturation and reduced tumor 

blood flow due to endothelial cell swelling (78). Vascular effects of thermally ablated tumors 

have revealed occlusion of feeder vessels less than 2 mm in diameter, lack of vascular 

elasticity, disintegration of capillary endothelium and cavitation of peritubular cells (65). A 

large amount of tumor debris is generated, along with the release of damage-associated and 

heat-shock signals that can be sensed by local antigen presenting cells (21). It has been well-

documented in early studies that HIFU ablation causes the release of heat shock proteins 

(HSPs), including HSP27, HSP60, HSP70, HSP72 and HSP73 which are taken up by 

antigen presenting cells, causing the activation of autologous cytotoxic T cells in both rodent 

models and humans (79–84). However, the modulation of downstream signal transduction 
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pathways in immune cell subsets as a result of HIFU treatments remains understudied (21). 

The ablation site also initiates wound-healing responses, attracting neutrophils, monocytes 

and macrophages to degrade necrotic tissue caused by ablation (85,86). Macrophages travel 

through the lymphatics to remove ablated tissue and may activate adaptive immune cells in 

the lymph node (87). Increase of mature dendritic cells and secretion of IFN-γ and IL-12 

(88), as well as an increase in mature dendritic cell expression of MHC-II+, CD80+ and 

CD86+ has been demonstrated upon giving HIFU tumor debris as a vaccine (89). Antigens 

found in tumor debris, however, may be denatured depending upon ablation exposure, 

making them less immunogenic (90). Furthermore, the relative tumor vs. stromal tissue 

cellularity of the ablated site may dictate whether the ensuing immune response will result in 

priming or tolerance and should be considered when evaluating efficacy of responses. 

Whether the increase of wound healing immune cells in the ablated tumor region has a 

constructive or counteracting role in HIFU-mediated antitumor immune response remains to 

be studied. Infiltrating myeloid cells may be subject to tumor-mediated reprogramming into 

immunosuppressive tumor-associated macrophages and MDSC (91). There is an outstanding 

hypothesis that the rapid necrosis and localized coagulation caused by ablation minimizes 

time for danger-associated molecular pattern (DAMP) release compared to non-ablative 

regimes (92). This study compared thermal ablation with LOFU in treatment of B16F10 

melanoma tumors, showing that in response to thermal ablation, populations of CD4+ and 

CD8+ cells remained constant and did not potentiate an increase in IL-2 from tumor lysates 

compared to LOFU (92). However, a different study demonstrated that combining thermal 

ablation with CpG immunostimulant in an NDL tumor model produced an abscopal effect 

and recruited leukocytes, CD3+, CD4+, and CD8+ cells in contralateral tumors (59). 

Coincident ablation and immunotherapy diminished abscopal effects compared to dosing 

immunotherapy prior to FUS treatment, demonstrating the importance of timing when 

combining immunotherapy and HIFU (59). This study among others suggests that 

combining thermal ablation with immunotherapies such as CpG, anti-CD40 and anti-

programmed cell death protein 1 (PD-1) can activate antigen presenting cells that are 

available to sense and process HIFU tumor debris (93). Furthermore, sparse-scan treatments 

that produce non-overlapping lesions have the potential to stimulate more potent immune 

effects (94). This study by Liu et al. found that the periphery of HIFU lesions had a higher 

number of infiltrating DCs, reserving more peripheral tumor tissue for DC stimulation and 

resulting in increased tumor growth suppression at tumor re-challenge (94). Although 

thermal ablation is a rapid method of removing and stopping progression of primary tumors, 

the resultant coagulative necrosis may dampen the release of immunostimulants within the 

TME which are needed to produce an adaptive response mediated by an increase in tumor-

specific dendritic cells. For this reason, mass ablation alone at the tumor site as a vaccine 

currently seems to be insufficient to generate sustained antitumor immunity, especially for 

treating tumors prone to recurrence or metastasis. Treatments combining thermal ablation 

with immunotherapy appear to be a promising method for achieving systemic, long term 

effects. In summary, recent studies combining thermal ablation with immunotherapy have 

demonstrated recruitment and activation of MHC-II+ DCs, M1 macrophages, CD4+ and 

CD8+ T cells and NK cells, and a decrease in Treg cells and MDSCs that have resulted in 

tumor growth suppression, decrease in tumor metastases, abscopal response in untreated 

tumors and complete response in pre-clinical models (21,59,60,92,95,96).
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3. Thermal stress and hyperthermia

Focused ultrasound can also be used to heat tissue to mild temperatures (40–45oC) for 

seconds to a few minutes (thermal stress) or 30–90 minutes (hyperthermia) to induce 

specific bioeffects (97). Hyperthermia was first described over 5000 years ago in Egypt as a 

method of treating breast cancer with an instrument called the “fire drill” (98). Since then, 

this modality has been widely studied as a cancer therapy for its complex immune effects, 

thermally activated drug delivery and potential as a chemotherapy or radiotherapy adjuvant. 

Hyperthermia induced by a variety of methods causes protein and DNA damage and 

interferes with protein and DNA synthesis, disrupts cell cycle, and can result in direct cell 

death or apoptosis (99–101). As a result of these findings, extensive technologies including 

radiofrequency, microwaves, physical methods such as heated water and air, and focused 

ultrasound have been employed for inducing hyperthermia (102). Much of our 

understanding of known effects of hyperthermia stems from studies using more commonly 

used radiofrequency or microwave heating techniques, and while findings from these studies 

can be extrapolated, much is still unknown about specific cellular and vascular effects of 

ultrasound-induced heating. This is an important designation, because as compared to other 

hyperthermia techniques, ultrasound simultaneously induces mechanical effects (103). 

Several generations of ultrasound hyperthermia devices have been developed, including the 

Sonotherm 1000, the only FDA-approved ultrasound hyperthermia device, and the more 

recent Sonalleve system, the only commercially-available magnetic resonance imaging 

(MRgHIFU) device for hyperthermia applications (104). Despite the major advances in 

thermometry and treatment control, there is no FDA-approved cancer indication for 

ultrasound-induced heating, but clinical trials are ongoing for head and neck tumors, prostate 

and pelvic diseases and ovarian cancer.

There are several effects of hyperthermia that we can learn from non-ultrasound tissue 

heating techniques. The direct cytotoxic effects of hyperthermia include reversible growth 

arrest, which is realized by a brief decrease in RNA synthesis and prolonged decrease in 

DNA synthesis during the S and M phases (105). The lagging cell division causes some 

tumor cells to be killed via apoptosis (105). Hyperthermia also abrogates DNA repair 

mechanisms, which has been particularly useful in sensitization for radiation or 

chemotherapy treatment (106). Vasodilation is the main vascular effect of hyperthermia, 

leading to increased blood flow. This increased blood flow can mediate a reduction in 

hypoxia, acidosis and interstitial tumor pressure (103,107). Both innate and adaptive 

immune responses are triggered as a response to tissue heating, involving the activation of 

several types of immune cells (108). These effects are typically mediated by the release of 

DAMPs such as high mobility group box-1 (HMGB1) and lactate dehydrogenase (LDH) and 

cytokines such as interleukin (IL)-10, IL-6 and tumor necrosis factor α (TNF-α) (109). Heat 

shock proteins such as HSP70 are also expressed in response to stress in attempts to reverse 

protein misfolding and heat-induced cellular damage (110). Tissue heating has also been 

found to involve adaptive immunity, supported by the activation of cytotoxic T cells and 

induction of granzyme B, perforin and interferon γ (IFNγ) (111). Expression of intracellular 

adhesion molecules (ICAMs) also increases, leading to increased lymphocyte trafficking 

(112). Several of these effects have been tested in ultrasound hyperthermia applications, 
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especially with regards to cytokine and chemokine release and lymphocyte trafficking to 

tumors.

The effect of ultrasound-induced heating on cells is dependent on the temperature, length of 

exposure time and extent of cavitation (Figure 3) and can be generated by both HIFU, LOFU 

and unfocused ultrasound. Spontaneous cavitation that can occur at high pressures may 

cause mechanical damage and thermal necrosis, which has the potential to interfere with 

desired biological signaling processes (113,114). Multi-focal beams and feedback controls 

can be implemented to minimize cavitation and track temperature increase (115,116). 

Focused ultrasound treatments can take several hours due to the small focal point and can 

cause skin burns in shallow treatments, therefore non-focused treatments that can treat an 

entire tumor in one exposure may be advantageous for some tumor types (117–119). These 

non-focused ultrasound treatments have milder thermal and mechanical effects compared to 

HIFU. Short-term cell viability is retained in mild ultrasound-induced thermal treatments, 

with cell death progressing over a period of 2 to 48 hours after heat exposure (120). The use 

of high acoustic pressure is typically avoided in the case of thermal stress or hyperthermia 

because it causes extensive mechanical damage or thermal necrosis as in ablative regimes 

(118). However, some mechanical damage will still be caused using ultrasound, as 

evidenced by higher HSP70 expression in cells treated with HIFU than with temperature 

increase alone when heated to the same temperature for the same duration (121). Damage-

associated effects caused by ultrasound such as these may lead to increased T cell 

recruitment. One of the first studies in 1994 monitoring the immune response of ultrasound-

induced hyperthermia treatment in humans, demonstrated a normalization of CD4+/CD8+ T 

cell ratio in all patients one week after treatment of posterior choroidal melanoma tumors 

(122). Hyperthermia-inducing ultrasound treatments and immunological techniques have 

rapidly improved since this study, necessitating a review of more recent studies.

A summary of the most recent studies using FUS-induced thermal stress or hyperthermia to 

modulate the tumor microenvironment is in Table 3. Murine cell depletion studies have 

demonstrated that CD8+ T cells are the main effector cells, not CD4+ or NK cells, involved 

in an anti-CT26 tumor response using bubble liposomes and ultrasound to generate local 

thermal stress for 2 minutes (118). Tumor necrosis was evident at intensities higher than 3 

W/cm2 in combination with bubble liposomes, which corresponded with significant tumor 

volume decrease (118). Combination therapies with FUS-induced heating are also being 

explored, particularly in the field of thermoresponsive drug delivery vehicles. One study that 

combined heat-activatable doxorubicin, immunotherapy and FUS-induced hyperthermia for 

25 minutes demonstrated a strong local and systemic immune effect in B16F10, NDL and 

MMTV-PyMT tumors (61). Significant tumoral CD8+ cell infiltration was observed for all 

mouse models, as well as complete tumor destruction in both treated and distant tumors 

(61). Notably, 90% of NDL mice treated with immunotherapy, heat-activated doxorubicin, 

and ultrasound were tumor free for 101 days (61). This study demonstrates a systemic effect 

of priming FUS-hyperthermia with immunotherapy dependent on dosing schedule, similar to 

thermal ablation. Another novel study combined ultrasound-induced hyperthermia with 

temperature-sensitive doxorubicin liposomes delivered by Salmonella “thermobots” for the 

immunomodulation of colon cancer (123). In vivo efficacy of C26 treatment with HIFU and 

thermobots for 30 minutes resulted in significant tumor regression compared to all other 
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groups over 5 days (123). The major immune mechanism finding in this study was increased 

polarization of macrophages to the pro-inflammatory M1 phenotype with HIFU and 

thermobot treatment (123). Shorter treatment times of 2 minutes can also induce necrosis 

and anti-tumor immune responses mediated by CD8+ cells when 3–4 W/cm2 ultrasound is 

combined with microbubbles (118). Finally, another recent study utilized shorter ultrasound 

treatment times of 1.5 seconds per spot to heat prostate tumors to 45oC prior to radiotherapy 

to develop a T-cell driven in-situ tumor vaccine (124). While some preclinical and clinical 

studies can be found studying the anti-tumor effect of ultrasound-induced hyperthermia, 

more studies are needed to determine treatment parameters that will produce a specific 

immune response and whether these effects are superior to thermal ablation in certain cases. 

Treatments combining hyperthermia or thermal treatment with immunotherapy or 

chemotherapy appear to be a promising method for achieving systemic, long term effects. In 

summary, recent studies combining hyperthermia or thermal treatment with immunotherapy 

or chemotherapy have demonstrated recruitment and activation of MHC-II+ DCs, M1 

macrophages, and CD4+ and CD8+ T cells (61,118,123). Some of these results have been 

correlated with reduced tumor growth, increased survival and abscopal response in untreated 

tumors in pre-clinical models; however, functional relevance was not demonstrated for CD4+ 

or NK cells in one study, implying that effects may be cancer type and context dependent 

(118).

4. Mechanical Perturbation

Ultrasound treatments that use low to moderate pressure and high duty cycle to 

mechanically disrupt cellular membranes and vascular endothelium without thermal effects 

are referred to here as mechanical perturbation. Parameters can be optimized for vasodilation 

and sonoporation, the temporary opening of cellular barriers including the blood-brain 

barrier (125,126). Microbubbles are commonly used to enhance mechanical effects through 

cavitation, or rapid expansion and contraction in response to acoustic pressure. Bioeffects of 

cavitation are highly dependent on whether bubbles are stably oscillating, which generates 

moderate shear stress, or violently breaking, which can cause cell death, damaged 

membranes, and altered cellular metabolism (127). The degree of cell membrane damage is 

directly related to the type of cell death that occurs; if the membrane can be repaired, the cell 

will either recover and survive or undergo apoptosis, and if the membrane cannot be 

repaired, the cell will undergo necrosis or lysis (128,129). Several studies have reported 

enhancement of drug delivery using LOFU and microbubbles (130). ARF is also generated 

on tissues, microbubbles, and cellular components, and is proportional to the differences in 

density and compressibility of objects in the acoustic field (47). ARF can push oscillating 

microbubbles in the direction of the primary acoustic field, which can be within the 

vasculature and into vascular walls, increasing the quantity and magnitude of mechanical 

stress (53).

A summary of the most recent studies using mechanical perturbation to modulate the tumor 

microenvironment is in Table 4. Although the observed anti-tumor responses have been 

stronger via mechanically-induced damage as compared with thermal effects, there is less 

information on the nature of immune mechanisms behind mechanically-induced tumor cell 

damage alone, which likely include a combination of time-dependent pro-inflammatory and 
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anti-inflammatory processes (131). Anti-inflammatory immune effects of LOFU have been 

explored in a data-mining study of cancer and non-cancer applications, demonstrating that 

mechanical effects transiently decreased inflammation and improved tissue repair by 

upregulating anti-inflammatory genes via B-cell translocation gene (TOB) in T cell 

signaling, G1/S checkpoint regulation, IL-10 signaling and the STAT3 pathway (132). 

LOFU also upregulated markers of MDSCs, MSCs, B1-B cells and Tregs, and induced 

exosome-mediated anti-inflammatory cytokines and miRNAs (132). While these responses 

may suppress anti-tumor immunity, the magnitude of these transient, in-vitro effects were 

not compared to pro-inflammatory effects or linked to changes in tumor growth (132). 

LOFU and microbubbles can decrease interstitial fluid pressure (IFP), which has been 

demonstrated in a study monitoring changes in tumor vascular properties caused by LOFU 

at varying pressures (56). Pressures of 5 MPa significantly decreased microvessel density, 

which in turn decreased IFP by 86.7%. Another study confirmed the necessity of 

microbubbles with mechanical-only treatments, resulting in a significant tumor volume 

decrease 16 days after treatment only after use with microbubbles (56). Flow cytometric 

analysis demonstrated a time-dependent response where CD4+Foxp3− cells were 

significantly increased on day 1, but subsided after day 3, while CD8+ cells significantly 

increased on day 1 and continued to increase through day 18, demonstrating a transient 

immune effect (56).

Because non-ablative mechanical ultrasound has been shown to cause the release of DAMPs 

such as calreticulin and upregulate HSP70, MHC-II and B7 molecules indicating DC 

maturation, it is a promising adjuvant candidate for combination with radiotherapy, 

immunotherapy and chemotherapy to generate abscopal effects (92). A continuation of the 

study which compared LOFU with HIFU, as mentioned previously, explored the ability of 

LOFU to prevent T cell tolerance (92). Overall, LOFU alone was not enough to control 

tumor growth, but contributed to a complete response in 80% of immunocompetent mice 

and prevention of metastasis when combined with radiation (92). Lysates from LOFU-

treated B16F10 melanoma tumor cells caused CD4+ T cells to produce significantly more 

IL-2 and to downregulate anergy-associated genes such as Rnf123, Cblb, Itch and Egr2. 

Hsp70 and MHC-I expression increased nearly 2-fold (92). Another study demonstrated that 

LOFU and microbubbles alone increased expression and localization of HSPs on 4T1 and 

TPSA23 cell surfaces (133). When this treatment was combined with radiotherapy, at least 

half of the TPSA23 mice were cured and were protected after tumor re-challenge (133). 

LOFU and microbubbles have also been combined with anti-PD-1 immunotherapy for the 

treatment of melanoma (92). Anti-PD-1 was dosed on the same day as ultrasound treatment 

and every three days until day 12 (92). Tumors that were treated with LOFU, microbubbles 

and anti-PD-1 were significantly smaller than all other groups at all timepoints and one 

mouse experienced complete tumor regression (92). This mouse also experienced complete 

tumor regression after a re-challenge with CT26 cells (92). However, were no differences in 

counts of TILs between treatment groups and control, despite an increase of IFN-γ in tumor 

draining lymph nodes of treated mice (92). A significant amount of necrosis was observed 

by H&E stain, demonstrating that LOFU and microbubbles affected central regions of the 

tumor, while the anti-PD-1 acted upon the remainder of the tumor (92). This study highlights 

the potential for combining mechanical perturbation and immunotherapy; however, much is 
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still to be determined regarding the underlying mechanisms. Another study demonstrated 

that LOFU and microbubbles may be a promising chemosensitizer for solid tumors. 

Ultrasound and microbubbles alone induced cytoprotective pathways during UPR (unfolded 

protein response) and stem cell signaling pathways without resulting in cell death (134). The 

combination of this ultrasound treatment and 17AAG resulted in induction of cell apoptosis 

pathways of UPR, amplified ER (endoplasmic reticulum) stress and tumor growth regression 

in murine prostate tumors (134). Treatments combining low mechanical effects with 

immunotherapy appear to be a promising method for achieving systemic, long term effects. 

In summary, recent studies combining low mechanical effects with immunotherapy have 

demonstrated recruitment and activation of MHC-II+ DCs, CD4+ and CD8+ T cells and mast 

cells, and a decrease in anergy genes that have resulted in tumor growth suppression, 

increased survival, response to tumor re-challenge and potential for complete response in 

pre-clinical models (56,62,118,92).

5. Histotripsy

The fourth, and newest ultrasound regime used to elicit immune effects is histotripsy (also 

called M-HIFU), which uses extremely high pressure, short pulse ultrasound waves to 

mechanically fragment tissue into a liquefied homogenate that can be reabsorbed by the 

body (135,136). The traditional definition of histotripsy, also known as cavitation cloud 

histotripsy, refers to using microsecond-long waves to generate dense, cavitating bubble 

clouds which rapidly expand and contract (137) to mechanically break down tissue without 

significant thermal damage (138). These bubble clouds are formed when the peak negative 

pressure exceeds an intrinsic threshold, around 28 MPa for soft tissue (139), and can be 

generated either by using a single, negative pressure pulse (139) or by using multiple 

ultrasound pulses that form sparsely distributed bubbles that scatter positive shock fronts 

(137). Another form of histotripsy, called boiling histotripsy (BH), uses longer millisecond-

long pulses to generate boiling bubbles that contact incident shockwaves to mechanically 

damage soft tissue (140). Boiling histotripsy can fractionate tissue into sub-cellular 

fragments either without thermal damage by using shorter pulses, or with thermal damage 

by using longer pulses (141). Clinical HIFU systems can perform boiling histotripsy 

protocols because lower peak pressures are required than in cavitation cloud histotripsy 

(142). The degree of mechanical damage induced by either type of histotripsy depends on 

the type of tissue, with more fibrotic tissue being more resistant to damage (143). Compared 

with thermal ablation, histotripsy also destroys tissue, but with a mechanically-dominated 

mechanism, which may result in the release of non-thermally damaged antigens (80,131). 

Boiling histotripsy has been compared with thermal ablation in a murine EL4 thymoma 

model (144). BH lesions revealed micro-hemorrhaging in a transition zone between 

disintegrated and vital tumor tissue, infiltration of granulocytes and macrophages 4 days 

after treatment, and densely packed dead and apoptotic cells, while thermally ablated lesions 

had no hemorrhaging, granulocytes and macrophages on the periphery of the lesion, and a 

core of heat-fixed cells (144). These results clearly show that BH and thermal ablation 

treatments have the potential for eliciting different immune responses. However, further 

studies are needed to understand the immune and vascular effects of histotripsy.

Joiner et al. Page 11

J Immunol. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The first studies looking at immune effects of histotripsy showed dendritic cell infiltration to 

tumors and draining lymph nodes in a murine MC-38 model, metastatic tumor suppression 

in murine B16F10 tumors, and tumor growth inhibition, increase of CD8+ cells in spleens 

and draining lymph nodes and suppression of STAT3 activity in murine RM-9 tumors (131–

148). These results indicate that complete tumor destruction using histotripsy can initiate an 

adaptive immune response. Studies using histotripsy to partially destroy tissue have led 

some authors to conclude that this treatment may increase the risk of metastasis due to 

increased vessel permeability and necrosis (149). However, a recent study that combines 

anti-CTLA-4 and anti-PD-L1 with sparse-scan histotripsy treatment of only 2% of murine 

neuroblastoma tumors demonstrated an increase in intratumoral CD4+ and CD8+ cells, 

dendritic cells in lymph nodes, and a significant abscopal effect with 61.1% survival of mice 

with untreated bilateral tumors (145). Based on these findings, it is important to consider the 

tumor type and vascularity when designing histotripsy protocols to maximize tumor blood 

supply and immune sensitization. Finally, a recent study comparing histotripsy with 

unfractionated ablative radiation and thermal ablation in subcutaneous B16F10 melanoma 

tumors demonstrated significantly higher intertumoral CD8+ infiltration in histotripsy-

treated tumors (146). Furthermore, histotripsy-treated tumors were able to upregulate 

intertumoral NK, DC, neutrophil, B and T cell populations, circulating NK cells and tumor 

antigen GP33 specific CD8+ cells, and translocation of calreticulin and HMGB1, 

demonstrating local and systemic inflammatory responses (146). While few preliminary 

studies have shown that histotripsy can activate the adaptive immune system, there is a need 

for additional published studies to understand immune cells involved in multiple tumor types 

with a variety of histotripsy treatment schemes. So far, studies have demonstrated that 

histotripsy can recruit dendritic cells, granulocytes, macrophages, NK cells, CD4+ and CD8+ 

T cells and downregulate STAT3 signaling in immune cells (131–148).

6. Future Directions

Mechanistic understanding for combinational applications

While each ultrasound regime has the capability of initiating an immune response, it is still 

unknown which regimes have the greatest anti-tumor biological effect on each tumor type 

and which FUS regimes synergize best with combinatorial approaches. Because of the 

relatively few studies, expansive combinations of ultrasound parameter inputs, lack of 

thorough input reporting and variety of immune markers to be explored, additional 

reproducible studies are needed to understand how to best utilize ultrasound to treat tumors. 

A common theme is that the long-term immune effect of non-ablative FUS regimes has the 

potential to be greater than ablative treatments due to limited tissue necrosis and cell death 

caused by non-ablative treatments, increasing time for antigen release and processing. 

However, mechanical perturbation treatments in combination with immunotherapy have yet 

to be published. For tumors that are easily accessible and less prone to metastasis, thermal 

ablation may be beneficial. For late stage, immunosuppressive tumors that are prone to 

metastasis, a more aggressive and combinatorial treatment such as non-ablative heating or 

mechanical perturbation and immunotherapy, radiotherapy, or chemotherapy may be 

beneficial for long-term antitumor immunity. Ultrasound alone has not been proven to elicit 

long-term response, therefore multiple treatments and/or combinatorial treatments are 
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needed to enhance the response, as evidenced by examples from the studies described in this 

review.

Because each tumor type and stage of disease has vastly different immune 

microenvironment features, vascular composition and metastatic tendencies, future 

preclinical studies on FUS-immunology should focus on comparing ultrasound treatments 

and combination therapies to determine the best course of action for one tumor type and at 

different growth stages. Immunomodulatory agents aimed at activating antigen presenting 

cells, such as CpG and anti-CD40, or checkpoint-blockade therapies such as anti-PD1 or 

CTLA-4 should be considered for both pre-clinical and clinical trials because of the 

evidenced involvement of dendritic cells and T cells upon ultrasound treatment (150–152). 

Further optimization of ultrasound parameters and treatment timing is needed to translate 

these treatments to clinic.

Clinical translation

Currently, therapeutic ultrasound is FDA approved for the treatment of bone metastases, 

essential tremors, tremor-dominated Parkinson’s Disease, prostate cancer, benign prostatic 

hyperplasia, and uterine fibroids, with research in progress for 126 separate indications. The 

first clinical trial combining focused ultrasound with an immunotherapy drug began in 2017 

(NCT03237572) for the treatment of metastatic or unresectable breast cancer. The study will 

evaluate the effect of dosing pembrolizumab (anti-PD-1) before or after HIFU thermal 

ablation of 50% of the tumor. The primary outcome will assess a change in CD8+/CD4+ T 

cell ratio in the ablation zone and the secondary outcome will assess adverse events. Clearly, 

the effects caused by thermal ablation are thought to be T cell dependent. A recent human 

trial demonstrated significant therapeutic benefit in addition to increased levels of NK, 

CD3+, CD4+, CD8+ cells three months after thermal ablation of liver tumors (153). Another 

clinical trial that combined FUS-hyperthermia and thermally sensitive drug-loaded particles, 

although lacking immune endpoints, demonstrated clinical translation of therapeutic 

ultrasound for cancer treatments (154). Using ultrasound to increase vascular permeability, 

interstitial fluid flow and perfusion could address the large disparity of nanoparticle success 

in the clinic by aiding in solid tumor penetration (155,156). Immune effects and endpoints 

need further clarification in order to design the most optimal dosing regimen for FUS 

combination with immunotherapy.

7. Conclusions

Preclinical and clinical trials have demonstrated the use of FUS as an immunomodulatory 

cancer treatment. Bioeffects are highly dependent on ultrasound parameters used, frequency 

of treatment, combinatorial treatments, and tumor model utilized. Although grouping 

ultrasound treatments is helpful for understanding the vast array of FUS physical effects, 

immune effects overlap between groups, and inconsistent parameter reporting prevents 

linking specific parameters to immune effects. While different ultrasound treatments are 

varying in their physical effects and extent of cell damage, these appear to overall result in 

similar immune cell filtration types without a clear indication of which ultrasound treatment 

is superior to another in treating a single tumor type. Generally, ablative ultrasound regimes 
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cause immunogenic cell death and generate tumor debris, but alone lack sufficient antigen 

presentation for consistent anti-tumor immunity (133). In comparison, non-ablative 

ultrasound regimes release stress signals more slowly to attract antigen presenting cells, but 

the lack of immunogenic cell death and immune cell priming results in a transient response. 

Understanding the short-term and long-term immune and vascular effects of each ultrasound 

treatment group is vital for clinical translation, especially if the cancer type is prone to 

metastasis or if a sustained abscopal effect is desired. For all ultrasound treatments, 

regardless of group, the combination with immunotherapy is required to create a sustained 

and systemic immune response. The recruitment of healthy immune cells, particularly 

macrophages, dendritic cells and CD8+ T cells is linked to an anti-tumor immune response 

that can boost abscopal effects and improve anti-tumor effects of chemotherapy, 

immunotherapy and radiotherapy. However, limited primary literature and mechanistic 

understanding of how ultrasound potentiates these responses for various tumor models 

currently prevents clinical translation. Specific limitations include how and when stress 

signals are produced by tumor cells and the role of FUS in tumor immunosuppression, 

cellular signaling transduction pathways, metastasis, T cell anergy and abscopal effects. It is 

unknown whether tumor cells can become resistant to FUS treatment. The use of different 

FUS systems and inconsistent parameter reporting makes understanding and repeating 

studies difficult. For continued advancement, it is imperative for authors to report critical 

parameters including frequency, pressure, duty cycle and treatment time. More studies on 

FUS bioeffects and immune effects are needed in order to rationally design FUS treatments 

for the long-term treatment of cancer.
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Figure 1. 
Biological and immune effects of ultrasound-induced thermal ablation, hyperthermia, 

mechanical perturbation, and histotripsy (25). Created with help of Biorender.com
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Figure 2. 
Microbubbles oscillate rapidly and undergo stable or inertial cavitation in response to 

ultrasound. Created with help of Biorender.com
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Figure 3. 
Tissue bioeffects of thermal ultrasound as defined by temperature and exposure time. 

Adapted from (157).
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