Skip to main content
. 2020 Oct 21;26(39):5959–5969. doi: 10.3748/wjg.v26.i39.5959

Table 1.

Application of artificial intelligence in endoscopic detection of early esophageal cancer

Ref. Modality AI technique No. of images/cases in training dataset (positive/negative) No. of images/cases in test dataset (positive/negative) Results
van der Sommen et al[14], 2016 HD-WLE SVM 100 (60 early BE neoplasia/40 BE) 100 (60 early BE neoplasia/40 BE) Sensitivity 83%/specificity 83%
de Groof et al[15], 2019 HD-WLE SVM 60 (40 early BE neoplasia/20 BE) 60 (40 early BE neoplasia/20 BE) Sensitivity 95%/specificity 85%
Ebigbo et al[16], 2019 HD-WLE CNN 100 (50 early BE neoplasia/50 BE) 100 (50 early BE neoplasia/50 BE) Sensitivity 92%/specificity 100%
Ebigbo et al[16], 2019 HD-WLE/NBI CNN 148 (early BE neoplasia/BE) 148 (early BE neoplasia/BE) HD-WLE sensitivity 97%/specificity 88%; NBI sensitivity 94%/specificity 80%
Hashimoto et al[17], 2020 WLE/NBI CNN 1374 (early BE neoplasia/BE) 253 WLE (146 early BE neoplasia/107 BE) 205 NBI (79 early BE neoplasia/126 BE) WLE sensitivity 98.6%/specificity 88.8%; NBI sensitivity 92.4%/specificity 99.2%
de Groof et al[18], 2020 HD-WLE ResNet-UNet 1247 WLE + 297 HD-WLE (early BE neoplasia/BE) 80 (40 early BE neoplasia/40 BE) Sensitivity 90%/specificity 88%
Swager et al[22], 2017 VLE SVM 60 (30 early BE neoplasia/30 BE) 60 (30 early BE neoplasia/30 BE) Sensitivity 90%/specificity 93%
Veronese et al[20], 2013 CLE SVM 337 (23 GM/263 IM/51 neoplasia) 337 (23 GM/263 IM/51 neoplasia) Sensitivity 96%/95%/100%
Ghatwary et al[23], 2019 CLE SVM 262 (GM/IM/neoplasia) 262 (GM/IM/neoplasia) Sensitivity 70%/93%/93%
Hong et al[24], 2017 CLE CNN 236 (26 GM/155 IM/55 neoplasia) 26 (4 GM/17 IM/5 neoplasia) Sensitivity 0%/100%/80%
Ebigbo et al[25], 2020 HD-WLE CNN 129 (early BE neoplasia/BE) 62 (36 early BE neoplasia/26 BE) Sensitivity 83.7%/specificity 100%
Cai et al[26], 2019 WLE CNN 2428 (1332 early ESCC/1096 healthy control) 187 (91 early ESCC/96 healthy control) Sensitivity 97.8%/specificity 85.4%
Ohmori et al[27], 2020 WLE/NBI Single Shot MultiBox Detector 22562 (17435 superficial ESCC/5127 control) 727 (255 WLE/268 non-magnifying NBI/204 magnifying NBI) WLE sensitivity 90%/specificity 76%; non-magnifying NBI sensitivity 100%/specificity 63%; magnifying NBI sensitivity 98%/specificity 56%
Zhao et al[31], 2019 Magnifying NBI Double-labeling fully convolutional network 1383 (207 type A IPCL/970 type B1 IPCL/206 type B2 IPCL) 1383 (207 type A IPCL/970 type B1 IPCL/206 type B2 IPCL) Sensitivity 71.5%/91.1%/83.0%
Nakagawa et al[32], 2019 WLE/NBI CNN 8660 non-magnifying (7230 EP-SM1/1430 SM2/3); 5678 magnifying (4916 EP-SM1/762 SM2/3) 914 (405 non-magnifying/509 magnifying) Non-magnifying sensitivity 95.4%/specificity 79.2%; magnifying sensitivity 91.6%/specificity 79.2%
Tokai et al[33], 2020 WLE/NBI CNN 1751 superficial ESCC 291 (201 EP-SM1/90 SM2) Sensitivity 84.1%/specificity 73.3%
Shin et al[36], 2015 HRME Two-class linear discriminant analysis 104 (15 early ESCC/89 control) 167 (19 early ESCC/148 control) Sensitivity 84%/specificity 95%
Quang et al[37], 2016 HRME Two-class linear discriminant analysis 104 (15 early ESCC/89 control) 3 (1 early ESCC/2 control) Sensitivity 100%/specificity 100%
Everson et al[38], 2019 magnifying NBI CNN 7046 sequential images (squamous cell neoplasia/healthy control) 7046 sequential images (squamous cell neoplasia/healthy control) Sensitivity 89.7%/specificity 96.9%
Guo et al[39], 2020 NBI SegNet 6473 (early ESCC/control) 47 (27 non-magnifying videos/20 magnifying videos) Non-magnifying NBI sensitivity 60.8%; magnifying NBI sensitivity 96.1%

AI: Artificial intelligence; EC: Esophageal cancer; HD-WLE: High-definition white light endoscopy; SVM: Support vector machine; BE: Barrett's esophagus; CNN: Convolutional neural network; NBI: Narrow band imaging; VLE: Volumetric laser endomicroscopy; CLE: Confocal laser endomicroscopy; GM: Gastric metaplasia; IM: Intestinal metaplasia; ESCC: Esophageal squamous cell carcinoma; IPCL: Intrapapillary capillary loop; EP-SM1: Epithelium-submucosal cancers invading up to 200 μm; HRME: High-resolution microendoscopy.