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Abstract

This survey presents a review of state-of-the-art deep neural network architectures, algorithms, and 

systems in vision and speech applications. Recent advances in deep artificial neural network 

algorithms and architectures have spurred rapid innovation and development of intelligent vision 

and speech systems. With availability of vast amounts of sensor data and cloud computing for 

processing and training of deep neural networks, and with increased sophistication in mobile and 

embedded technology, the next-generation intelligent systems are poised to revolutionize personal 

and commercial computing. This survey begins by providing background and evolution of some of 

the most successful deep learning models for intelligent vision and speech systems to date. An 

overview of large-scale industrial research and development efforts is provided to emphasize 

future trends and prospects of intelligent vision and speech systems. Robust and efficient 

intelligent systems demand low-latency and high fidelity in resource-constrained hardware 

platforms such as mobile devices, robots, and automobiles. Therefore, this survey also provides a 

summary of key challenges and recent successes in running deep neural networks on hardware-

restricted platforms, i.e. within limited memory, battery life, and processing capabilities. Finally, 

emerging applications of vision and speech across disciplines such as affective computing, 

intelligent transportation, and precision medicine are discussed. To our knowledge, this paper 

provides one of the most comprehensive surveys on the latest developments in intelligent vision 

and speech applications from the perspectives of both software and hardware systems. Many of 

these emerging technologies using deep neural networks show tremendous promise to 

revolutionize research and development for future vision and speech systems.
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1. INTRODUCTION

THERE has been a massive accumulation of human-centric data to an unprecedented scale 

over the last two decades. This data explosion coupled with rapid growth in computing 

power has rejuvenated the field of neural networks and sophisticated intelligent system (IS). 

In the past, neural networks has mostly been limited to the application of industrial control 

and robotics. However, recent advancements in neural networks have led to successful 

applications of IS in almost every aspect of human life with the introduction of intelligent 

transportation [1–10], intelligent diagnosis and health monitoring for precision medicine 

[11–14], robotics and automation in home appliances [15], virtual online assistance [16], e-

marketing [17], and weather forecasting and natural disasters monitoring [18] among others. 

The widespread success of IS technology has redefined and augmented human ability to 

communicate and comprehend the world by innovating ‘smart’ physical systems. A ‘smart’ 

physical system is designed to interpret, act and collaborate with complex multimodal 

human senses such as vision, touch, speech, smell, gestures, or hearing. A large body of 

smart physical systems have been developed targeting two primary senses used in human 

communication: vision and speech.

The advancement in speech and vision processing systems has enabled tremendous research 

and development in the areas of human-computer interactions [19], biometric applications 

[20, 21], security and surveillance [22], and most recently in computational behavioral 

analysis [23–27]. While traditional machine learning and evolutionary computations have 

enriched IS to solve complex pattern recognition problems over many decades, these 

techniques have limitations in their ability to process natural data or images in raw data 

formats. A number of computational steps are used to extract representative features from 

raw data or images prior to applying machine learning models. This intermediate 

representation of raw data, known as ‘hand-engineered’ features, requires domain expertise 

and human interpretation of physical patterns such as texture, shape, geometry, etc. There 

are three major problems with ‘hand-engineered’ features that impede major progress in IS. 

First, the choice of ‘hand-engineered’ features is application dependent and involves human 

interpretation and evaluation. Second, ‘hand-engineered’ features are extracted from each 

sample in a standalone manner without the knowledge of inevitable noise and variations in 

data. Third, ‘hand-engineered’ features may perform excellently with some inputs but may 

completely fail to extract quality features in other types of input data. This can lead to high 

variability in vision and speech recognition performance.

A solution to the limitations of ‘hand-engineered’ features has emerged through mimicking 

functions of biological neurons in artificial neural networks (ANN). The potential of ANNs 

is recently exploited with access to large trainable datasets, efficient learning algorithms, and 

powerful computational resources. Advancements of ANN over the last decade have led to 

deep learning [28, 29] that has revolutionized several application domains, including 

computer vision, speech analysis, biomedical image processing, and online market analyses. 

The rapid success of deep learning over traditional machine learning may be attributed to 

three factors. First, deep learning offers end-to-end trainable architectures that integrate 

feature extraction, dimensionality reduction, and final classification. These steps are 

otherwise treated as standalone sub-systems in conventional machine learning, which may 
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result in suboptimal pattern recognition performance. Second, target-specific and 

informative features may be learned from both input examples and classification targets 

without resorting to application-specific feature extractors. Third, deep learning models are 

highly flexible in capturing complex nonlinear relationships between inputs and output 

targets at a level that is far beyond the capacity of ‘hand-engineered’ features.

The remainder of this article is organized as follows. Section 2 discusses deep learning 

architectures that have been recently introduced to solve contemporary challenges in vision 

and speech domain. Section 3 provides a comprehensive discussion of real-world and 

commercial application cases for the technology. Section 4 discusses state-of-the-art results 

in implementing these sophisticated algorithms in resource-constrained hardware 

environments. This section also highlights prospects of ‘smart’ applications in mobile 

devices. Section 5 discusses several successful and emerging applications of neural networks 

in state-of-the-art IS. Section 6 elaborates potential developments and challenges in the 

future for IS. Finally, Section 7 concludes with a summary of the key observations in this 

article.

2. DESIGN AND ARCHITECTURE OF NEURAL NETWORKS FOR DEEP LEARNING

An ANN consists of multiple levels of nonlinear modules arranged hierarchically in layers. 

This design is inspired by the hierarchical information processing observed in the primate 

visual system [30, 31]. Such hierarchical arrangements enable deep models to learn 

meaningful features at different levels of abstraction. Several successful hierarchical ANNs 

known as deep neural networks (DNNs) are proposed in the literature [32]. Few examples 

include convolutional neural networks [33], deep belief networks [1], and stacked 

autoencoders [34], generative adversarial networks [35], variational autoencoders [36], flow 

models [37], recurrent neural networks [38], and attention bases models [39]. These models 

extract both simple and complex features similar to the ones witnessed in the hierarchical 

regions of the primate vision system. Consequently, the models show excellent performance 

in solving several computer vision tasks, especially complex object recognition [33]. Cichy 

et al. [30] show that DNN models mimic biological brain function. The results from their 

object recognition experiment suggest a close relationship between the processing stages in 

a DNN and the processing scheme observed in the human brain. In the next few sections, we 

discuss the most popular DNN models and their recent evolutions in various vision and 

speech applications.

2.1 Convolutional neural networks

One of the first hierarchical models, known as convolutional neural network (CNN/

ConvNet) [33, 40], learns hierarchical image patterns at multiple layers using a series of 2D 

convolutional operations. CNNs are designed to process multidimensional data structured in 

the form of multiple arrays or tensors. For example, a 2D color image has three color 

channels represented by three 2D arrays. Typically, CNNs process input data using three 

basic ideas: local connectivity, shared weights, and pooling that are arranged in a series of 

connected layers. A simplified CNN architecture is shown in Fig. 1. The first few layers are 

convolutional and pooling layers. The convolutional operation processes parts of the input 
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data in small localities to take advantage of local data dependency within a signal. The 

convolutional layers gradually yield more highly abstract representations of the input data in 

deeper layers of the network. The convolution operation in CNN is also repeated to 

maximize the use of patterns in the input data.

While the convolutional layers detect local conjunctions of features from the previous layer, 

the role of the pooling layer is to aggregate local features into a more global representation. 

Pooling is performed by sliding a non-overlapping window over the output of the 

convolutional layer to obtain a “pooled” value for each window. The pooled value is 

typically the maximum or average value over each window. The maximum value pooling 

helps a network become robust to small shifts and distortions in input data. The 

convolutional layer ends by vectorizing the multidimensional data prior to feeding them into 

fully connected neural networks that perform classification using highly abstracted features 

from previous layers. The training of all the weights in the CNN architecture, including the 

image filters and fully connected network weights, is performed by applying a regular 

backpropagation algorithm commonly known as gradient-descent optimization.

2.2 Deep generative models and autoencoders

The hierarchical model of CNN is designed to efficiently learn target-specific features from 

raw images and videos for vision related applications. However, the major breakthrough of 

hierarchical models is the introduction of the ‘greedy layer-wise’ training algorithm for deep 

belief networks (DBNs) proposed by Hinton et al. [28]. A DBN is built in a layer-by-layer 

fashion by training each learning module known as the restricted Boltzmann machine 

(RBM) [41]. RBMs are composed of a visible and a hidden layer. The visible layer 

represents raw data in a less abstract form. The hidden layer is trained to represent more 

abstract features by capturing correlations in the visible layer data [41]. Figure 2 (a) shows a 

standard architecture of a DBN. DBNs are considered hybrid networks that do not support 

direct end-to-end learning. Consequently, a more efficient architecture, known as deep 

Boltzmann machine (DBM) [42], has been introduced. Similar to DBNs, DBMs are 

structured by stacking layers of RBMs. However, unlike DBNs, the inference procedure of 

DBMs is bidirectional, allowing them to learn in the presence of more ambiguous and 

challenging data.

The introduction of DBMs has led to the development of the stacked autoencoder (SAE) [34, 

43], which is also formed by stacking multiple layers. Unlike DBNs, SAEs utilize 

autoencoders (AE) [44] as the basic learning module. An AE is trained to learn a copy of the 

input at its output. In doing so, the hidden layer learns an abstract representation of inputs in 

a compressed form that is known as the encoding units. Figure 2 (b) shows the architecture 

of an SAE as it gradually learns lower dimensional encoding units at each layer. A greedy 

layer-wise training algorithm is used to train any of DBN, DBM, or SAE networks, where 

the parameters of each layer are trained individually by keeping parameters in other layers 

fixed. After layer-wise training of all layers, also known as pre-training, the hidden layers 

are stacked together. The entire network with all the stacked layers is then fine-tuned against 

the target output units to adjust all the parameters for a classification task as illustrated in 

Fig. 2. DBNs and SAEs have achieved state-of-the-art performance in various vision-related 
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applications such as face verification [45], phone recognition [46], and emotion recognition 

from image and speech [47, 48]. Moreover, several studies [45, 49] have combined the 

advantages of different deep learning models to further boost performance in these 

recognition tasks. For example, Lee et al. [49] have shown that combining convolution and 

weight sharing features of CNNs with the generative architecture of DBNs offers better 

classification performance on benchmark datasets such as MNIST and Caltech 101 [49]. The 

hybrid of CNN and DBN models, also known as the CDBN model, enables scaling to 

problems with large images without requiring an increase in the number of parameters of the 

network.

2.3 Variational Autoencoders

Variational autoencoder (VAE) is a generative model that is designed to learn meaningful 

latent representations of input data. The VAE architecture is analogous to an autoencoder, 

where the deterministic hidden layer is replaced with a parameterizable distribution 

formulated by variational Bayesian inference. VAE is, therefore, represented by a directed 

graphical model consisting of an input layer, a probabilistic hidden layer, and an output layer 

to generate examples that are probabilistically similar to the input class. Kullback Leibler 

(KL) divergence is used as a constraint between the prior and posterior distribution to 

achieve a smooth transition in the hidden distributions between different classes. Variational 

Bayesian inference is used to construct a cost function for the neural network that connects 

the input and hidden layers before the output layer [36]. The parameterization of hidden 

layers for several classes can be represented as parameter vectors. Linear combinations of 

these class-specific vectors can be obtained to represent different types of input into a new 

output example. VAE has successful applications in image generation [50], motion 

prediction [51], text generation [52], and expressive speech generation [53].

2.4 Generative Adversarial Networks

Generative adversarial network (GAN) is another generative model that is capable of 

creating realistic data (typically images) from a given class. A GAN is composed of two 

competing networks: the generator and the discriminator. The generator aims to generate 

synthetic images from raw noise input that are as good as real images. The discriminator 

network has a binary target corresponding to ‘fake’ or ‘real’ inputs as it classifies real 

images against the synthetically generated ones. The entire pipeline of two networks is 

trained with two alternating goals. One goal is to update the discriminator to improve its 

classification performance while keeping the generator parameters fixed. The discriminator 

network yields low cost values when correctly classifying the generator examples as ‘fake’ 

against ‘real’ images. The other goal is to update the generator network by holding fixed 

parameters for the discriminator. Low cost values for the generator indicate that the 

generated synthetic images are too real for the discriminator to classify as ‘fake’ [35]. Thus, 

the two networks compete against each other until an optimal point has been reached, which 

ensures that the fake examples are indistinguishable from real examples. As a generative 

network, GAN has applications similar to VAE, including image generation [54] and super 

resolution [55].
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The GAN model does not have control over generating different variants of data. 

Conditional GAN (CGAN) model alleviates this shortcoming by adding the ground truth 

label as a parameter to the generator. This modification in CGAN allows the GAN model to 

generate new images from different classes. The CGAN discriminator also has an additional 

input and only returns ‘real’ when the input looks real and matches the corresponding input 

class provided in the generator [56]. The authors in [57] have extended the conditional GAN 

architecture to construct images from semantic label maps. Bidirectional GAN learns to 

simultaneously generate new images and estimate the latent parameters of existing images 

[58]. For a given input example, the hidden representation can be extracted. Then the 

underlying representation can be used to generate a new image of similar semantic quality. 

The BigBiGan architecture [59] is an improved bidirectional GAN that achieves state-of-the-

art results in learning new image representation and also in image generation tasks.

Despite the popularity and success of GANs, they are frequently plagued by instability in 

training [60] and subject to underfitting and overfitting [61]. Several studies aimed at 

improving training stability and performance of GAN. The authors in [62] approach these 

problems with a weight normalization that they call spectral normalization. Wasserstein 

GAN (WGAN) is another modification that improves the training of GAN for generating 

more realistic new example images. The authors in [63] motivate the improvement of GAN 

with significant theoretical underpinning. The main difference between GAN and WGAN is 

that instead of providing a binary decision about generated images being ‘fake’ or ‘real’, the 

discriminator network evaluates the generated images using a continuous quality score 

between ‘fake’ and ‘real’. In [64], the authors consider weight clipping, which is a part of 

WGAN training. Weight clipping is considered a penalty on the norm of critic gradient, 

which has shown to improve training stability and image generation quality. In addition to 

WGAN, there are additional studies that attempt to improve GAN. For example, least 

squares generative adversarial networks improve stability and performance [65]. They 

replace the standard GAN cross-entropy loss with least squares loss to resolve the vanishing 

gradient problem. Recently, vector quantization is applied to VAE to generate synthetic 

images of quality rivaling GAN while avoiding the aforementioned problems in training 

GAN [66].

2.5 Flow-Based Models

Flow models construct a decoder that is the exact inverse of the encoder module. This allows 

exact sampling from the inferred data distribution. In VAE, a distribution parameter vector is 

extracted by the encoder to define a new distribution that is sampled and decoded to generate 

an image. In a flow model, given a latent variable, the encoder defines a deterministic 

transformation into an output image. An early flow model, known as Nonlinear Independent 

Components Estimation (NICE) [67], is used to generate images with corrections to corrupt 

image regions, which is known as inpainting. The authors in [37] have extended NICE with 

several more complex invertible operations, including various types of sampling and masked 

convolution to perform image generation. Their proposed model is similar to conditional 

GAN as it can include additional target class parameter to constrain the output image class. 

Another generative model called ‘GLOW’ uses generative flow with invertible convolutions 

[68] and is shown capable of generating realistic high-resolution human face images.
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2.6 Generative Models for Speech

Several related generative models are applied in realistic speech synthesis. WaveNet [69] is 

an audio generation network based on deep autoregressive models that are used for image 

generation (e.g. PixelRNN [70]). WaveNet has no recurrent connections, which increases 

training speed at the cost of increasing the depth of the neural network. In WaveNet, a 

technique called dilated convolution has been found effective in exponentially increasing the 

context region with the depth of neural network. WaveNet also utilizes residual connections 

as described in Section 3.1. Authors in [69] have used conditioning on WaveNet to enable 

text-to-speech (TTS) generation that yields the state-of-the-art performance when graded by 

human listeners. Waveglow [71] is another model that combines WaveNet and GLOW for 

frequency representation of input text sequences to generate realistic speech. Another model, 

known as the Speech Enhancement Generative Adversarial Network (SEGAN) [72], uses 

deep learning and avoids preprocessing of speech using spectral domain techniques. The 

authors use a convolutional autoencoder model enhanced input speech signal, by training in 

a generative adversarial setting. Another work [73] modifies the SEGAN autoencoder model 

in the context of Wasserstein GAN to perform noise-robust speech enhancement.

2.7 Recurrent neural networks

Another variant of neural networks, known as the recurrent neural network (RNN), captures 

useful temporal patterns in sequential data such as speech to augment recognition 

performance. An RNN architecture includes hidden layers that retain the memory of past 

elements of an input sequence. Despite effectiveness in modeling sequential data, RNNs 

have challenges using the traditional backpropagation technique for training with a sequence 

of data with larger degrees of separation [38]. The long short-term memory (LSTM) 

networks alleviate this shortcoming with special hidden units known as “gates” that can 

effectively control the scale of information to remember or forget in the backpropagation 

[38]. Bidirectional RNNs [74] consider context from the past as well as the future to process 

sequential data to improve performance. This, however, can hinder real-time operation as the 

entire sequence must be available for processing. A modification to LSTM, called Gated 

Recurrent Unit (GRU) [75], has been introduced in the context of machine translation. The 

GRU has shown to perform well on translation problems with short sentences. Several 

variations of LSTM including GRU are compared in [76]. The authors in [76] demonstrate 

experimentally that, in general, the original LSTM structure is superior for various 

recognition tasks. LSTM is a powerful model, however, recent advances in attention-based 

modeling have shown to have better performance than RNN models for sequential and 

context based information processing [39].

2.8 Attention in Neural Networks

The process of attention is an important property of human perception that greatly improves 

the efficacy of biological vision. The ‘attention process’ allows humans to selectively focus 

on particular sections of the visual space to obtain relevant information, avoiding the need to 

process the entire scene at once. Consequently, the attention provides several advantages in 

vision processing [77]. The attention model drastically reduces computational complexity by 

limiting the processing space to the region of importance. Additionally, the performance of 
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vision applications is improved as the attention model learns to identify regions of 

importance. Attention models also reduce noise by excluding irrelevant parts of the visual 

scene from processing. This selective fixation allows a contextual representation of the scene 

without ‘clutter’. Hence, the application of such attention based neural network models is 

promising for vision and speech processing.

Early studies have introduced attention by means of saliency maps (e.g., for mapping of 

points that may contain important information in an image). A more recent attempt has 

introduced attention to deep learning models. A seminal study by Larochelle et al. [78] 

models attention in a third-order Boltzmann machine that is able to accumulate information 

of an overall shape in an image over several fixations. The model is only able to see a small 

area of an input image. Thus, it learns by gathering information through a sequence of 

fixations over parts of the image. To learn the sequence of fixations and the overall 

classification task, the authors in [78] have introduced a hybrid-cost for the Boltzmann 

machine. This model shows similar performance to deep learning variants that use the whole 

input image for classification. Another study [79] proposes a two-step system for an 

attention-based model. First, the whole input image is aggressively downsampled and 

processed to identify candidate locations that may contain important information. Next, each 

location is visited by the model in its original resolution. The information collected at each 

location is aggregated to make the final decision. Similarly, Denil et al. [80] have proposed a 

two-pathway model for object tracking, where one focuses on object recognition and the 

other pathway regulates the attention process.

However, learning ‘where and when’ to attend is difficult as it is highly dependent on the 

input and the task. It is also ill-defined in the sense that a particular sequence of fixations 

cannot be explicitly dictated as ground truth. Due to this challenge, most recent studies on 

deep learning with attention have employed reinforcement learning (RL) for regulating the 

attention aspect of the model. Accordingly, a seminal study by Mnih et al. [77] builds a 

reinforcement learning policy on a two-path recurrent deep learning model to 

simultaneously learn the attention process and the recognition task. Based on similar 

principles, Gregor et al. [81] propose a recurrent architecture for image generation. The 

proposed architecture uses a selective attention process to trace outlines and generate digits 

similar to a human. Another study [82] utilizes the selective attention process for image 

captioning. In this study, the RL based attention process learns the sequence of glimpses 

through the input image that best describes the scene representation. Conversely, Mansimov 

et al. [83] leverage the RL based selective attention on an image caption to generate new 

images described in the caption. In this approach, the attention mechanism learns to focus on 

each word in a sequential manner that is most relevant for image generation. Despite 

impressive performance in learning selective attention using RL, deep RL still involves 

additional burdens in developing suitable policy functions that are extremely task-specific, 

and hence, are not generalizable. RL with deep learning also frequently suffers from 

instability in training.

A different set of studies on neural networks analogous to the Turing machine architecture 

suggest the use of an attention process for interacting with external memory of the overall 

system. In this approach, the process of attention is implemented using a neural controller 
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and a memory matrix [84]. The attentional focus allows selective access to the memory, 

which is necessary for memory control [84]. The neural Turing machine work is further 

explored in [85] considering attention-based global and local foci on an input sequence for 

machine translation. In [86], an attention mechanism is combined with a bidirectional LSTM 

network for speech recognition. In [87], the authors, inspired by LSTM for natural language 

processing (NLP), add a trust gate to augment LSTM in the application of human skeleton-

based action recognition. Vaswani et al. [39] use an attention module called ‘Transformer’ to 

completely replace recurrency in language translation problems. This model is able to 

achieve improved performance on English-to-German and English-to-French translation. 

Zhang et al. [88] propose self-attention generative adversarial networks (SAGAN) for image 

generation. A standard convolutional layer can only capture local dependencies in a fixed 

shape window. Attention mechanism allows the discriminator and generators of the GAN 

model to operate over larger and arbitrarily shaped context regions [88].

2.9 Neural Architecture Search

Neural architecture search (NAS) involves automated selection of the architectural 

parameters of a neural network. In [89] architectural parameters including CNN filter size, 

stride, and the number of filters in a given convolutional layer are selected using NAS. 

Additionally, skip connections (discussed in Section 3.1) are automatically selected to 

generate densely connected CNN. The method in [89] uses reinforcement learning to train 

an RNN to generate architectural parameters of a CNN. A more recent method, called the 

Differential Architecture Search (DARTS) [90], avoids the reinforcement learning paradigm 

and formulates the problem of parameter selection as a differentiable function that is 

amenable to gradient descent. The gradient descent formulation improves the performance 

over reinforcement learning and drastically reduces computational time to perform the 

search. Another work, known as the progressive neural architecture search [91], performs a 

search over CNN architectures. They begin with a simple structure and progress through a 

parameter search space toward more complex CNN models. They are also able to reduce the 

search time and space for the optimal architecture when compared to reinforcement learning 

methods. They have reported the state-of-the-art performance on the CIFAR-10 image 

classification dataset. In order to show the growth in deep learning models, Figure 3 

summarizes the search results with model names found in the article abstracts as of 2019. 

Section 3 elaborates on the contributions of these deep learning models to various vision and 

speech related applications.

3 DEEP LEARNING IN VISION AND SPEECH PROCESSING

This section discusses the impact of neural networks that are driving the state-of-the-art 

intelligent vision and speech systems.

3.1 Deep learning in computer vision

Image classification and scene labeling: The CNN model is first introduced to 

perform recognition of ten hand-written digits using image examples from the MNIST 

dataset. The proposed CNN model has shown significant performance improvement in hand-

written digit recognition task compared to earlier state-of-the-art machine learning 
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techniques. Since then CNNs have seen several evolutions and the current versions of CNN 

are tremendously successful in solving more complex and challenging image recognition 

tasks [21, 33, 92, 93]. For example, Krizhevsky et al. [33] utilize a deep CNN architecture 

named ‘AlexNet’ for solving the ImageNet classification challenge [94] to classify 1000 

objects from high-resolution natural images. Their proposed CNN architecture has 

considerably outperformed previous state-of-the-art methods during the earliest attempt with 

the ImageNet classification challenge. The image recognition performance gradually 

improved as reported in several publications such as GoogleNet [93], VGGNet [95], ZFNet 

[96] and ResNet [97], following the initial success of AlexNet. More recently, He et al. [98] 

have extended AlexNet to demonstrate that a carefully trained deep CNN model is able to 

surpass human-level recognition performance, reported in [94] on the ImageNet dataset. 

AlexNet [33] and GoogLeNet [93] are two of the pioneering CNN architectures that have 

significantly improved image classification performance compared to the conventional hand-

engineered computer vision models. However, a limitation of these models is the vanishing 

gradient problem when increasing the number of layers to achieve more depth in learning 

abstract features. Consequently, a more sophisticated CNN architecture, such as ResNet 

[97], has been proposed by incorporating “residual block” in the architecture. A residual 

block combines a convolutional operation and a skip connection into an output. The skip 

connection directly passes the input with no transformation. This allows the model to 

achieve very deep structures providing a remedy to the vanishing gradient problem. Densely 

connected networks are introduced by Huang et al. [99]. They allow forward connections 

between any two convolutional layers called ‘skip’ connections. These connections between 

further-separated layers reduce vanishing gradient and improve the efficiency with reuse of 

features. Another architecture called squeeze-and-excitation [100] considers channel-wise 

dependencies in convolutional feature maps. This is performed by calculating and using the 

mean value for each channel to inform a rescaling of the feature maps. Recently, a technique 

called EfficientNet [101] is used for scaling of the CNN model. The authors first apply 

Neural Architecture Search (described in Section 2.8), and then uniformly scale network 

depth, width, and resolution simultaneously. This method has yielded the state-of-the-art 

performance in image recognition with an order of magnitude less parameters. The reduction 

in parameters here also implies faster inference. In Section 4, we extend this discussion of 

efficient networks for applications in limited resource environments. Scene labeling is 

another computer vision application that assigns target classes to multiple portions of an 

image based on the local content. Farabet et al. [92] have proposed a scene labeling method 

using a multiscale CNN that yields record accuracies on several scene labeling problem 

datasets with up to 170 classes. CNNs have also demonstrated the state-of-the-art 

performance in other computer vision applications, such as in human face, action, 

expression, and pose recognitions. Table I shows performance error rates of the neural 

networks described above for image classification.

Human face, action, and pose recognition: Human-centric recognitions have long 

been an active area of research in computer vision. A recent approach in human face 

recognition is dedicated to improving the cost function of neural networks. The objective of 

such cost function for face recognition is to maximize interclass variation (facial variations 

between human individuals) and minimize intraclass variation (facial variations within an 
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individual due to facial expressions). Wang et al. [102] have constructed a cost function 

called large margin cosine loss (LMCL), which achieves the desired variational properties. 

Using LMCL, their proposed model is able to achieve the state-of-the-art performance on 

several face recognition benchmarks. Following this work, Deng et al. [103] reformulate the 

cost function for face recognition. Their cost function Additive Angular Margin Loss 

(ArcFace) is shown to further increase the margin between different face classes. ArcFace is 

shown to further improve face recognition performance on a large experimental study of 10 

datasets. Several CNN-based models are proposed in the literature to perform human action 

recognition. An architectural feature called temporal pyramid pooling is used in [104] to 

capture details from every frame in a video and is shown to perform action classification 

well with a small training set. Another architecture, called the two-stream CNN, analyzes 

both spatial and temporal contexts independently and gives competitive results on standard 

video action benchmarks [95]. CNN architectures that find pose features in an intermediate 

layer have been used for human action recognition. One of the more successful architectures 

for action recognition is called R*CNN [105]. This model uses contexts from the scene with 

human figure data to recognize actions. Action recognition has been performed using a 

skeletal representation of human individuals instead of RGB video of the entire body 

posture. Kinect [106] has been widely used to structure illumination of an individual to 

obtain a 3D skeleton measurement. Kinect skeletons are mapped to color images to represent 

3D data and used as input in [107] for a ResNet CNN. Tang et al. [108] apply reinforcement 

learning for a graph based CNN (GCNN) that captures structural and temporal information 

from 3D skeleton input. The authors note that future work may exploit the graph structure in 

the weight initialization process. Another approach [109] uses raw depth maps and 

intermediate 3D skeleton features in a multiple channel CNN. A fusion method is applied to 

the output of different CNN channels to leverage both modalities. This work improves 

accuracy on a benchmark with a large number of action classes.

CNNs are used in human pose estimation, for example, Deep Pose [20] is the first CNN 

application to perform pose estimation, which has outperformed earlier methods [110]. Deep 

Pose is a cascaded CNN based pose estimation framework. The cascading allows the model 

to learn an initial pose estimation based on the full image. A CNN based regressor is then 

used to refine the joint predictions using higher resolution sub-images. Tomson et al. [21] 

propose a ‘Spatial Model’ which incorporates a CNN architecture with Markov Random 

Field (MRF) and offers improved results in human pose estimation. Adversarial learning is 

applied to 2D images in [111] to extend the output pose prediction into 3D space. 

Furthermore, new sensing techniques allow efficient processing of 3D volumetric data using 

3D convolutional networks. For example, in [112], human hand joint locations are estimated 

in real-time using a volumetric representation of input data and a 3D convolutional network. 

Another work extends pose estimation to dense pose estimation [113] where the goal is to 

generate a 3D mesh surface of an individual from 2D images.

Saliency detection and tracking: Saliency detection aims to identify regions of an 

input image that represent an object class of interest. Recent work in saliency detection has 

proposed the integration of a CNN with an RNN. For example, in [114], RNN is used to 

refine CNN feature maps by iteratively leveraging deeper contextual information than pure 
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CNN. The work in [115] extends the idea of RNN feature map refinement by introducing 

multi-path recurrency, which is a feedback connection from different depths of CNN. Deep 

learning has also been applied to detect salient objects in video. One of the recent studies has 

used 3D CNN [116] to capture the temporal information, while another study [117] 

incorporates LSTM on top of CNN to capture the temporal information. Recently, Siamese 

CNN has been proposed to track objects over time in video frames. A Siamese CNN is a two 

branch CNN that takes two input images. The branches merge in the deep layers to produce 

an inference on the relation between the two images. In [118, 119], Siamese CNN is used to 

generate information between adjacent image patches, which are used to track objects. 

Reinforcement learning is another technique that is applied in [120] for tracking biological 

image features at subpixel level.

Image generation and inpainting: Generative models including VAE, GAN and its 

variants, and flow-based models have applications in image generation and image 

modification. As mentioned in Section 2.3–2.5, these generative models perform image 

generation and inpainting including human face image generation. These models are capable 

of several other applications. In [121], a method called cycle GAN is used for the unpaired 

image-to-image translation problem. Image-to-image translation would typically involve 

training on scenes where the input and output domains are given. For example, pairs of 

pictures of day and night at a location could be a training set. Then given a new image of a 

location in the day, the network outputs a night image. What cycle GAN accomplishes is 

even more impressive. The training is done without image pairs. So, the day and night 

images used in training are not from the same locations. The network is then trained to 

convert day images into night images. Another important GAN application is photo 

inpainting. When a part of an image is removed or distorted, the network can make a guess 

of the missing part, for example, face inpainting [122] or natural image inpainting [123]. A 

recent study has considered partial convolution to perform inpainting with irregularly 

removed regions [124]. A related application of GAN is semantic image generation. Parts of 

an image have semantic labels and the goal is to generate an image matching the labels. The 

authors in [57] use conditional GAN to generate high-resolution realistic images from 

semantic maps. A video prediction model based on flow networks has success comparable to 

VAE in short-period prediction of future frames [125].

Table II summarizes variants of CNN with their contributions and limitations in computer 

vision applications. A common observation of these studies is that the proposed CNN 

models can yield human-level performance for simpler tasks. In [98], the authors note that 

image classification performance decreases when context is required for image 

understanding. A similar challenge is observed in human action recognition tasks using 

visual data or images. Authors in [104] have reported that similar human actions are more 

challenging to classify using neural network algorithms. In [21], the model only works well 

for a constrained set of human poses. When the classification problems become very 

difficult such as an arbitrary view or context dependent tasks, the architectures of vision 

algorithms still have room to improve.
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3.2 Deep learning in speech recognition

In addition to offering excellent performance in image recognition [21, 33, 92, 93], deep 

learning models have also shown state-of-the-art performance in speech recognition [126–

128]. A significant milestone is achieved in acoustic modeling with the aid of DBNs at 

multiple institutions [127]. Following the work in [28], DBNs are trained in layer-wise 

fashion followed by end-to-end fine-tuning for speech applications as shown in Fig. 2 above. 

The DBN architecture and training process have been extensively tested on several large-

vocabulary speech recognition datasets including TIMIT, Bing-Voice-Search speech, 

Switchboard speech, Google Voice Input speech, YouTube speech, and the English-

Broadcast-News speech dataset. DBNs significantly outperform state-of-the-art methods in 

speech recognition when compared to highly tuned Gaussian mixture model (GMM)-HMM. 

SAEs likewise are shown to outperform (GMM)-HMM on Cantonese and other speech 

recognition tasks [43].

RNN has succeeded in improving speech recognition performance because of its ability to 

learn sequential patterns as seen in speech, language, or time-series data. RNNs have 

challenges in using traditional backpropagation technique for training such models. This 

technique has difficulties to process portions of a sequence with long term separation in 

memory [39]. The problem is addressed with the development of long short-term memory 

(LSTM) networks that use special hidden units known as “gates” to retain memory over 

longer portions of a sequence [40]. Sak et al. [129] first studied the LSTM architecture in 

speech recognition over a large vocabulary set. Their double-layer deep LSTM is found to 

be superior to a baseline DBN model. LSTM has been successful in an end-to-end speech 

learning method, known as Deep-Speech-2 (DS2), for two largely different languages: 

English and Mandarin Chinese. Other speech recognition studies using an LSTM network 

have shown significant performance improvement compared to previous state-of-the-art 

DBN based models. Furthermore, Chien et al. [130] have performed an extensive experiment 

with various LSTM architectures for speech recognition and compared the performance with 

state-of-the-art models. The LSTM model is extended in Xiong et al. [131] to bidirectional 

LSTM. This BLSTM is stacked on top of convolutional layers to improve speech 

recognition performance. The inclusion of attention enables LSTM models to outperform 

purely recurrent architectures. An attention mechanism called Listen, Attend, and Spell 

(LAS) is used to encode, attend, and decode, respectively. This LAS module is used with 

LSTM to improve speech recognition performance [132]. Using a pretraining technique 

[133] with attention and LSTM model, speech recognition performance has improved to a 

new state-of-the-art level. Another memory network based on RNN is proposed by Weston 

et al. [134] to recognize speech content. This memory network stores pieces of information 

to retrieve the answer related to the inquiry, which makes it unique and distinctive from 

standard RNNs and LSTMs. RNN-based models have reached far beyond speech 

recognition to support NLP. NLP aims to interpret language and semantics from speech or 

text to perform a variety of intelligent tasks, such as responding to human speech, smart 

assistants (Siri, Alexa, and Cortana), analyzing sentiment to identify positive or negative 

attitude towards a situation, processing events or news, and language translation in both 

speech and texts. To summarize key results in speech recognition using DBNs, RNNs 
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(including LSTMs), and attention models, Table III presents different architectures, datasets, 

and performance achieved in the state-of-the-art literature.

Although RNNs/LSTMs are standard in sentiment analysis, authors in [135] have proposed 

a novel nonlinear architecture of multiple LSTMs to capture sentiments from phrases that 

constitute different order of the words in natural language. Researchers from Google 

machine learning [136] have developed a machine-based language translation system that 

runs Google’s popular online translation service. Although this system has been able to 

reduce average error by 60% compared to the previous system, it suffers from a few 

limitations. A more efficient translator, neural machine translator (NMT) [136], takes an 

entire sentence as input at one time, instead of sentences in parts. This improves the context 

and semantic representation by the model over traditional methods. More recently, a hybrid 

approach combines sequential language patterns from LSTMs and hierarchical learning of 

images from CNNs. This hybrid approach can describe image content and contexts using 

natural language descriptions. Karpathy et al. [137] have introduced this hybrid approach for 

image captioning to incorporate both visual data and language descriptions to achieve 

optimal performance in image captioning across several datasets. Table IV summarizes 

variants of RNN, their contributions and limitations for state-of-the-art speech recognition 

systems.

Similar to vision applications, RNN models can yield human-level performance for simpler 

speech recognition tasks. For both CNNs and RNNs, the architecture is inherently driven by 

the problem domain. Examples of such applications include: 1) multiscale CNN to gather 

context for labeling across a scene [92], 2) temporal pooling to understand actions across 

time [104], 3) MRF graphical modeling on top of CNN to constrain plausible joint 

configuations [21], 4) long term memory components for context retrieval in stories, and 5) 

CNN fused with RNN to interpret images using language. In [134], the authors note that the 

question and input stories are rather simple for the neural models to handle. In [136], the 

authors report that challenging translation problems are yet to be successfully addressed in 

current studies. As tasks become more complex or highly abstract, more sophisticated 

intelligent systems are required to reach human-level performance.

Speech emotion and visual speech recognition are two important topics that have gained 

recent attention in deep learning literature. Mirsamadi et al. [138] have used a deep recurrent 

network with local attention to automatically learn speech features from audio signals. Their 

proposed RNN captures a large context region while the attention focuses on the aspects of 

speech relevant to emotion. This idea is later extended in Chen et al. [139] where operation 

on frequency bank representation of speech signals can be used as inputs into a 

convolutional layer. This convolutional layer is followed by LSTM and attention layers. 

Mirsamadi et al. have further improved the work of Chen et al. to yield the state-of-the-art 

performance on Interactive Emotional Dyadic Motion Capture (IEMOCAP) emotion 

recognition tasks. Another work in [140] applies adversarial autoencoder for emotion 

recognition in speech. However, they use heuristic features as network input including 

spectral and energy features of speech in the IEMOCAP emotion recognition task.
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Visual speech recognition involves lip reading of human subjects in video data to generate 

text captions. Recently, two notable studies have used attention-based networks for this 

problem. Afouras et al. [141] use 3D CNN to capture spatio-temporal information of the 

face, and a transformer self-attention module for speech recognition from the extracted 

convolutional features. Stafylakis et al. [142] consider zero-shot keyword spotting, where the 

phrase is not seen in training data and is searched in a visual speech video. The input video 

is first fed to a 3D spatial-temporal residual network to capture face information over time. 

This is followed by attention and LSTM layers to detect the phrase in the video. Both studies 

consider “in the wild” speech recognition or a large breadth of natural sentences in speech.

3.3 Datasets for vision and speech applications

Several current datasets have been compiled for state-of-the-art benchmarking of computer 

vision. ImageNet is a large-scale dataset of annotated images including bounding boxes. 

This dataset includes over 14 million labeled images spanning more than 20,000 categories 

[94]. CIFAR-10 is a dataset of smaller images that contain a recognizable object class in low 

resolution. Each image is only 32×32 pixels, and there are 60,000 images for each of 10 

classes [143]. Microsoft Common Objects in Context (COCO) provides segmentation of 

objects in images for benchmarking problems including saliency detection. This dataset 

includes 2.5 million instances of objects in 328K images [144]. More complex image 

datasets are now being developed for unmanned aerial vehicle (UAV) deployment. Here, 

detection and tracking take place in a highly unconstrained environment. This includes 

different weather, obstacles, occlusions, and varying camera orientations relative to the flight 

path. Recently, two large scale datasets are released for benchmarking detection and tracking 

in UAV applications. The Unmanned Aerial Vehicle Benchmark [145] includes single and 

multiple bounding boxes for detection and tracking in various flight conditions. An 

ambitious project called Vision Meets Drones [146] gathered a dataset with 2.5 million 

object annotations for detection and tracking in UAV urban and suburban flight 

environments.

Speech recognition also has several current datasets for state-of-the-art benchmarking. 

Defense Advanced Research Projects Agency (DARPA) has commissioned a collaboration 

between Texas Instruments and MIT (TIMIT) to make a speech transcription dataset. The 

TIMIT dataset includes 630 speakers from several American English dialects [147]. 

VoxCeleb is a more current speech dataset with 1000 celebrities’ voice transcriptions in a 

more unconstrained or “in the wild” setting [148]. In machine translation, Stanford’s natural 

language processing group has released several public language translation datasets 

including WMT’15 English-Czech, WMT’14 English-German, and IWSLT’15 English-

Vietnamese. The English to Czech and English to German datasets have 15.8 and 4.5 million 

sentence pairs, respectively [149]. CHiME 5 [150] is a speech recognition dataset that 

contains challenging speech recognition conditions including multiple speaker natural 

conversations. A dataset called LRS3-TED has been compiled for visual speech recognition 

[151]. This dataset includes hundreds of hours of TED talk videos with subtitles aligned in 

time at the resolution of single words. Many other niche datasets on computer vision and 

speech can be found on the Kaggle Challenge website free to the public.
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3.4 Deep learning in commercial vision and speech applications

In recent years, giant companies such as Google, Facebook, Apple, Microsoft, IBM, and 

others have adopted deep learning as one of their core areas of research in artificial 

intelligence (AI). Google Brain [152] focuses on engineering the deep learning methods, 

such as tweaking CNN-based architectures to obtain competitive recognition performance in 

various challenging vision applications. They use a large number of cluster machines and 

high-end GPU-based computers to parallelize their computation. Facebook conducts 

extensive deep learning research in their Facebook AI Research (FAIR) [153] lab for image 

recognition and natural language understanding. Many users around the globe are already 

taking advantage of this recognition system in the Facebook application. Their next 

milestone is to integrate the deep learning-based NLP approaches to the Facebook system to 

achieve near human-level performance in understanding language. Recently, Facebook has 

launched a beta AI assistant system called ‘M’ [154]. ‘M’ utilizes NLP to support more 

complex tasks such as purchasing items, arranging delivery of gifts, booking restaurant 

reservations, and making travel arrangements or appointments. Microsoft has investigated 

Cognitive toolkit [155] to show efficient ways to train deep models across distributed 

computers. They have also implemented an automatic speech recognition system that 

achieves human-level conversational speech recognition [156]. More recently, they have 

introduced a deep learning-based speech invoked assistant called Cortana [157]. Baidu has 

studied deep learning to create massive GPU systems with Infiniband [158] networks. Their 

speech recognition system named Deep Speech 2 (DS2) [159] has shown remarkably 

improved performance over its competitors. Baidu is also one of the pioneering research 

groups to introduce deep learning-based self-driving cars with BMW. Nvidia has invested 

efforts in developing state-of-the-art GPUs to support more efficient and real-time 

implementation of complex deep learning models [160]. Their high-end GPUs have led to 

one of the most powerful end-to-end solutions for self-driving cars. IBM has recently 

introduced their cognitive system known as Watson [161]. This system incorporates 

computer vision and speech recognition in a human friendly interface and NLP backend. 

Traditional computer models have relied on rigid mathematic principles to utilize software 

built upon rules and logic. Instead, Watson relies on what IBM is calling “cognitive 

computing”. The Watson-based cognitive computing system has already been proven useful 

across a range of different applications such as healthcare, marketing, sales, customer 

service, operations, HR, and finance. Other major tech companies that are actively involved 

in deep learning research include Apple [162], Amazon [163], Uber [164], and Intel [165]. 

Figure 4 summarizes publication statistics over the past 10 years searching article abstracts 

for ‘deep learning’, ‘computer vision’, ‘speech recognition’, and ‘natural language 

processing’.

Although deep learning has revolutionized today’s intelligent systems with the aid of 

computational resources, its application in more personalized settings, such as embedded 

and mobile hardware systems, is another challenge that has led to an active area of research. 

This challenge is due to the extensive requirement of high-powered and dedicated hardware 

for executing the most robust and sophisticated deep learning algorithms. Consequently, 

there is a growing need for developing more efficient, yet robust deep models in resource 

Alam et al. Page 16

Neurocomputing. Author manuscript; available in PMC 2021 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



restricted hardware environments. The next sections survey some recent advances in highly 

efficient deep models that are compatible with mobile hardware systems.

4 VISION AND SPEECH ON RESOURCE RESTRICTED HARDWARE PLATFORMS

The success of future vision and speech systems depends on accessibility and adaptability to 

a variety of platforms that eventually drive the prospect of commercialization. While some 

platforms are intended for public and personal use, there are other commercial, industrial, 

and online-based platforms - all of which require seamless integration of intelligent systems. 

However, state-of-the-art deep learning models have challenges in adapting to embedded 

hardware due to large memory footprint, high computational complexity, and high-power 

consumption. This has driven research on improving system performance of compact 

architectures in resource restricted platforms. The following sections highlight some of the 

major research efforts in integrating sophisticated algorithms in resource restricted user 

platforms.

4.1 Speech recognition on mobile platforms

Handheld devices such as smartphones and tablets are ubiquitous in modern life. Hence, a 

large effort in developing intelligent systems is dedicated to mobile platforms with a view to 

reaching out to billions of mobile users around the world. Speech recognition has been a 

pioneering application in developing smart mobile assistants. The voice input of a mobile 

user is first interpreted using a speech recognition algorithm. The answer is then retrieved by 

an online search. The retrieved information is then spoken out by the virtual mobile 

assistant. Major technology companies, such as Google [166], have enabled voice-based 

content search on Android devices and a similar voice-based virtual assistant, known as Siri, 

is also available with Apple’s iOS devices. This intelligent application provides mobile users 

with a fast and convenient hands-free feature to retrieve information.

However, mobile devices, like other embedded systems, have computational limitations and 

issues related to power consumption and battery life. Therefore, mobile devices usually send 

input requests to a remote server to process and send the information back to the device. 

This further brings in issues related to latency due to wireless network quality while 

connecting to the server. As an example, Keyword spotting (KWS) [167] detects a set of 

previously defined keywords from speech data to enable hands-free features in mobile 

devices. The authors in [167] have proposed a low-latency keyword detection method for 

mobile users using a deep learning-based technique and termed it as ‘deep KWS’. The deep 

KWS method has not only been proven suitable for low-powered embedded systems but also 

has outperformed the baseline Hidden Markov Models for both noisy and noise-free audio 

data. The deep KWS uses a fully connected DNN with transfer learning [167] based on 

speech recognition. The network is further optimized for KWS with end-to-end fine-tuning 

using stochastic gradient descent. Sainath et al. [168] have introduced a similarly small 

footprint KWS system based on CNNs. Their proposed CNN uses fewer parameters than a 

standard DNN model, which makes the proposed system more attractive for platforms with 

resource constraints. Chen et al. [169] in another study propose the use of LSTM for the 

KWS task. The inherent recurrent connections in LSTM can make the KWS task suitable for 
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resource restricted platforms by improving computational efficiency. To support this, the 

authors further show that the proposed LSTM outperforms a typical DNN-based KWS 

method. A typical framework for deep learning based KWS system is shown in Fig. 5.

Similar to KWS systems, automatic speech recognition (ASR) [170] has become 

increasingly popular with mobile devices as it alleviates the need for tedious typing on small 

mobile devices. Google provides ASR-based search services [166] on Android, iOS, and 

Chrome platforms. Apple iOS devices are equipped with a conversational assistant named 

Siri. Mobile users can also type texts or emails by speech on both Android and iOS devices 

[171]. However, ASR service is contingent on the availability of cellular mobile network 

since the recognition task is performed on a remote server. This is a limitation since mobile 

network strength can be low, intermittent, or even absent at places. Therefore, developing an 

accurate speech recognition system in real-time, embedded on standalone modern mobile 

devices, is still an active area of research.

Consequently, embedded speech recognition systems using DNNs have gained attention. Lei 

et al. [170] have achieved substantial improvement in ASR performance over traditional 

GMM-based acoustic models even at a much lower footprint and memory requirements. The 

authors show that a DNN model, with 1.48 million parameters, outperforms the generic 

GMM-based model while exploiting only 17% of the memory used by GMM. Furthermore, 

the authors use a language model compression scheme LOUDS [172] to gain a further 60% 

improvement in the memory footprint for the proposed method. Wang et al. [173] propose 

another compressed DNN-based speech recognition system that is suitable for use in 

resource restricted platforms. The authors train a standard fully connected DNN model for 

speech recognition, compress the network using a singular value decomposition method, and 

then use split vector quantization algorithms to enhance computational efficiency. The 

authors have achieved a 75% to 80% reduction in memory footprint to a mere 3.2 MB. 

Additionally, they achieved a 10% to 50% reduction in computational cost with performance 

comparable to that of the uncompressed version. In [174], the authors show that low-rank 

representation of weight matrices can increase representational power per number of 

parameters. They also combine this low-rank technique with ensembles of DNN to improve 

the performance of KWS task. Table V summarizes small footprint speech recognition and 

KWS systems, which are promising for application in resource restricted platforms.

4.2 Computer vision on mobile platforms

Real-time recognition of objects or humans is a highly desirable feature with handheld 

devices for convenient authentication, identification, navigational assistance. When 

combined with speech recognition, it can even be used as a mobile teaching assistant. 

Though deep learning has advanced in speech recognition tasks on mobile platforms, image 

recognition systems are still challenging to deploy in mobile platforms due to resource 

constraints.

In a study, Sarkar et al. [175] use a deep CNN for face recognition in mobile platforms for 

user authentication. The authors first identify disparities in hardware and software between 

mobile devices and typical workstations in the context of deep learning, such as the 

unavailability of powerful GPUs and CUDA (an application programming interface by 
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NVIDIA that enables general-purpose processing in GPU) capabilities. The study 

subsequently proposes a pipeline that leverages AlexNet [33] through transfer learning [176] 

for feature extraction and then uses a pool of SVM’s for scale-invariant classification. The 

algorithm is evaluated and compared in terms of runtime and face recognition accuracy on 

several mobile platforms embedded with Qualcomm Snapdragon CPUs and Adreo GPUs. 

The algorithm has achieved 96% and 88% accuracies on two standard datasets, UMD-AA 

[177] and MOBIO [178], respectively, with a minimum runtime of 5.7 seconds on the Nexus 

6 mobile phone. In another study, Howard et al. [179] have introduced a class of efficient 

CNN models termed ‘MobileNets’ for mobile and embedded vision processing applications. 

MobileNet models leverage the layerwise separability in convolution operation to obtain 

substantial improvements in efficiency over conventional CNNs. The study also defines two 

global hyperparameters that configure the width and depth of the MobileNet architecture, 

compromising between latency and accuracy in the model performance. The authors show 

approximately seven-fold reduction in trainable parameters using MobileNet at the cost of 

losing only 1% accuracy in multiple vision tasks when compared to conventional 

architectures. Su et al. [180] have further improved MobileNet by reducing model-level and 

data-level redundancies that exist in the architecture. Specifically, the authors suggest an 

iterative pruning strategy [181] and a quantization strategy [182] to address model-level and 

data-level redundancy, respectively. The authors show comparable accuracy of the proposed 

model using a conventional AlexNet on an ImageNet classification task with just 4% use of 

trainable parameters and 31% of computational cost per image inference.

Lane et al. [183] have also performed an initial study using two popular deep learning 

models: CNN and fully connected deep feed-forward networks. These models are used to 

analyze audio and image data on three hardware platforms: Qualcomm Snapdragon 800, 

Intel Edison, and Nvidia Tegra K1 as these are commonly used in wearable and mobile 

devices. The study includes extensive analyses on energy consumption, processing time, and 

memory footprint on several state-of-the-art models such as Deep KWS, DeepEar, ImageNet 

[33], and SVHN [184] (street-view house number recognition) for speech and image 

recognition applications. The study identifies a critical need for optimization of these 

sophisticated deep models in terms of computational complexity and memory usage for 

effective deployment in regular mobile platforms.

In another study, Lane et al. [185] discuss the feasibility of incorporating deep learning 

algorithms in mobile sensing for a number of signal and image processing applications. 

They highlight the limitation that deep models for mobile applications are still implemented 

on cloud-based systems rather than on standalone mobile devices due to large computational 

overhead. However, the authors point out that mobile architectures have been advancing in 

recent years and may soon be able to accommodate complex deep learning methods in 

devices. The authors subsequently implement a DNN architecture on the Hexagon DSP of a 

Qualcomm Snapdragon SoC (standard CPU used in mobile phones). They compare its 

performance with classical machine learning algorithms such as decision tree, SVM, and 

GMM in processing activity recognition, emotion recognition, and speaker identification. 

They report increased robustness in performance with acceptable levels of resource use for 

the proposed DNN implementation in mobile hardware.
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4.3 Compact, efficient, low power deep learning for lightweight speech and vision 
processing

As discussed in sections 4.1 and 4.2, hardware constraints pose a major challenge in 

deploying the most robust deep models in mobile hardware platforms. This has led to a 

recent research trend that aims to develop compressed but efficient versions of deep models 

for speech and vision processing. One seminal work in this area is the development of the 

software platform ‘DeepX’ by Lane et al. [186], ‘DeepX’ is based on two resource control 

algorithms. First, it decomposes large deep architectures into smaller blocks of sub-

architectures and then assigns each block to the most efficient local processing unit (CPUs, 

GPUs, LPUs). Furthermore, the proposed software platform is capable of dynamic 

decomposition and resource allocation using a resource prediction model [186], Deploying 

on two popular mobile platforms, Qualcomm Snapdragon 800 and Nvidia Tegra K1, the 

authors report impressive improvements in resource use by DeepX for four state-of-the-art 

deep architectures: AlexNet [33], SpeakerlD [187], SVHN [188], and AudioScene in object, 

face, character, and speaker recognition tasks, respectively [186].

Sindhwani et al. [189], on the other hand, propose a memory efficient method using a 

mathematical framework to represent large dense matrices such as neural network 

parameters (weight matrices). Structured matrices, such as Toeplitz, Vandermonde, Couchy 

[190], utilize various parameter sharing mechanisms to represent a m × n matrix with much 

less than mn parameters [189], Authors also show that the use of structured matrices results 

in substantial improvements in computations, especially in the matrix multiplication 

operations encountered in deep architectures. The computation time complexity O(mn) is 

reduced to O(m log(n)) [189], This makes both forward computations and backpropagation 

faster and efficient while training neural networks. The authors test the proposed framework 

on a deep KWS architecture for mobile speech recognition and compare with other similar 

small footprint KWS models [168], The results show that Toeplitz based compression gives 

the best model computation time, which is 80 times faster than the baseline at the cost of 

only 0.4% performance degradation. They also conclude that the compressed model has 

achieved a 3.6 times reduction in memory footprint compared to the small footprint model 

proposed in [168].

Han et al. [181] propose a neural network-based three-stage compression scheme known as 

‘deep compression’ for reduction of memory footprint. The first stage called pruning [191] 

removes weak connections in a DNN to obtain a sparse network. The second stage involves 

trained quantization and weight sharing applied to the pruned network. The third stage uses 

Huffman coding for lossless data compression in the network. Authors report reduced 

energy consumption and a significant computing speedup in a comparison between various 

workstations and mobile hardware platforms. An architecture called ShuffleNet [192] uses 

two architectural features. In this architecture, group convolution, introduced in [33], is used 

with channel shuffle architecture in a novel way to improve the efficiency of convolutional 

networks. The group convolution improves the speed in processing images and offers 

comparable performance with reduced model complexity. Table VI summarizes results from 

different studies for compressed network energy consumption executing AlexNet on a Tegra 

GPU. Figure 6 on the next page summarizes publication statistics over the past five years on 
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small footprint analysis of deep learning methods for computer vision, speech processing, 

and natural language processing in resource restricted hardware platforms.

4.4 High-end Hardware for Neural Network Applications on Mobile Platforms

As architectures become more efficient, hardware on mobile devices is becoming more 

powerful and tailored to neural network applications. Qualcomm Snapdragon 865 is a high-

end smartphone and tablet mobile processor. The processor incorporates one prime core and 

three additional fast ARM performance cores. Snapdragon 865 has integrated GPU that 

allows the processor to provide superior performance in GPU intensive graphics tasks [193]. 

Qualcomm considers Snapdragon 865 the next generation intelligent mobile platform. The 

company provides an on-device AI engine that improves the performance of the camera, 

battery life, audio, security, and gaming. Furthermore, Qualcomm provides AI software 

packages such as Neural Processing (NP) SDK, the Hexagon NN, common NN framework 

support, and Android NN API for deploying AI models in the device [194]. Apple’s new 

A13 bionic chip includes a 64-bit ARM-based system which outperforms Qualcomm’s latest 

Snapdragon 865 mobile processor and other high-end mobile processors such as Exynos 

990, MediTek Dimensity 1000 [195, 196]. Snapdragon 865 includes Adreno 640 GPU with 

a performance similar to that of the mobile GPU in the A13 chip. Note that Apple has 

developed the Metal 2 software to optimize graphics and gaming on A13. More importantly, 

the software supports general purpose GPU (GPGPU) computing across this platform. 

Apple’s Core ML framework [197] now supports custom machine learning models to run on 

iOS devices. This framework can accelerate these models up to nine times faster using just a 

tenth of the energy compared to running on regular GPU and CPU platforms [198]. 

Consequently, Apple’s A13 bionic chip is the leading mobile chip in its category for the 

current market.

4.5 Edge Computing for Mobile Platforms and IOT

The advancement of hardware platforms on mobile device now allows vendors to 

decentralize data processing off the cloud. Edge computing refers to the migration of 

computing closer to the edge of the network that includes the acquisition and consumption 

points [199, 200]. The surge in edge computing is fueling the recent growth in internet of 

things (loT) devices and applications that require real-time computing and faster 

communication channels. Consequently, loT offers several benefits through the 

implemention of neural network architectures for speech and vision using edge computing. 

These benefits include improved run-time due to reduction of communication overhead 

[201, 202], energy efficiency by proper management of computational resources [203, 204], 

and improved memory efficiency with cloud offloading [205]. The performance of edge 

computing largely relies on the improved data processing capability of edge devices. This 

has created a demand for high performance computing hardware that is capable of handling 

large scale deep learning models on edge devices. One such popular device is the Intel® 

neural compute stick [206] which is a USB plug-and-play development kit. This device 

contains an Intel Movidius™ Myriad™ X Vision Processing Unit (VPU) and supports most 

of the popular deep learning frameworks. This low power USB device facilitates the 

development and deployment of CNN for vision applications with real-time performance. 

NVIDIA Jetson [207] is another popular series of edge computing devices designed for deep 
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learning. NVIDIA Jetson offers a product line of low power stand-alone processing devices 

that are primed for deep learning applications supported by GPU-like parallelized 

processing.

The next section brings together the neural network architectures from Section 2, the 

computer vision and speech models from Section 3, and the mobile algorithms and hardware 

from Section 4 to discuss emerging applications of these systems.

5. EMERGING APPLICATIONS OF INTELLIGENT VISION AND SPEECH SYSTEMS

We identify three fields of research that are shifting paradigm through recent advances in 

vision and speech-related frameworks. First, the quantification of human behavior and 

expressions from visual image and speech offers great potentials in cybernetics, security and 

surveillance, forensics, quantitative behavioral science, and psychology research [208]. 

Second, the field of transportation research is rapidly incorporating intelligent vision 

systems for smart traffic management and self-driving technology. Third, neural networks in 

medical image analysis show tremendous promise for ‘precision medicine’. This represents 

a vast opportunity to automate clinical measurements, optimize patient outcome predictions, 

and assist physicians in clinical practice.

5.1 Intelligence in behavioral science

The field of behavioral science widely uses human annotations and qualitative screening 

protocols to study complex patterns in human behavior. These traditional methods are prone 

to error due to high variability in human rating and qualitative nature in behavioral 

information processing. Many computer vision studies on human behavior, e.g., facial 

expression analyses [209], can move across disciplines to revolutionize human behavioral 

studies with automation and precision.

In behavioral studies, facial expressions and speech are two of the most common means to 

detect emotional states of humans. Yang et al. use quantitative analysis of vocal idiosyncrasy 

for screening depression severity [23]. Children with neurodevelopmental disorders such as 

autism are known to have distinctive characteristics in speech and voice [24]. Hence, 

computational methods for detecting differential speech features and discriminative models 

[25] can help in the development of future applications to recognize emotion from the voice 

of children with autism. Recently, deep learning frameworks have been employed to 

recognize emotion from speech data promising more efficient and sophisticated applications 

in the future [26, 27, 210].

On the other hand, visual images from videos are used to recognize human behavioral 

contents [211] such as facial expressions, head motion, human pose, and gestures to support 

a variety of applications for security, surveillance, and forensics [212–214] and human-

computer interactions [19]. The vision-based recognition of facial action units defined by 

facial action coding system (FACS) [215] has enabled more fine-grain analysis of emotional 

and physiological patterns beyond prototypical facial expressions such as happiness, fear, or 

anger. Several commercial applications for real-time and robust facial expression and action 

unit level analysis have recently appeared in the market with companies such as Noldus, 

Alam et al. Page 22

Neurocomputing. Author manuscript; available in PMC 2021 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Affectiva, and Emotient. With millions of facial images available for training, state-of-the-

art deep learning models have enabled unprecedented accuracies in these commercially 

available facial expression recognition applications. These applications are designed to serve 

a wide range of research studies including classroom engagement analysis [216], consumer 

preference study in marketing [217], behavioral economics [218], atypical facial expression 

analysis in neurological disorders [219, 220], and other work in the fields of behavioral 

science and psychology. The sophistication in face and facial expression analyses may 

unravel useful markers in diagnosing or differentiating individuals with behavioral or 

affective dysfunction such as those with autism spectrum disorder [221]. Intelligent systems 

for human sentiment and expression recognition will play lead roles in developing 

interactive human-computer systems and smart virtual assistants in the near future.

5.2 Intelligence in transportation

Intelligent transportation systems (ITS) cover a broad range of research interests including 

monitoring driver’s inattention [1], providing video-based lane tracking and smart assistance 

to driving [2], monitoring traffic for surveillance and traffic flow management [3], and more 

recently developing self-driving cars [4]. Bojarski et al. have recently used deep learning 

frameworks such as CNN to obtain steering commands from raw images captured by a 

front-facing camera [5]. The system is designed to operate on highways, without lane 

markings, and in places with minimal visual guidance. Lane change detection [2, 6] and 

pedestrian detection [7] have been studied in computer vision and are recently being added 

as safety features in personal vehicles. Similarly, computer vision assisted prediction of 

traffic characteristics, automatic parking, and congestion detection may significantly ease 

our efforts in traffic management and safety. Sophisticated deep learning methods, such as 

LSTM, are being used to predict short term traffic [6], and other deep learning frameworks 

are being used for predicting traffic speed and flow [8], and for predicting driving behavior 

[9]. In [10], the authors suggest several aspects of transportation that will be impacted by 

intelligent systems. Considering multimodal data collection from roadside sensors, RBM 

will be useful as this model is proven to handle multimodal data processing. Considering 

onboard vehicle systems, CNN can be combined with LSTM to take action in real-time to 

avoid accidents and improve vehicle efficiency. In line with these research efforts, several 

car manufacturing companies, such as Audi [222] and Tesla [223], are in active competition 

for developing next-generation self-driving vehicles with the aid of recent developments in 

neural network based deep learning techniques. Ride hailing and sharing is another growing 

domain in transportation. In ride hailing, there is a significant value in predicting pickup 

demand at different locations to optimize the transportation system and service. CNN has 

been recently used for location-specific demand of service prediction [224]. Travel time 

prediction has been performed using CNN and RNN to utilize road network topology and 

historical trip data [225]. Popular ride sharing services may benefit from recent advances in 

reinforcement learning. Alabbasi et al. have used deep Q-network (a model based on 

reinforcement learning) along with CNN to develop an optimal vehicle dispatch policy that 

ultimately improves traffic congestion and emission [226].
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5.3 Intelligence in medicine

Despite tremendous development in medical imaging techniques, the field of medicine 

heavily depends on manual annotations and visual assessment of a patient’s anatomy and 

physiology from medical images. Clinically trained human eyes sometimes miss important 

and subtle markers in medical images resulting in misdiagnosis. Misdiagnosis or even failure 

to diagnose early can lead to fatal consequences as misdiagnosis is known as the third most 

common cause of death in the United States [227]. The sophisticated deep learning models 

with the support of massive records of multi-institutional imaging databases may ultimately 

drive the future of precision medicine. Deep learning methods have been successful in 

medical image segmentation [11], shape and functional measurements of organs [14], 

disease diagnosis [12], biomarker detection [13], patients’ survival prediction from images 

[228], and many more. Authors in [229] have used a hybrid of LSTM and CNN model to 

predict patient survival from echocardiographic videos of the heart motion, which has shown 

a prediction accuracy superior to that of trained cardiologists. Advances in deep neural 

networks have shown tremendous potential in almost all areas of medical imaging such as 

ophthalmology [230], dental radiography [231], skin cancer imaging [232], brain imaging 

[233], cardiac imaging [234, 235], urology [236], lung imaging [237], stroke imaging [238], 

and so on. In addition to academic research, many commercial companies, such as Philips, 

Siemens, and IBM are investing on large initiatives towards incorporating deep learning 

methods in intelligent medical image analysis. However, a key challenge remaining is the 

requirement of large ground truth medical imaging data annotated by clinical experts. With 

commercial initiatives, clinical and multi-institutional collaborations, deep learning-based 

applications may soon be available in clinical practice.

6 LIMITATIONS OF DEEP COMPUTATIONAL MODELS

Despite unprecedented successes of neural networks in recent years, we identify a few 

specific areas that may greatly impact the future progress of deep learning in intelligent 

systems. The first area is to develop a robust learning algorithm for deep models that 

requires a minimal amount of training samples.

6.1 Effect of sample size

The current deep learning models require a huge amount of training examples to achieve 

state-of-the-art performance. However, many application domains lack such a massive 

volume of training examples such as in certain medical imaging and behavioral analysis 

studies. Moreover, prospective acquisition of data may also be expensive in terms of both 

human and computing resources. The superior performance of deep models comes at the 

cost of network complexity, which is often hard to optimize and prone to overfitting without 

a large number of samples to train hundreds and thousands of parameters. Many research 

studies tend to present over-optimistic performance with deep models without proper 

validation or proof of generalization across datasets. Some of the solutions such as data 

augmentation [239, 240], transfer learning [241], and introduction of Bayesian concepts 

[242, 243] have laid the groundwork for using small data, which we expect to progress over 

time. The second potential future direction in deep learning research may involve improving 

the architectures to efficiently handle high dimensional imaging data. In medical imaging, 
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cardiovascular imaging involves time-sampled 3D images of the heart as 4D data. The 

analysis of videos of 3D models and 3D point clouds is computationally intensive. Since the 

current deep CNN models are primarily designed to handle 2D images, the models are often 

extended to handle 3D volumes. This is accomplished by either converting the information 

to 2D sequences or utilizing dimensionality reduction techniques in the preprocessing stage. 

However, important information in volume data may be lost due to this conversion. 

Therefore, a carefully designed deep learning architecture that is capable of efficiently 

handling raw 3D data similar to their 2D counterparts is highly desirable.

6.2 Computational burden on mobile platforms

The computational expense is one of the major obstacles to using deep model in personal 

devices and making the technology as ubiquitous as the internet of things. Current state-of-

the-art deep learning models utilize an enormous amount of hardware resources, which 

prohibit deploying them in most practical environments. As discussed in sections 4.1–4.3, 

we believe that improvements in efficiency and memory footprints may enable the seamless 

utilization of mobile and wearable devices. An emerging deep learning research area 

involves achieving real-time learning in memory-constrained applications. Such real-time 

operation will require careful selection of learning models, model parameterization, and 

sophisticated hardware-software co-design.

6.3 Interpretability of models

The complexity in network architecture has been a critical factor in providing useful 

interpretations of model outcomes. In most applications, deep models are used as ‘black-

box’ and optimized using heuristic methods for different tasks. For example, dropout has 

been introduced to combat model overfitting [242, 244] to optimize the network 

performance. Dropout essentially deactivates a number of neurons at random without 

learning which neurons and weights are truly important. More importantly, the importance 

of input features and the inner working principles are not well understood in deep models. 

Though there has been some progress to understand the theoretical underpinning of these 

networks, more work needs to be done.

6.4 Pitfalls of over-optimism

In a few applications such as in the game of GO, deep models have outperformed humans 

[245] and that has led to the notion that intelligent systems may replace human experts in the 

future. However, the vision-based intelligent algorithms may not be solely relied on for 

critical decision-making such as in clinical diagnosis without the supervision of a 

radiologist. While deep neural networks can perform many routine, repetitive, and predictive 

tasks better than human senses (such as vision) can offer, intelligent machines are unable to 

master many real-life inherently human-level traits such as empathy. Therefore, neural 

networks are developing intelligent systems that may be better viewed as complementary 

tools to optimize human performance and decision-making.
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7 SUMMARY OF SURVEY

This paper systematically reviews the most recent progress and innovations of sophisticated 

intelligent algorithms in vision and speech, their applications, and their limitations in 

implementation on most popular mobile and embedded devices. The rapid evolution and 

success of deep learning algorithms is pioneering many new applications and commercial 

initiatives pertaining to intelligent vision and speech systems, which in turn is improving our 

daily lives. Despite tremendous success and performance gains of deep learning algorithms, 

there remain substantial challenges in implementing standalone vision and speech 

applications on mobile and resource constrained devices. Future research efforts will reach 

out to billions of mobile phone users with the most sophisticated deep learning-based 

intelligent systems. From sentiment and emotion recognition to developing self-driving 

intelligent transportation systems, there is a long list of vision and speech applications that 

will gradually automate and assist human’s visual and auditory perception to a greater scale 

and precision. With an overview of emerging applications across many disciplines such as 

behavioral science, psychology, transportation, and medicine, this paper serves as an 

excellent foundation for researchers, practitioners, and application developers and users.

The key observations for this survey paper are summarized below. First, we provide an 

overview of different state-of-the-art DNN algorithms and architectures in vision and speech 

applications. Several variants of CNN models [33, 92–98] are proposed to address critical 

challenges related to vision-related recognition. Currently, CNN is one of the successful and 

dynamic areas of research and is dominating state-of-the-art vision systems both in the 

industry and academia. In addition, we briefly survey several other pioneering DNN 

architectures, such as DBNs, DBMs, GANs, VAEs, and SAEs in vision and speech 

recognition applications. RNN models are leading the current speech recognition systems, 

especially in the emerging applications of NLP. Several revolutionary variants of RNN such 

as the non-linear structure of LSTM [130, 246] and the hybrid CNN-LSTM architecture 

[247] have made substantial improvements in the field of intelligent speech recognition and 

automatic image captioning.

Second, we address several challenges for state-of-the-art neural networks in adapting to 

compact and mobile platforms. Despite tremendous success in performance, the state-of-the-

art intelligent algorithms entail heavy computation, memory usage, and power consumption. 

Studies on embedded intelligent systems, such as speech recognition and keyword spotting, 

are focused on adapting the most robust deep language models to resource restricted 

hardware available in mobile devices. Several studies [167–170, 173] have customized 

DNN, CNN, and recurrent LSTM architectures with compression and quantization schemes 

to achieve considerable reductions in memory and computational requirements. Similarly, 

recent studies on embedded computer vision models suggest lightweight, efficient deep 

architectures [175, 183, 185] that are capable of real-time performance on existing mobile 

CPU and GPU hardware. We further identify several studies on developing computational 

algorithms and software systems [181, 189, 248] that augment the efficiency of 

contemporary deep models regardless of the recognition task. In addition, we identify the 

need for further research in developing robust learning algorithms for effective training of 

deep models using a minimal amount of training samples. Also, more computationally 
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efficient architectures are expected to emerge to fully incorporate complex 3D/4D imaging 

data in learning. Moreover, fundamental research in hardware-software co-design is needed 

to address real-time learning operation for today’s memory-constrained cyber and physical 

systems.

Third, we identify three areas that are undergoing a paradigm shift largely driven by vision 

and speech-based intelligent systems. The vision or speech-based recognition of human 

emotion and behavior is revolutionizing a range of disciplines from behavioral science and 

psychology to consumer research and human-computer interactions. Intelligent applications 

for driver’s assistant and self-driving cars can greatly benefit from vision-based 

computational systems for future traffic management and driverless autonomous services. 

Deep neural networks in vision-based intelligent systems are rapidly transforming clinical 

research with the promise of futuristic precision diagnostic tools. Finally, we highlight three 

limitations of deep models: pitfalls of using small datasets, hardware constraints in mobile 

devices, and the danger of over-optimism to replace human experts by intelligent systems.

We hope this comprehensive survey in deep neural networks for vision and speech 

processing will serve as a key technical resource for future innovations and evolutions in 

autonomous systems.
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Fig. 1. 
Generic architecture of Convolutional Neural Network.
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Fig. 2. 
A typical architecture showing layer-wise pre-training and fine-tuning procedures of (a) 

Deep belief network (DBN); (b) Stacked auto-encoder (SAE).
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Figure 3. 
Search for articles showing increasing prominence of deep learning techniques
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Figure 4. 
Trends of deep learning applications in the literature over the last decade
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Fig. 5. 
Generalized framework of a keyword spotting (KWS) system that utilizes deep learning.
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Fig. 6. 
Publications on small footprint implementations of deep learning in computer and vision and 

speech processing
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Table I

SUMMARY OF THE SIGNIFICANT STATE-OF-THE-ART CNN IMAGE CLASSIFICATION RESULTS

Architecture Dataset Error rate

AlexNet [33] - University of Toronto 2012 Imagenet (natural images) 17.0%*

GoogLeNet [93] - Google 2014 Imagenet (natural images) 6.67%*

ResNet [97] - Microsoft 2015 Imagenet (natural images) 4.70%*

Squeeze & Excitation [100]– Oxford 2018 Imagenet (natural images) 2.25%*

Multiscale CNN [92] - Farabet et al. 2013 SIFT/Barcelona (scene labeling) 32.20%**

(*ACTUAL CLASS ERROR WITHIN TOP 5 PREDICTIONS, **PIXEL CLASS ERROR)
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Table II

COMPARISON OF CONVOLUTIONAL NEURAL NETWORK MODELS

Architecture Application Contribution Limitations

He et al. [98] AlexNet 
Variant

Image 
Classification

First human-level image classification performance 
(including fine grained tasks e.g. 100 dog breeds 
differentiation). Used ReLu generalization and 
training

Misclassification of image cases that 
require context

Farabet et al. [92] 
Multiscale CNN

scene Labeling Weight sharing at multiple scales to capture 
context without increasing number of trainable 
parameters. Global application of graphical model 
to get consistent labels over the image

Does not apply unsupervised 
pretraining

Wang et al. [104] 
Temporal Pyramid 

Pooling CNN

Action 
Recognition

Temporal pooling for action classification in videos 
of arbitrary length reduces the chance of 
overlooking important frames in decision

Challenging similar actions often 
misclassified

Tomson et al. [21] Joint 
CNN / Graphical Model

Human Pose 
Estimation

Combining MRF with CNN constrains plausible 
joint configurations to impact CNN body part 
detection

This model works well for limited set 
of human poses, general space of 
human poses remains a challenge

Ge et al. [112] 3D CNN Human Hand Pose 
Estimation

Volumetric processing of human depth maps of 
human hands using 3D CNN. 3D reasoning 
improves occluded finger estimation

Inherently constrained model. 
Requires clean and presegmented 
hand regions for pose estimation. The 
acceptable range of hand joint motion 
is limited
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Table III

SUMMARY OF THE SIGNIFICANT STATE-OF-THE-ART DNN SPEECH RECOGNITION MODELS

Architecture Dataset Error rate

RNN [126] - FIT, Czech Republic, Johns Hopkins University, 2011 Penn Corpus (natural language modeling) 123*

Autoencoder/DBN [127] - Collaboration, 2012 English Broadcast News Speech Corpora (spoken word 
recognition)

15.5%**

LSTM [129] - Google, 2014 Google Voice Search Task (spoken word recognition) 10.7%**

Deep LSTM [130] - National Chiao Tung University, 2016 CHiME 3 Challenge (spoken word recognition) 8.1%**

CNN-BLSTM [131] - Microsoft, 2017 Switchboard (spoken word recognition) 5.1%

Attention (LAS) & LSTM [132] - Google, 2018 In-house google dictation (spoken word recognition) 4.1%

Attention & LSTM with pretraining [133] - Collaboration, 2018 LibriSpeech (spoken word recognition) 3.54%

(*PERPEPLEXITY-SIZE OF MODEL NEEDED FOR OPTIMAL NEXT WORD PREDICTION WITH 10K CLASSES, **WORD ERROR RATE)
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Table IV

COMPARISON OF RECURRENT NEURAL NETWORK MODELS IN SPEECH PROCESSING

Architecture Application Contribution Limitations

Amodei et al. [159] Gated 
Recurrent Unit Network

English or Chinese Speech 
Recognition

Optimized speech recognition using 
Gated Recurrent Units to achieve near 
human-level results

Deployment requires GPU server

Weston et al. [134] Memory 
Network

Answering questions 
about simple text stories

Integration of long term memory 
(readable and writable) component 
within neural network architecture

Questions and input stories are 
still rather simple

Wu et al. [136] Deep LSTM Language Translation (e.g. 
English-to-French)

Multi-layer LSTM with attention 
mechanism

Challenging translation cases and 
multisentence input yet to be 
tested

Karpathy et al. [137] 
CNN/RNN Fusion

Labeling Images and 
Image Regions

Hybrid CNN-RNN model to generate 
natural language descriptions of images

Fixed image size / requires 
training CNN and RNN models 
separately
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Table V

KWS ARCHITECTURES WITH REDUCED COMPUTATIONAL AND MEMORY FOOTPRINT

Compression technique Memory reduction Error rate (varied datasets)

DNN improvement over HMM, 2014 [167] 2.1M parameters 45.5% improvement*

CNN improvement over DNN, 2015 [168] 65.5K parameters 41.1% improvement*

Fixed length vector LSTM, 2015 [169] 152 K parameters 86% improvement*

Split vector quantization, 2015 [173] 59.1 MB to 3.2MB 15.8%**

Low rank matrices / ensemble training, 2016 [174] 400 nodes per layer to 100 nodes per layer −0.174***

(*RELATIVE IMPROVEMENT OVER COMPARISON NETWORK FROM ROC CURVE, **WER (WORD ERROR RATE), ***RELATIVE FER 
(FRAME ERROR RATE) OVER COMPARISON NETWORK)
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Table VI

COMPRESSED ARCHITECTURE ENERGY AND POWER RUNNING ALEXNET ON A TEGRA GPU

Compression technique Execution time Energy consumption Implied power consumption

Benchmark study, 2015 [185] 49.1msec 232.2mJ 4.7 W (all layers)

Deep X software accelerator, 2016 [186] 866.7msec (average of 3 trials) 234.1mJ 2.7 W (all layers)

DNN various techniques, 2016 [181] 4003.8msec 5.0mJ 0.0012W (one layer)
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