Skip to main content
. 2020 Oct 23;15(10):e0241165. doi: 10.1371/journal.pone.0241165

Table 2. Values of parameters.

Method Parameter
SVM kernel: ‘RBF’; regularization: 1.0; kernel function degree: 3
SGD loss: ‘hinge’; penalty: l2; regularization (α): 0.0001
NC distance metric: ‘euclidean’
DT split criterion: ‘gini’; split strategy: ‘best’; maximum tree depth (max_depth): ‘None’
NB largest feature variance: 10−9
Extra trees number of trees: 100; split criterion: ‘gini’; maximum tree depth (max_depth): ‘None’
Regression fit_intercept: ‘True’; normalize feature (normalize): ‘False’
KBinsDiscretizer ’Number of bins’: 5