Table 2. Values of parameters.
Method | Parameter |
---|---|
SVM | kernel: ‘RBF’; regularization: 1.0; kernel function degree: 3 |
SGD | loss: ‘hinge’; penalty: l2; regularization (α): 0.0001 |
NC | distance metric: ‘euclidean’ |
DT | split criterion: ‘gini’; split strategy: ‘best’; maximum tree depth (max_depth): ‘None’ |
NB | largest feature variance: 10−9 |
Extra trees | number of trees: 100; split criterion: ‘gini’; maximum tree depth (max_depth): ‘None’ |
Regression | fit_intercept: ‘True’; normalize feature (normalize): ‘False’ |
KBinsDiscretizer | ’Number of bins’: 5 |