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Abstract

Nuclear accidents and acts of terrorism have the potential to expose thousands of people to high-

dose total-body iradiation (TBI). Those who survive the acute radiation syndrome are at risk of 

developing chronic, degenerative radiation-induced injuries [delayed effects of acute radiation 

(DEARE)] that may negatively affect quality of life. A growing body of literature suggests that the 

brain may be vulnerable to radiation injury at survivable doses, yet the long-term consequences of 

high-dose TBI on the adult brain are unclear. Herein we report the occurrence of lesions consistent 

with cerebrovascular injury, detected by susceptibility-weighted magnetic resonance imaging 

(MRI), in a cohort of non-human primate [(NHP); rhesus macaque, Macaca mulatta] long-term 

survivors of high-dose TBI (1.1–8.5 Gy). Animals were monitored longitudinally with brain MRI 

(approximately once every three years). Susceptibility-weighted images (SWI) were reviewed for 

hypointensities (cerebral microbleeds and/or focal necrosis). SWI hypointensities were noted in 

13% of irradiated NHP; lesions were not observed in control animals. A prior history of exposure 

was correlated with an increased risk of developing a lesion detectable by MRI (P = 0.003). 
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Twelve of 16 animals had at least one brain lesion present at the time of the first MRI evaluation; a 

subset of animals (n = 7) developed new lesions during the surveillance period (3.7–11.3 years 

postirradiation). Lesions occurred with a predilection for white matter and the gray-white matter 

junction. The majority of animals with lesions had one to three SWI hypointensities, but some 

animals had multifocal disease (n = 2). Histopathologic evaluation of deceased animals within the 

cohort (n = 3) revealed malformation of the cerebral vasculature and remodeling of the blood 

vessel walls. There was no association between comorbid diabetes mellitus or hypertension with 

SWI lesion status. These data suggest that long-term TBI survivors may be at risk of developing 

cerebrovascular injury years after irradiation.

INTRODUCTION

Acts of nuclear terrorism and incidents involving nuclear power reactors have the capacity to 

expose hundreds of thousands of people to potentially harmful doses of radiation (1). 

Radiation exposure in these scenarios is presumed unavoidable. Patients who survive the 

acute radiation syndrome (ARS) and those receiving lower doses of radiation may be at risk 

of developing delayed effects of acute radiation exposure (DEARE), comprised of a myriad 

of degenerative and inflammatory conditions affecting multiple organs, and with negative 

effect on quality of life (2). Thus there is a profound need to understand the long-term health 

effects of such radiation exposures to enable adequate risk assessment and direct patient 

follow-up and management practices.

The brain is considered radioresistant, with single dose total-body irradiation (TBI) of 20–50 

Gy required to induce acute radiation syndrome (ARS) of the central nervous system (3). 

However, a growing body of literature suggests that the brain may be vulnerable to injury at 

lower doses (4–18). Retrospective analyses of atomic bomb survivors indicate that low-dose 

in utero radiation exposure (≥0.06 Gy at 8–15 weeks’ gestation and ≥0.28 Gy 16–25 weeks’ 

gestation) may result in dose-related reduction in cognitive function, microcephaly and 

seizures (19–24). Neurocognitive impairment may also occur in children receiving 

myeloablative doses of TBI for hematopoietic cell transplantation (25–32). Studies 

evaluating the long-term ramifications of single-dose TBI on the adult brain have been 

limited; however, retrospective analyses of long-term radiation survivor cohorts indicate 

survivors may have increased risk of stroke and vascular encephalopathy (13–15).

Studies evaluating the long-term effects of radiation in humans are confounded by factors 

that include socioeconomic status, genetic variation, postirradiation survival interval and 

comorbidities such as cancer, hypertension and diabetes mellitus (33–35). These factors can 

be controlled for in rodent studies, and radiation-induced changes in the brain have been 

extensively characterized in rodents, including impairments in neurogenesis (36–38), 

changes in dendritic spine morphology and density (39–41), changes in neuroinflammation 

and ATP production (18), impaired glutamatergic neurotransmission (42–46), and increased 

astrocytic and microglial inflammation (47–55). However, rodents do not develop white 

matter necrosis after fractionated whole-brain irradiation (fWBI) (44, 56–58), and 

differences in neuroanatomy [(e.g., greater hippocampal relative brain volume, larger gray:-

white matter ratio) (59–61)] and limited inter-individual genetic variability (62) may limit 
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the translatability of findings. In contrast to rodents, non-human primates have greater 

neuroanatomic and genomic homology to humans and more fully recapitulate the 

histopathologic features of late-delayed radiation-induced brain injury (RIBI) after fWBI 

(e.g., cerebrovascular and white matter injury) (63–68).

The Radiation Countermeasures Center of Research Excellence (RadCCORE) non-human 

primate Radiation Survivor Cohort (RSC) is a unique resource in which rhesus macaques 

that have survived high-dose TBI (1.14–8.5 Gy) are adopted and monitored longitudinally 

for the development of late-delayed sequelae of radiation exposure. In this cohort, 

differences in diet and environment are controlled for, and health status extensively 

characterized (e.g., cardiac function, metabolic status, immune function, cancer 

surveillance), which makes this cohort ideal for the study of late effects of TBI and 

interactions between comorbid radiation-induced conditions.

Although the long-term consequences of single-high-dose TBI on the adult brain are 

unclear, fWBI for the treatment of brain cancer may result in neuroinflammation, white 

matter necrosis, vascular injury and cognitive impairment (69–72). In affected patients, 

scattered foci of hemorrhage and necrosis consistent with small blood vessel injury are 

detectable on susceptibility-weighted (SWI) magnetic resonance images (MRI) (73–78). In 

the current study, we hypothesized that non-human primate long-term survivors of high-dose 

TBI would develop lesions on imaging that were similar to those observed after fWBI, 

although less severe and with a longer latency period.

MATERIALS AND METHODS

Subjects

Magnetic resonance imaging (MRI) scans acquired between 2011 and 2018 were evaluated 

from 173 rhesus macaques, aged 2.8–18.3 years (median age: 6.5 years). Of these animals, 

141 were males and 32 were females. In addition, 53 animals (50 males, 3 females; median 

age: 6.2 years, range: 3.5–18.3) had no prior history of irradiation and were either part of 

unrelated studies or adopted as control comparators and enrolled within the non-human 

primate Radiation Survivor Cohort (RSC). A total of 120 animals (91 males, 29 females; 

median age: 6.5 years, range: 2.8–16.5 years) were administered single-dose TBI (median 

dose: 6.6 Gy, range: 1.14–8.5 Gy) as part of separate studies at other institutions [Wake 

Forest University (Winston-Salem, NC); University of Maryland (College Park, MD), 

University of Illinois (Urbana-Champaign, IL); Armed Forces Radiobiology Research 

Institute (Bethesda, MD); Lovelace Respiratory Research Institute (Albuquerque, NM); and 

Citox Labs (Stillwell, KS)] and then adopted into the RSC for long-term surveillance for the 

sequelae of radiation exposure. Additional detail on irradiation methods, supportive care 

strategies, and acute effects for many animals donated to this cohort have been recently 

reported elsewhere (79–81), and are summarized in Supplementary Table S1 (https://doi.org/

10.1667/RADE-20-00051.1.S1). Tabulated demographic data include age, radiation dose, 

dose rate and age at irradiation (Table 1).

Animals were housed in either stainless-steel cages in temperature- and humidity-controlled 

rooms with a 12:12 h light-dark schedule, or indoor-outdoor pens; animals were socially 
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housed whenever possible. Diet was contingent upon the experimental study in which the 

animal was enrolled; animals were either fed commercially available monkey chow 

(Purinat®, St. Louis, MO) or Typical American Primate diet (LabDiet 5L0P; Land O’Lakes 

Inc., St. Louis, MO] designed to approximate the macronutrients of a Western dietary 

profile. All animals received daily clinical assessment by trained veterinary personnel, 

including cage-side neurologic evaluation when indicated; all animals were neurologically 

normal. All procedures were approved by the Wake Forest University School of Medicine 

(WFUSM) Institutional Animal Care and Use Committee (IACUC) and performed in 

accordance with all state and federal animal welfare laws. WFUSM is accredited by the 

Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC).

Magnetic Resonance Imaging

Animals were sedated with ketamine HCl (15 mg/kg body weight, IM) and maintained on 

inhaled isoflurane (3% induction, 1.5% maintenance) in 100% oxygen anesthesia for the 

duration of the MRI procedure. Images were acquired on a 3.0-Tesla Siemens Skyra clinical 

magnetic resonance scanner (Malvern, PA), operating on a D13 platform with a maximum 

gradient field strength = 45 mT/m. Sequences were optimized for non-human primates and 

acquired using a dedicated, 8 channel, non-human primate radiofrequency coil (Rapid MR 

International, Columbus, OH) tuned to 127.7 MHz.

T1-weighted anatomic images were obtained using a 3D volumetric magnetization-prepared 

rapid acquisition with gradient echo (MPRAGE) sequence (TR = 2,700 ms; TE = 3.39 ms; 

TI = 880 ms; FA=8 degrees; 160 slices, voxel dimension =0.5×0.5×0.5 mm3). Brain lesions 

consistent with hemorrhage and necrosis were identified by susceptibility-weighted image 

(SWI) sequence (TR =28 ms, TE=20 ms, flip angle=15 degrees, NEX=2, with voxel 

size=0.5×0.5×0.5 mm3). SWI and T1 sequences were co-registered, and the anatomic 

location of SWI-hypointense foci was determined from the corresponding T1 structural 

image. All lesion dimensions were calculated from T1 structural images. Lesion diameters 

were measured in three perpendicularly-oriented planes; volume was estimated assuming 

ellipsoid shape π
6 abc , where a, b and c represent the axial, coronal and sagittal diameters.

Clinical Data

Archived data regarding comorbid conditions were retrieved from an internal animal medical 

records system and assessed for evidence of type II diabetes mellitus (T2DM) and 

hypertension. A diagnosis of T2DM was assigned by laboratory clinical veterinary personnel 

and was determined by clinical presentation including hyperglycemia, glucosuria or 

ketonuria, dyslipidemia, elevated hemoglobin A1C and/or glucose tolerance test results. 

Hypertension was defined as systolic blood pressure >30 mmHg and/or diastolic blood 

pressure >80 mmHg; the average of the three most recent measurements of systolic and 

diastolic blood pressure for each animal were used.

Statistical Analyses

All statistical analyses were completed using GraphPad Prism version 7.0 (La Jolla, CA). 

Animals were stratified by irradiation and SWI lesion status. Normality was assessed using 

Andrews et al. Page 4

Radiat Res. Author manuscript; available in PMC 2021 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Shapiro-Wilk test. Non-parametric data (age at irradiation, age at lesion diagnosis, dose, 

dose rate, and irradiation-to-diagnosis interval) were compared by Mann Whitney U. The 

age at time of assessment between nonirradiated, irradiated NSL (no significant lesions) and 

irradiated SWI groups was compared using Kruskal-Wallis one-way analysis of variance 

(ANOVA). Outliers for lesion number were determined by ROUT method (Q = 1%; 

GraphPad Prism). The correlation between radiation dose (Gy) and lesion volume was 

assessed using two-tailed Spearman correlation.

The associations between prior radiation exposure and brain lesions on MRI, and between 

comorbid health conditions (T2DM and hypertension) and brain lesions on MRI were 

assessed using Fisher’s exact test and the odds ratio calculated by Woolf logit method. 

Significance for all analyses was set to P ≤ 0.05.

RESULTS

Susceptibility-Weighted Imaging (SWI) Hypointense Brain Lesions on MRI

Focal and multifocal T1-hypointense, SWI-hypointense brain lesions consistent with 

necrosis and/or cerebrovascular injury were noted in 13% of irradiated NHP and 0% of 

nonirradiated comparators (Fig. 1, Table 2). Prior TBI was associated with an increased risk 

of developing a lesion detectable by MRI (Fisher’s exact, P = 0.003). No significant 

proprioceptive, locomotor or cranial nerve deficits were noted on cage-side neurologic 

evaluation.

Animals that developed brain lesions received higher doses of TBI (Fig. 2, Table 1) than 

animals that did not develop SWI-hypointense lesions; there was no statistically significant 

difference in dose rate. Twelve out of 16 (12/16) animals had at least one brain lesion 

present at the time of the first MRI evaluation; 7/16 animals developed nascent lesions 

during the study period (Fig. 3), of which 4/7 had no antecedent lesions. Nascent lesions (n 

= 11) developed 3.7–11.3 years postirradiation (median: 7.3 years) at 9.9–15.6 years of age 

(median: 11.3 years). There were no statistically significant differences in radiation dose or 

age at irradiation between animals that developed nascent lesions and those with antecedent 

lesions only.

There were 55 SWI-hypointense brain lesions across 16 animals; 14 out of 16 animals had 

1–3 lesions and the remaining animals had 16 lesions each (n = 2) (Fig. 4A). No statistically 

significant relationship was found between radiation dose and SWI lesion number (Fig. 4B). 

Lesions occurred most frequently within the cerebrum (89%), with predilection for the 

occipital lobe (45%) (Table 3). Seventeen lesions were below the resolution capability of the 

T1-weighted sequence, precluding further neuroanatomic evaluation. Of the remaining 

lesions (38/55), the majority occurred within white matter or at the gray-white junction 

(50% and 29%, respectively); 21% occurred within gray matter. Lesions were equally 

distributed between hemispheres (right: n = 27; left: n = 28)

SWI and T1-weighted images were aligned, and lesion volumes calculated from the 

corresponding T1-weighted structural image to circumvent overestimation of lesion size due 

to the blooming artifact inherent in SWI (82). The majority of lesions (47/55, 85%) were 
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≤1.0 × 1.0 × 1.0 mm3 (0.5 mm3), 17 of which were below the resolution capacity of the T1-

weighted sequence and recorded with a lesion volume of 0 mm3. The median cumulative 

lesion volume per animal was 1.3 mm3 (range: 0–14.9 mm3). Longitudinal volumetric data 

were available for 26 lesions (n = 11 subjects); once present, the majority of lesions did not 

change in size over time (62%, 16/26 lesions), while 9 lesions increased in volume (n = 5 

subjects). One lesion was no longer present on re-evaluation one year later. No statistically 

significant relationship was found between median or cumulative lesion volume and 

radiation dose (Gy) (P > 0.05).

Clinical Data

The associations between comorbid health conditions (T2DM and hypertension) and brain 

lesion presence were individually assessed. No statistically significant association between 

T2DM or hypertension and brain lesion status was detected.

Correlative Gross and Histopathology

Of the 16 animals diagnosed with SWI-hypointense brain lesions, two animals (Table 4) 

were humanely euthanized due to illnesses unassociated with neurologic dysfunction. NHP1 

was euthanized due to the presence of multiple neoplasms (chondrolipoma, renal carcinoma, 

and poorly-differentiated neuroendocrine neoplasia) and poor prognosis. There was no gross 

or histologic evidence of metastatic disease. NHP2 was euthanized due to persistent 

bacterial pneumonia despite antibiotic treatment and supportive care, concurrent heart 

murmur, and T2DM.

In NHP1, a focal SWI hypointensity with corresponding 2.2 × 1.7 × 1.7 mm3 (3.3 mm3) T1 

parenchymal defect was observed within the deep white matter of the caudal right occipital 

lobe at the time of first MRI assessment 5.8 years postirradiation (Fig. 5A and B). At 

reassessment 7.3 years postirradiation, the lesion had increased to 2.3 × 2.5 × 2.4 mm3 (7.2 

mm3). At this time, a second SWI-hypointense focus with corresponding 5.9 × 1.2 × 0.9 

mm3 (3.3 mm3) T1 parenchymal defect was found within the area between the right optic 

tract and globus pallidus. Gross evaluation of the occipital lobe revealed an irregular area of 

hemorrhage (Fig. 5C); histopathology revealed a focal vascular malformation resembling a 

cavernous hemangioma (Fig. 6A). There was scant hemorrhage in the ventral leptomeninges 

adjacent to the optic chiasm. An artery adjacent to the optic tract was segmentally, 

transmurally disrupted and replaced by aggregates of eosinophilic extracellular matrix and 

hemosiderin-laden macrophages (Fig. 6B). Distal segments were tortuous and redundant, 

with partial-to-complete occlusion of the vascular lumina by eosinophilic extracellular 

matrix and smooth muscle hyperplasia (Fig. 6C). White matter tracts adjacent to both 

vascular morphologic abnormalities were vacuolated, and there was axonal degeneration 

(swollen axons, dilated myelin sheathes and digestion chambers) within the cerebral 

peduncle.

In NHP2, no significant lesions were noted at the time of first MRI assessment 5.9 years 

postirradiation. At 6.8 years postirradiation, there was a focal SWI hypointensity with 

corresponding 0.4 × 0.3 × 0.3 mm3 (0.02 mm3) T1 parenchymal defect within the deep 

white matter of the left ventromedial occipital lobe. This lesion was present at reassessment 
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8.4 and 9.4 years postirradiation and did not change in size over time. The lesion could not 

be found grossly or histopathologically. A second SWI hypointensity with corresponding 0.4 

× 0.4 × 0.4 mm3 (0.03 mm3) T1 parenchymal defect was noted within the white matter of 

the left prefrontal lobe at 8.4 and 9.4 years postirradiation. The lesion did not change in size 

over time. Grossly, there was focal hemorrhage within the prefrontal white matter. The 

corresponding histopathology evaluation revealed dilated tortuous vasculature with extensive 

perivascular extracellular matrix and chronic hemorrhage, morphologically consistent with 

radiation-induced cerebrovascular injury.

Cerebrovascular injury occurring without a premonitory SWI lesion was noted in one animal 

at the time of necropsy, after humane euthanasia necessitated by the occurrence of 

hepatocellular carcinoma (10.2 years of age, 5.4 years after 7.2 Gy TBI). On sectioned 

surface, there was regionally extensive congestion within the deep white matter of the right 

occipital lobe. Histopathology revealed a 4 × 5 mm2 focus in which the deep white matter 

was infiltrated by irregularly dilated small- to medium-caliber blood vessels (telangiectasia, 

Fig. 6D). There were no SWI-hypointense lesions within the occipital lobe on a routine 

surveillance MRI conducted six months prior to necropsy.

DISCUSSION

Herein we have documented the prevalence of brain lesions consistent with focal or 

multifocal vascular injury in a cohort of rhesus macaque long-term survivors of single, high-

dose TBI. We also provide two case reports detailing the corresponding histopathologic 

findings. These data add to a growing body of literature which suggests that the brain is 

vulnerable to radiation injury at doses lower than the CNS-ARS threshold.

Magnetic resonance imaging is a non-invasive imaging technique used to evaluate the 

response of hydrogen atoms to magnetic fields and radiofrequency pulses to reconstruct 

structural and functional tissue parameters as visual data. Modulation of the applied 

radiofrequency pulses in specific “sequences” is used to assess different biological tissue 

characteristics. In the current study, T1-weighted MPRAGE sequences were used to acquire 

anatomic brain images and provide contrast between gray and white matter. SWI is 

extremely sensitive to the presence of diamagnetic (calcium) and paramagnetic (iron, 

hemosiderin) substances within the body (82, 83), which appear as foci of “blooming” 

susceptibility/hypointense artifact. Thus these sequences can be used to identify hemorrhage 

and necrosis with mineralization in affected subjects. The SWI sequence is routinely used in 

clinical practice to identify blood products and small-volume microhemorrhages in human 

patients, and SWI hypointensities have been reported in cancer patients receiving brain 

radiotherapy (73, 74, 77, 78, 84–88). Use of these non-invasive, in vivo imaging protocols 

allows for monitoring of the progression of brain pathology longitudinally, often years prior 

to death, and offers the potential to map MRI abnormalities to neurologic deficits.

As animals in this study are currently enrolled in a cohort undergoing long-term surveillance 

for health effects of prior radiation exposure, animals are not euthanized until declining 

health status necessitates humane euthanasia. Therefore, our analyses were primarily limited 

to the evaluation of findings on magnetic resonance images acquired in vivo. 
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Histopathologic evaluation was limited to the two deceased animals noted to have SWI-

hypointense lesions on MRI (14/16 are living). While caution should be used in 

extrapolating these results to the general population, the histopathologic appearance agrees 

with the imaging characteristics (73–75, 89, 90). Vascular malformations (cavernous 

hemangiomas) occur as a sequela of cerebral irradiation in humans (89, 91, 92). Despite 

previous categorization as “hemangiomas,” these focal structural abnormalities are not 

presumed due to proliferation of endothelium, and in keeping with the International Society 

for the Study of Vascular Anomalies (ISSVA) classification system, are more correctly 

classified as “vascular malformations” (93). The remaining cerebrovascular lesions observed 

in this study (perivascular extracellular matrix with acute and chronic hemorrhage) are 

similar to lesions observed in late-delayed RIBI after fWBI in non-human primates and 

humans (64, 67, 68, 70, 90, 94, 95). These cases suggest the etiopathogenesis of late-delayed 

RIBI involves vascular injury characterized by inappropriate remodeling and resultant 

structural abnormalities. Identification of cerebrovascular injury at necropsy in the absence 

of a corresponding lesion on brain imaging, as had occurred in one animal, suggests that 

some of these lesions may develop rapidly. Additional studies will follow, including 

comprehensive histopathologic evaluation of the remaining 14/16 animals.

In one case, a lesion noted on MRI could not be located on gross or histopathologic 

evaluation, despite use of the MRI data during the trimming process and stereological 

sectioning. The identification of brain lesions at the time of prosection is limited by small 

lesion size, the relatively large volume of the non-human primate brain, and low optical 

contrast between foci of necrosis and normal tissue.

Our study was limited to the evaluation of postirradiation MRI, as animals within the cohort 

are adopted from separate studies in which acquisition of preirradiation brain MRI was not a 

part of the experimental design. Hemorrhages develop in the brain parenchyma and 

subarachnoid spaces in mice within 30 days after LD50/30 TBI (9.5 Gy 60Co), and occur in 

association with thrombocytopenia (17, 18, 96). Concurrent neuroinflammation, increased 

cytokine production and deficits in ATP biogenesis (18) may also predispose the cerebral 

vasculature to increased permeability or vascular necrosis, leading to parenchymal 

hemorrhage during the acute phases of radiation injury. Consequently, congenital lesions and 

residual iron resultant from thrombocytopenia or endothelial injury during ARS cannot be 

excluded as the cause of the lesions present at the time of first MRI assessment; however, the 

development of additional lesions during the study period in seven animals (3.7–11.3 years 

postirradiation) suggests a component of ongoing (chronic) cerebrovascular injury. The 

affected animals in the current study were not thrombocytopenic at the time of MRI. The 

absence of similar foci on MRI in nonirradiated controls supports the hypothesis that these 

lesions are radiation-induced. While cognitive assessment within this cohort has been 

limited due to subject unwillingness to engage with the task, preliminary analyses suggest 

that some animals may have reduced cognitive flexibility (97). Radiation-induced temporal 

microbleeds in cancer patients are independently associated with likelihood of cognitive 

dysfunction (78). SWI lesions in this cohort occur in the absence of neurological signs 

detectable by cranial nerve and proprioception testing. Further research evaluating the 

physiological and cognitive ramifications, and progression of these lesions, is needed and 

will be the focus of additional studies.
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T2DM and cardiovascular disease are late-delayed effects of TBI and have been observed in 

this cohort of macaques (98, 99). As these conditions also have effects on the cerebral 

vasculature in the absence of radiation exposure, we evaluated the association between 

comorbid T2DM and hypertension on SWI lesion occurrence. No statistically significant 

association between concurrent T2DM or hypertension and SWI-hypointense brain lesions 

was found.

In summary, we have characterized the imaging prevalence of brain lesions compatible with 

cerebrovascular injury in a cohort of rhesus macaque long-term survivors of high dose TBI. 

We have determined that prior radiation exposure is associated with the development of 

SWI-hypointense brain lesions and provide evidence that the brain may be susceptible to 

injury at lower doses of radiation than those required to induce the ARS of the central 

nervous system (20–50 Gy) (3). These data suggest that human populations exposed to high-

dose TBI may benefit from long-term follow-up including MRI to assess cerebrovascular 

injury.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Animals receiving TBI develop hypointense lesions on susceptibility-weighted imaging 

(SWI-MRI) comparable to those which occur in RIBI after fWBI. Panel A: There are no 

SWI-hypointense foci in nonirradiated animals. Panel B: Multifocal SWI-hypointense foci 

(white arrows) are scattered throughout the cerebrum of an animal that developed RIBI after 

receiving 40 Gy fWBI (8 × 5 Gy fractions, 2× per week) as part of a separate study. Scan 

taken at 12 months postirradiation. Panel C: Comparable, multifocal SWI-hypointense foci 

in a long-term TBI survivor; the subject received 8.0 Gy TBI one year prior to MRI. White 

arrows indicate foci of hemorrhage and/or necrosis.
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FIG. 2. 
TBI is associated with MRI-detectable brain lesions, which occur at higher doses. Animals 

that developed brain lesions after TBI received higher doses than those without lesions 

(median: 7.4 Gy vs. 6.6 Gy, respectively; P < 0.02). Filled squares indicate incident lesions 

which occurred during the surveillance period; these animals received higher doses during 

TBI (7.8 Gy ± 0.4 SD) than those with lesions present since the time of first evaluation only 

(6.6 ± 1.5 SD) (P < 0.05). Bars indicate median value, error bars are 95% confidence 

interval. *P < 0.05.
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FIG. 3. 
Radiologic and life history of animals with SWI-hypointense foci. Each gray bar represents 

a single animal; animals are listed in order of decreasing radiation dose. Bars begin at age at 

irradiation; cross-hatched region indicates the period before adoption and cohort enrollment. 

The solid gray region indicates the period the animal was enrolled within the Radiation 

Survivors Cohort. Circles indicate brain MRI examinations; open circles represent MRI with 

no significant lesions (NSL), closed circles represent a SWI lesion that was present. Arabic 

numerals within closed circles indicate the number of SWI foci at the time of examination. 

“X” indicates the age at death of deceased animals (n = 2). Lethal dose (LD) stratifications 

refer to LD30 for the hematopoietic acute radiation syndrome (H-ARS) in rhesus macaques 

(80).
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FIG. 4. 
Evaluation of radiation-dose response on SWI-MRI lesion number. Panel A: Most animals 

had 1–2 SWI hypointense foci. Frequency histogram. Panel B: There was no statistically 

significant relationship between radiation dose and lesion number. Linear regression 

analysis, r = 0.2, P > 0.05. Solid line indicates best fit; slope = −0.1. Dotted lines indicate 

95% confidence interval. +Outlier, as determined by ROUT method and excluded from 

regression analysis.
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FIG. 5. 
Localization of MRI lesions and correlative gross pathology. Coronal sections, occipital 

lobe, example of a focal brain lesion first noted six years postirradiation, at the time the first 

MRI scan was completed. Panel A: T1 MRI indicating focal parenchymal loss with central 

T1 isointense heterogeneity. Panel B: SWI-MRI indicating the presence of iron or calcium 

(blood or necrosis, respectively). Panel C: Gross tissue, demonstrating focal hemorrhage on 

sectioned surface.
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FIG. 6. 
Spectrum of cerebrovascular injury observed in long-term survivors of TBI. Panel A: Dilated 

and malformed vasculature forming anastomosing channels (cavernous hemangioma). There 

are scattered hemosiderin-laden macrophages within the vascular wall and adjacent 

parenchyma (evidence of chronic hemorrhage; black arrows). The adjacent parenchyma is 

focally edematous (asterisk). Panel B: Transmural replacement of the vascular wall by 

extracellular matrix with chronic hemorrhage and occlusion of the vascular lumen. 

Recanalization (small caliber capillaries distributed throughout the occluded lumen) and 

aggregates of hemosiderin-laden macrophages (brown pigment, hemorrhage) are indicative 

of chronic injury. The adjacent parenchyma is infiltrated by increased numbers of astrocytes 

and elongated, activated (reactive) microglia (rodcells). There is degeneration of the cerebral 

peduncle (swollen axons, dilated myelin sheathes, digestion chambers; black arrows). Panel 

C: Tortuous and redundant vasculature dissecting through the left optic tract with marked 

thickening (5x normal thickness) of the tunica media by extracellular matrix and smooth 

muscle hyperplasia. There is scattered vacuolation of the adjacent optic tract. Panel D: 

Widespread infiltration of the deep occipital white matter by abnormally dilated and 

haphazardly arranged capillaries (telangiectasia). The lesion was an incidental finding, and 

not present on susceptibility-weighted imaging six months prior to necropsy.
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TABLE 2

Animals Receiving TBI are More Likely to Develop SWI Hypointense Lesions Detectable on MRI

Control TBI Total

No lesions 53 104 157

Lesion(s) 0 16 16

Total 53 120

Note. Fisher’s exact test, P = 0.003.
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TABLE 4

Demographics of Deceased Animals with SWI Hypointense Brain Lesions

NHP1 NHP2

Dose (Gy) 7.2 7.6

Age at necropsy (years) 11.3 15.5

Age at irradiation (years) 3.4 3.0

Irradiation-death interval (years) 7.8 12.4

Irradiation-lesion-diagnosis interval (years) 5.8,
a
 7.3 6.8, 8.4

a
Lesion present at the time of first MRI.
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