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Abstract

Pin-on-disc (PoD) experiments are widely used to quantify and rank wear of different material 

couples for prosthetic hip implant bearings. However, polyethylene wear results obtained from 

different PoD experiments are sometimes difficult to compare, which potentially leaves 

information inaccessible. We use machine learning methods to implement several data-driven 

models, and subsequently validate them by quantifying the prediction error with respect to 

published experimental data. A data-driven model can supplement results from PoD wear 

experiments, and enables predicting polyethylene wear of new PoD experiments based on its 

operating parameters. It also reveals the relative contribution of individual PoD operating 

parameters to the resulting polyethylene wear, thus informing design of experiments, and 

potentially reducing the need for time consuming PoD wear measurements.
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1. Introduction

A prosthetic hip implant typically comprises a femoral component that articulates with an 

acetabular component to replace the natural hip function and alleviate pain and disability 

from degenerative joint diseases such as (osteo)arthritis [1]. Metal-on-polyethylene (MoP) is 

the most commonly used bearing material couple in state-of-the-art prosthetic hip implants 

used in the United States [2], typically pairing a CoCrMo femoral head with a polyethylene 

acetabular liner. Many studies document the effect of polyethylene wear on the longevity of 

MoP prosthetic hip implants (see e.g. [3-5]). Polyethylene wear debris may cause osteolysis 

(“weakening of the bone”) [4], which could potentially lead to implant loosening and 

mechanical instability [5]. Research to reduce polyethylene wear and increase longevity of 

MoP prosthetic hip implants involves changing the implant design and improving the 
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mechanical properties of the polyethylene liner. For instance, highly cross-linked 

polyethylene (HXPE) and vitamin-E infused/blended cross-linked polyethylene (VEXPE) 

show significantly reduced wear compared to conventional ultra-high molecular weight 

polyethylene (UHMWPE) both in-vitro [6] and in-vivo [7]. On the other hand, using new 

materials for the femoral component, such as titanium [8], zirconia [9-11], silicon nitride 

[12], and tungsten [13], and manufacturing ultra-smooth ceramic bearing surfaces [14] or 

microtexturing the metal bearing surface [15-19] also reduces polyethylene wear.

Pin-on-disc (PoD) wear experiments are widely used as a screening method to quantify, 

compare, and rank wear of different implant bearing material couples as a function of 

operating parameters and environmental conditions. A PoD wear measurement in the 

context of MoP prosthetic hip implants typically consists of a polyethylene pin that is loaded 

against a metallic disc, while relative motion between the pin and the disc causes 

polyethylene wear. Many researchers have performed PoD wear experiments attempting to 

obtain clinically relevant polyethylene wear, using a variety of configurations. Figure 1 

shows eight different PoD wear measurement configurations documented in the literature 

and used in the context of prosthetic hip implants. ux and uy are the velocity magnitude in 

the x- and y-directions, respectively, and ωz is the angular velocity about the z-direction.

Figure 1 (a) shows a configuration in which the pin is stationary and loaded onto a disc that 

performs a reciprocating motion along the x-direction with velocity ux [20-30]. Conversely, 

Fig. 1 (b) depicts a pin that performs a reciprocating motion along the x-direction with 

velocity ux while loaded onto a stationary disc [31]. Figure 1 (c) displays a stationary pin 

loaded onto a disc that rotates around its center axis with angular velocity ωz [32-35], 

whereas Fig. 1 (d) depicts a pin loaded onto a stationary disc while it rotates around its 

center axis with angular velocity ωz [16,36]. The PoD wear measurement configurations of 

Figs. 1 (a)-(d) all create unidirectional relative motion between the pin and the disc. While 

these configurations allow ranking wear of different bearing material couples, the resulting 

polyethylene wear rate is typically one to two orders of magnitude lower than the 

polyethylene wear measured in retrieved prosthetic hip implants of the same material, 

because long polyethylene molecules align in the sliding direction [37-39]. In contrast, 

multidirectional motion creates cross-shear, i.e., the relative motion between pin and disc 

changes direction with respect to the surface of the pin, thereby avoiding polymer molecule 

alignment and typically resulting in polyethylene wear that is similar in magnitude to what is 

observed in-vivo.

Figures 1 (e)-(h) show PoD wear measurement configurations that allow creating 

multidirectional relative motion between the pin and the disc. Figure 1 (e) depicts a 

stationary pin loaded onto a disc that reciprocates with velocities ux and uy in the x- and y-

directions, respectively [6,37,40-62]. Furthermore, Fig. 1 (f) shows a pin reciprocating in the 

y-direction with velocity uy and loaded onto a disc reciprocating in the x-direction with 

velocity ux [63]. Figure 1 (g) displays a pin that rotates around its center axis with angular 

velocity ωz and is loaded onto a disc that reciprocates in the x-direction with velocity ux 

[64-67]. Finally, Fig. 1 (h) shows a pin that is loaded onto the disc and rotates around an axis 

parallel to the disc axis with eccentricity e and with angular velocity ωz,2, while the disc 

rotates around its center axis with angular velocity ωz,1 [15,68-75].
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PoD wear experiments typically require defining several operating parameters. For instance, 

different multidirectional wear paths have been documented in the literature, such as 

rectangular [15,40,53,57-60,68,71], elliptical [42,44,48,49,61], circular [6,43,45,47,51,52], 

square [56,69,70,72-75], and random [54,55]. The circular and elliptical wear paths create 

cross-shear on the surface of the pin throughout the entire wear path, whereas the 

rectangular and square wear paths create cross-shear when the pin changes direction along 

the wear path. Furthermore, several researchers report a strong correlation between 

polyethylene wear and both contact area and contact pressure between the pin and the disc 

(or the normal load applied to the pin) [51,55,69]. Polyethylene wear is also dependent on 

the surface roughness of the disc surface [26,43,76,77] and on the lubricant used during the 

PoD wear experiment. Although bovine serum is typically used as lubricant for PoD wear 

experiments in the context of prosthetic hip implants [78], the optimal composition of 

bovine serum remains subject to debate. Studies have reported that polyethylene wear is a 

function of bovine serum protein concentration [52,79], protein type [80], lipid 

concentration [45], dilution method [75], and anti-bacterial and fungal additives [73,81]. 

Another important factor reported in the literature is the radiation dose of HXPE [82]; 

increasing the radiation dose increases polyethylene cross-linking, which in turn increases 

its wear resistance. However, some reports also document decreasing fracture resistance with 

increasing radiation dose [83]. Radiation may also leave residual free radicals in the 

polyethylene that can cause oxidation over time [84]. Re-melting [85] or adding free radical 

scavenger agents such as vitamin-E to the HXPE [41,86,87] can reduce the risk of oxidation.

A large number of polyethylene wear datasets obtained using PoD wear experiments, 

conducted in the context of prosthetic hip implants, exists in the literature. These 

experiments are performed by different research groups, using different devices, 

configurations, and operating conditions. Thus, results of different PoD wear experiments 

are sometimes difficult to compare, which potentially leaves valuable information 

inaccessible. Also, several limitations exist to conducting PoD wear experiments. The 

viscoelastic nature of polyethylene necessitates performing PoD wear experiments at a strain 

rate that is identical to what occurs in-vivo [88], resulting in a kinematic cycle of 1-2 Hz to 

mimic the human gait cycle frequency [89]. Many million kinematic cycles are needed to 

obtain measurable wear of the polyethylene bearing surface, which is time consuming. In 

addition, manufacturing pin and disc specimens to specific standards [90-92], and 

performing gravimetric polyethylene wear measurements also requires trained personnel 

[78,93].

However, in recent years, materials researchers (among others) have used machine learning 

methods in combination with existing datasets, to facilitate modeling complex relationships 

between material constituents, structure, and the corresponding mechanical properties [94]. 

Such data-driven models enable comparing existing datasets and predicting new results 

based on the existing knowledge embedded in the model, which are otherwise difficult or 

time consuming to obtain using traditional experimental methods [95].

Hence, the objective of this work is to aggregate published PoD polyethylene wear datasets 

specifically performed in the context of prosthetic hip implants, and use machine learning 

methods to implement a data-driven model that allows predicting the polyethylene wear rate 
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of PoD wear experiments based on its operating parameters. Such a model potentially 

supplements PoD wear experiments and may reveal hidden relationships between 

polyethylene wear and PoD operating parameters. Furthermore, the model assists 

researchers with design of experiments (DoE) by identifying and ranking the operating 

parameters that most significantly affect polyethylene wear in PoD wear experiments. This 

allows prioritizing operating parameters considered in future PoD wear experiments, and 

ultimately reducing the number of experiments one must conduct. Finally, a data-driven 

model based on the published literature also facilitates validating new experiments and 

detecting outlier results.

2. Methods

2.1 Data acquisition

We perform a literature survey to collect published polyethylene wear data from PoD wear 

experiments, conducted by others in the context of prosthetic hip implants. The entire 

dataset is available in the Supplementary Material. We search the Google Scholar and 

PubMed databases, using keywords including “UHMWPE”, “wear”, “hip” and “pin-on-disc/

disk”. We restrict our search to these keywords because polyethylene wear is dependent on 

the operating conditions of the PoD wear experiments, which may differ significantly 

depending on the application for which they are intended; e.g. operating conditions for knee 

and hip PoD wear experiments could be significantly different [96]. We only consider 

studies that imposed multidirectional motion between a polyethylene pin and a CoCr disc, 

with flat-on-flat geometry to control for the effect of specimen geometry, and with bovine 

serum as lubricant. Furthermore, we only retain studies with clearly defined and reported 

operating parameters (which we refer to as input attributes) and polyethylene wear rate 

results (which we refer to as the target attribute), and we eliminate studies where this 

information is either ambiguous, such as, a random wear path, or is not fully reported (more 

than two attributes with missing values). All data in this work is based on gravimetric 

polyethylene wear measurements only, which avoids inaccuracies due to plastic 

deformation, creep, and fluid absorption (when a soak control specimen is used) [97]. We 

quantify polyethylene wear using the “wear rate [mg/MC]”, which is defined as the material 

loss per million cycles (MC), and prescribed in the ASTM F732 standard. Some studies 

report the wear factor instead, which is the wear volume per unit of normal load and sliding 

distance [39]. Since the wear factor implicitly assumes that wear is independent of contact 

area [98], which may contradict in-vitro and in-vivo polyethylene wear observations in 

prosthetic hip implants [39], we convert the wear factor to wear rate by multiplying it by the 

sliding distance, normal load, and polyethylene density. We use the polyethylene density 

reported in each study; in cases of missing polyethylene density, we use the UHMWPE 

density reported in the literature (0.93 mg/mm3 [43]). For dynamic normal loading used in 

some PoD wear experiments, we report the maximum value. We average a parameter’s value 

if it is reported as a range in any of the studies we consider.

Because their effect on the polyethylene wear rate is well-documented in the literature, we 

include the following PoD wear experiment operating parameters (input attributes) in the 

data-driven model that describes and predicts the polyethylene wear rate (target attribute) in 
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PoD wear experiments: normal load [N], contact area [mm2], frequency [Hz], sliding 

distance per cycle [mm/C], wear path aspect ratio, lubricant temperature [°C], lubricant 

protein concentration [mg/ml], disc average surface roughness (Ra) [μm], polyethylene 

radiation dose [kGy], and test duration [MC].

2.2 Descriptive statistics

We quantify the linear (Pearson’s) correlation coefficient between each input attribute and 

the target attribute, normalized by the maximum correlation coefficient computed between 

any of the input attributes and the target attribute, to determine the relative contribution of 

each input attribute to the target attribute. We also determine the minimum, maximum, 

average, standard deviation, and stability (S) of each input attribute to characterize the 

dataset. The stability S is the ratio of the number of occurrences of the most frequent value 

of a dataset and the total number of values in that dataset, which indicates how constant an 

input attribute is. An input attribute with high S is almost constant and likely does not 

capture the entire range of that attribute’s possible values. Thus, the data-driven model may 

underestimate the effect of that input attribute on the target attribute.

2.3 Numerical experiment

We conduct two sets of numerical experiments. First, we apply machine learning methods to 

the entire polyethylene wear rate dataset and the corresponding PoD wear experiment 

operating parameters, to determine the method that represents the entire dataset with the 

highest prediction accuracy. Second, we divide the polyethylene wear rate dataset into 

subgroups based on the polyethylene radiation dose, because it is well-known that 

polyethylene radiation dose affects polyethylene wear and, thus, we expect these subgroups 

to have similar wear rates. The three subgroups are: (1) non-irradiated, 0 kGy radiation dose, 

(2) conventional with radiation dose between 20 and 55 kGy, and (3) HXPE with radiation 

dose in excess of 70 kGy. We then apply machine learning methods to each subgroup and 

compare the prediction accuracy of each method to the one obtained without subgroups.

2.4 Machine learning methods

We use three types of machine learning methods, which we briefly describe in this section, 

and we cite references that contain details of each method, as these are not the focus of this 

paper. First, we employ interpretable model-based methods, in which the relationship 

between input and target attributes is explicitly defined, including linear regression [99], 

CART [100], M5 [101], random forest [102] and gradient boosting [103]. These methods 

train a data-driven model on the polyethylene wear rate dataset to predict the polyethylene 

wear rate of PoD wear experiments based on the operating parameters (input attributes, see 

last paragraph of Section 2.1). We use linear regression based on the least-squares method to 

fit weighting factors to each operating parameter and quantify its contribution to the 

resulting polyethylene wear rate. This allows understanding whether the relationship 

between the operating parameters and the polyethylene wear rate can be captured by a single 

linear model. CART builds a decision tree model, where nodes represent decision points, 

and where each branch of the tree is a separate linear regression model, i.e., different parts of 

the data are modeled by distinct regression models. Thus, we use this method to investigate 

the effect of modeling different segments of the polyethylene wear rate dataset with various 
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linear regression models, optimizing the CART tree by tuning the depth of the tree and the 

number of leaves per node, and pruning. M5 is similar to CART but minimizes the sum 

rather than the mean of the error of all linear regression models that constitute the CART 

decision tree. We use the random forest method to investigate whether combining multiple 

CART trees reduces the prediction error of the data-driven model compared to using a single 

CART tree. The random forest method predicts the polyethylene wear rate by averaging the 

predicted polyethylene wear rate of multiple CART trees. In addition to the CART 

parameters, we also tune the number of trees in the random forest to minimize the prediction 

error. Gradient boosting also allows combining several CART trees into one data-driven 

model. While in the random forest method each tree is added to the forest independent of the 

other trees, gradient boosting adds each new tree specifically to improve the performance of 

weak trees.

Second, we use non-interpretable model-based methods including artificial neural network 

(ANN) [104] and support vector machine (SVM) [105]. These methods train a model on the 

dataset, without explicitly defining the relationship between input and target attributes, but 

creating a black-box model instead. ANN relates the operating parameters to the 

polyethylene wear rate by means of neurons that communicate with each other in a 

nonlinear fashion, trained by the polyethylene wear rate dataset. We implement ANN by 

tuning the number of hidden layers, number of nodes per layer, and the learning rate of the 

neural network as commonly implemented in the machine learning literature [106]. SVM 

fits a hyperplane through the polyethylene wear rate dataset by minimizing the error 

between the predicted and actual wear rate.

Third, we implement instance-based methods such as the k-nearest neighbor (KNN) method 

[107], which predicts the polyethylene wear rate based on the most similar instances in the 

dataset. Such methods handle complicated datasets that cannot be captured by a single 

model. Specifically, the KNN method compares unseen data against all other instances in the 

dataset to find its k nearest neighbors, i.e., its k most similar data points. Then, the unseen 

data is assigned a value based on the weighted average value of its neighbors’. We tune the 

number of nearest neighbors k and the weighting function in our model.

We employ tenfold cross-validation to evaluate the prediction error of the data-driven 

models of the polyethylene wear rate that we implement using different machine learning 

methods. Cross-validation involves randomly dividing the dataset into m equal subsets (so-

called folds). Then, we use m-1 subsets to train the data-driven model and we use one 

remaining subset to validate the model. We repeat this process m times such that we validate 

the model on each subset exactly once. Finally, we obtain a single prediction error for each 

model by averaging the results of the m iterations. It is important to note that the model 

validation process is always performed on the one subset that has not been used to train the 

data-driven model, i.e., it is validated using data not used to train the model. Thus, the 

advantage of cross-validation compared to other validation methods, such as e.g. the hold 

out method, is that every data point is in the validation dataset exactly once, and is in the 

training dataset m-1 times [108]. In contrast, using the hold-out method for validation 

requires partitioning the data in a training and validation set and, thus, the validation may be 

significantly different depending on how the partitioning is performed.
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Commonly used metrics to evaluate the prediction error of a data-driven model include the 

mean absolute error (MAE), root mean square error (RMSE), and the square of the 

correlation coefficient (R2) [94]. A combination of these three metrics yields a good 

indication of the accuracy of the data-driven model [109]. The MAE is given as

MAE =
∑i = 1

n ai − pi
n , (1)

where ai and pi are the actual and predicted values of the ith data point, respectively, and n is 

the total number of data points in the dataset. RMSE is computed as

RMSE =
∑i = 1

n ai − pi
2

n , (2)

and, R2 is calculated as

R2 = 1 −
∑i = 1

n (ai − pi)2

∑i = 1
n (ai − a)2 , (3)

3. Results and discussion

Table 1 shows the descriptive statistics of the entire polyethylene wear rate dataset 

consisting of 129 data points from 29 different studies that we retain from published 

literature based on the criteria we define in Section 2.1, and that we use to implement the 

different machine learning methods of Section 2.4. The literature shows that the size of a 

dataset to predict material properties is typically small compared to other research fields 

[110]. Other studies use datasets ranging from just a few data points (14 data points [111]) to 

tens and hundreds of data points (82 data points [112], 121 data points [113], 157 data points 

[114], and 218 data points [115]).

We report minimum and maximum values in Table 1 with the same number of significant 

digits as in their respective publications. Note that the wear path shape reports the minimum 

and maximum number of occurrences, i.e., one experiment used a 10 × 20 mm rectangular 

wear path, whereas 39 experiments used a d =10 mm circular wear path. We exclude the 

input attributes “lubricant protein concentration” and “lubricant temperature” from our 

analysis due to a high number of missing values, i.e., they are often not reported in their 

respective publications. We replace the four missing average disc surface roughness Ra value 

with the average value of the dataset (0.05 μm), which is a common practice in the machine 

learning literature [116].

Figure 2 shows the normalized linear correlation coefficient (see Section 2.2) between each 

operating parameter (input attribute) and the polyethylene wear rate (target attribute), 

quantifying the relative contribution of each input attribute to the target attribute. Different 

published studies evaluate the relative contribution of one or two operating parameters to the 

polyethylene wear rate. In contrast, the results of Fig. 2 leverage all PoD polyethylene wear 
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rate data published in the literature (and retained for this work) and quantify the relative 

contribution of all operating parameters described in this work (see Section 2.1) to the 

resulting polyethylene wear rate. We observe that the contact area between the pin and the 

disc is the most important factor that affects the polyethylene wear rate, as expected, and in 

agreement with clinical results. For instance, MoP prosthetic hip implants show increasing 

wear rate with increasing femoral head size (i.e., increasing contact area between femoral 

head and polyethylene liner) [39]. The polyethylene radiation dose, which indicates the level 

of cross-linking, is the second most important input attribute, followed by the normal load, 

average surface roughness Ra of the disc, wear path aspect ratio (i.e., cross-shear), test 

duration, and sliding distance per cycle. Ranking of the relative contribution of operating 

parameters to the polyethylene wear rate provides guidance to designing and conducting 

future PoD wear experiments. Indeed, operating parameters should be included in PoD wear 

experiments prioritized according to this ranking, as the effect of lower ranked operating 

parameters on polyethylene wear could be within the noise level of the higher ranked ones. 

We note that although the normalized linear correlation between the frequency and the 

polyethylene wear rate is almost zero, its high stability value (S = 44.9%) indicates that the 

dataset only spans a small range (1.8 Hz) and, thus, the effect of frequency on the 

polyethylene wear rate might not be evident from the aggregate dataset, because most 

researchers recognize that polyethylene is viscoelastic, and therefore performed the PoD 

wear experiments at a frequency that is similar to the human gait frequency.

Table 2 shows the prediction error (MAE, RMSE, and R2) of the different machine learning 

methods we implement in this work, based on the entire polyethylene wear rate dataset. 

From Table 2 we observe that KNN yields the smallest prediction error (MAE = 1.38 

mg/MC) of the polyethylene wear rate compared to all other methods, after tenfold cross-

validation. Thus, the KNN model predicts the polyethylene wear rate within 1.38 mg/MC for 

any new PoD experiment with input attributes that fall within the range of those of the 

dataset used to develop the model. Furthermore, these results show that an instance-based 

method (KNN) outperforms both interpretable and non-interpretable model-based methods, 

which indicates that the relationship between the operating parameters and the polyethylene 

wear rate is not easily captured by one single model.

Figure 3 (a) shows the experimental polyethylene PoD wear rate (red square markers) of all 

published studies included in our dataset, ranked by descending wear rate, and the 

corresponding wear rate predicted using the cross-validated data-driven model based on the 

KNN method (blue circle markers). In addition, Fig. 3 (b) shows the prediction error 

between the KNN data-driven model and the published wear data, defined for each 

individual study as the absolute value of the difference between the experimental and the 

predicted result, divided by the experimental result (black triangle markers). From Fig. 3 (a) 

we observe that when the wear rate exceeds 15 mg/MC (indicated as region (a) in Fig. 3 (a)), 

the predicted polyethylene wear rate deviates from the corresponding experimental results 

by 5 to 47%. This is due to the lack of data to train the model in this region, as only eight out 

of 129 experiments report a polyethylene wear rate in excess of 15 mg/MC. Since KNN is 

an instance-based method, it requires more “instances” to train itself and lower the 

prediction error for polyethylene wear rate higher than 15 mg/MC.
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Furthermore, Fig. 3 (a) highlights several studies using labels (b) to (l), for which the data-

driven model results in a prediction error that exceeds 4%. The high prediction error for 

these specific studies is because they display a unique feature that differs significantly from 

the rest of the dataset, which cannot be fully captured by the data-driven model. Studies (b) 

and (d) are performed by the same research group [69] and are the only experiments in the 

dataset that change the composition of the lubricant while the experiment was ongoing; 

specifically, the lubricant composition changes after 0.5 MC and continues with a different 

composition for 1 MC. Study (c) intentionally uses a significantly higher lubricant protein 

concentration (the maximum lubricant protein concentration in the dataset of 64.8 mg/ml) 

than what other wear experiments typically use (approximately 20-30 mg/ml [52]) to 

generate a higher polyethylene wear rate [15], which causes the data-driven model to 

underestimate the polyethylene wear rate for this specific study. On the other hand, study (g) 

uses a significantly lower lubricant protein concentration (the minimum protein 

concentration in the dataset of 0.69 mg/ml) than what others commonly use [56], which 

results in the data-driven model overestimating the polyethylene wear rate for that study. 

Studies (e) [40] and (k) [41] used polyethylene infused with vitamin-E antioxidant, which is 

not an input attribute to the data-driven model because few published studies document the 

PoD polyethylene wear rate of VEXPE. Thus, the model is not trained to account for these 

parameters. Study (f) [45] is the only study that uses a frequency (0.2 Hz) outside of the 

ASTM F732 standard recommended frequency range (0.5 to 2.0 Hz [78]). All the other 

studies employ frequencies between 1 and 2 Hz. Study (h) [57] performs heat treatment on 

the polyethylene after cross-linking, which we do not specifically consider in the data-driven 

model as an input attribute. Furthermore, the polyethylene of study (h) is the only 

polyethylene that is manufactured by the same research group who evaluates polyethylene 

wear of several commercially available cross-linked polyethylene materials. Hence, the 

prediction error of the data-driven model also potentially identifies manufacturing defects. 

Study (i) and (j) are performed by the same research group [68] who use a rectangular wear 

path for PoD wear experiments, with the highest (1 × 9 mm) and the second highest (2 × 8 

mm) aspect ratio in the dataset, indicating one direction is dominant. A unidirectional wear 

path is well-known to generate a significantly lower polyethylene wear rate compared to a 

multidirectional wear path because of cross-shear. Since the data-driven model in this work 

is trained on the polyethylene wear rate dataset obtained with multidirectional relative 

motion between the pin and the disc, it significantly overestimates the polyethylene wear 

rate in these two studies. Finally, study (l) uses the smallest contact area and normal load in 

the dataset [47], which are well below the ASTM F732 recommended values (contact area 

63.6 mm2 and normal load corresponding to 2 to 10 MPa contact pressure [78]).

Table 2 also shows that CART is the interpretable model-based method with the lowest mean 

absolute error (1.95 mg/MC). Although the CART method shows a higher prediction error 

than the KNN method for the dataset of this work, it allows creating an interpretable model 

of the dataset. Figure 4 illustrates the first seven nodes of the CART model of the 

polyethylene wear rate dataset. Each node shows an operating parameter and reflects a 

decision whether that operating parameter is smaller than or equal to (≤ i.e., left branch) or 

larger than (>, i.e., right branch) the specified value at the node. From Fig. 4 we observe that 

“contact area” is the highest-level attribute in the CART decision tree for predicting the 
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polyethylene wear rate, i.e., CART considers it to have the most significant effect on the 

polyethylene wear rate of all operating parameters considered in the model. Furthermore, we 

observe that for a contact area larger than 113.05 mm2 the polyethylene wear rate is 

dominated by the normal load acting on the polyethylene pin, whereas for a contact area 

smaller than 113.05 mm2 the polyethylene radiation dose is the deciding attribute. Similarly, 

one can interpret each level of the CART decision tree to obtain an understanding of how the 

data-driven model interprets the data and predicts results.

We also create subgroups of polyethylene wear rate data based on the polyethylene radiation 

dose, and implement the machine learning methods for each of these subgroups. Table 3 

shows the prediction error (MAE, RMSE, R2) of the different machine learning methods we 

implement in this study, based on each polyethylene wear rate subgroup, as defined in 

Section 2.3. From Table 3 we observe that clustering the data into subgroups based on the 

polyethylene radiation dose reduces the prediction MAE for the wear rate of conventional 

and HXPE by 10% and 64% respectively, whereas it increases the prediction MAE for non-

irradiated polyethylene by 57%, compared to the data-driven model without clustering the 

data into subgroups (Table 2). The inter-quartile range of the polyethylene wear rate (the 

difference between the third and first quartiles of each subgroups, Q3-Q1) is 5.70 for non-

irradiated polyethylene, whereas it is 4.64 for conventional polyethylene and 1.48 for HXPE. 

This indicates that the machine learning methods perform better on the subgroups with less 

polyethylene wear rate variability.

The primary limitation of this study is the size of the polyethylene wear rate dataset, which 

is inherently limited by what is available in the published literature. Ultimately, increasing 

the size of the dataset, as more studies are published, could increase the prediction accuracy 

and reduce the sensitivity of the model to noise and outlier data, such as unique features or 

operating parameters of specific experiments. More data would also allow considering 

additional input attributes in the data-driven polyethylene wear model, such as lubricant 

protein concentration, lubricant anti-bacterial and fungal additives, and lubricant 

temperature, which are parameters known to have an effect on polyethylene wear. The size 

of the dataset also directly affects the prediction error of the data-driven model. Furthermore, 

the KNN method, which results in the best prediction accuracy in our work, is limited to 

predict the wear rate for input attributes that fall within the range of the input attributes 

considered in the dataset. The model based on KNN predicts results based on the weighted 

average value of its k nearest neighbors, and it can only predict accurately when close 

neighbors exist in the dataset to that new unseen data. Considering additional input 

attributes, such as lubricant protein concentration, could change the structure of the dataset 

and, thus, the distance between the data points and nearest neighbors, which could change 

the KNN prediction accuracy. Another limitation of this study is that we do not distinguish 

between static and dynamic loading during the PoD experiments. Instead, we use the 

maximum load value in cases of dynamic loading.

4. Conclusion

We have aggregated a dataset of published PoD polyethylene wear rate data, performed in 

the context of prosthetic hip implants. Using several model-based and instance-based 
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machine learning methods both with and without clustering of the data, we have 

implemented a data-driven model that allows predicting the PoD polyethylene wear rate 

based on its operating parameters.

We find that the KNN method with clustering into subgroups based on polyethylene 

radiation dose results in the lowest prediction error, i.e., this instance-based method 

outperforms interpretable and non-interpretable model-based methods, because the PoD 

polyethylene wear rate dataset cannot easily be captured by a single model.

The data-driven model reveals the relative contribution of PoD wear experiment operating 

parameters (input attributes) to the polyethylene wear rate (target attribute). This provides 

guidance for designing future PoD wear experiments. Operating parameters should be 

included in these experiments prioritized according to their relative contribution to the 

polyethylene wear rate, as the effect of lower ranked operating parameters on polyethylene 

wear could be within the noise level of the higher ranked ones.

Using cross-validation of the data-driven model we predict the polyethylene ware rate of all 

the experimental studies in our dataset. The data-driven model predicts results based on the 

subset of the dataset that is not used to train the model, at each iteration of the tenfold cross-

validation process. This demonstrates that the data-driven model predicts the polyethylene 

wear rate for new PoD experiments with operating parameters that fall within the ranges of 

those of the dataset used to implement the model. This could potentially reduce the need for 

more experimental studies or shed light on experiment design. Furthermore, this data-driven 

model facilitates validating new experimental results and detecting outliers, by comparing 

them to results in the literature.
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Highlights

• A data-driven model predicts the PoD polyethylene wear rate

• A data-driven model reveals the relative contribution of PoD wear experiment 

operating parameters to the polyethylene wear rate

• A data-driven model reduces the need for additional experimental studies
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Figure 1. 
Schematic of eight different PoD wear measurement configurations used in the context of 

prosthetic hip implants, showing the relative motion between the pin and the disc. ux and uy 

are the velocity magnitude in the x- and y-directions, and ωz is angular velocity about the z-

direction.
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Figure 2. 
Normalized linear correlation coefficient of each input attribute with the polyethylene wear 

rate (target attribute)
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Figure 3. 
Polyethylene wear rate for all experimental studies considered in our dataset ranked in 

descending order, (a) showing the experimental results documented in the literature (red 

square markers) and the corresponding predicted results using the data-driven model based 

on the KNN method (blue circle markers), and (b) showing the prediction error for the 

corresponding experimental study (black triangle markers)
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Figure 4. 
First seven nodes of the CART model of the dataset considered in this work, showing how 

the attributes break down into a decision tree, ultimately predicting the target attribute and 

providing an interpretable model that relates the attributes (input) to the target attribute 

(output)
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Table 1

Descriptive statistics of the polyethylene wear rate dataset, showing the same number of significant digits as in 

their respective publications

Minimum Maximum Average Standard
deviation

Missing
values Stability [%]

Publication year 2001 2018 2008 6 0 20.16

Normal load [N] 7 777.55 166.26 129.38 0 28.68

Contact area [mm2] 7.07 706.86 67.15 67.11 0 35.66

Frequency [Hz] 0.2 2 1.25 0.43 0 44.19

Sliding distance per cycle [mm/C] 17.76 94.25 30.47 10.08 0 30.23

Wear path shape
Rectangle 10 × 20 

mm (used in 1 
experiment)

Circle d =10 mm (used 
in 39 experiments) - - 0 30.23

Wear path aspect ratio 1 10.98 1.79 1.58 0 49.61

Lubricant temp. [°C] 20 37 29.23 7.50 63 46.97

Lubricant protein concentration 
[mg/ml] 0.69 64.8 22.28 6.35 33 36.46

Average disc surface roughness Ra 
[μm]

0.001 0.50 0.05 0.10 4 19.38

Polyethylene radiation dose [kGy] 0 150 36.31 40.77 0 40.31

Test duration [MC] 0.1 3.2 2.02 0.93 0 28.68

Polyethylene wear rate [mg/MC] 0.00 34.62 5.73 6.36 0 1.55
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Table 2

Prediction error of each machine learning method used in this work, based on the entire polyethylene wear rate 

dataset

Method MAE RMSE R2

Model-based (interpretable)

Linear Regression 3.44 4.72 0.71

CART 1.95 3.35 0.83

M5 3.13 4.82 0.78

Random Forest 2.87 4.04 0.75

Gradient boosting 2.69 4.03 0.72

Model-based (non-interpretable)

ANN 3.33 4.86 0.73

SVM 3.20 4.45 0.69

Instance-based

KNN 1.38 2.37 0.91
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Table 3

Machine learning methods prediction error based on the polyethylene wear rate data for three subgroups

Polyethylene radiation
dose [kGy]

0
(Non-irradiated)

20-55
(Conventional)

>70
(HXPE)

Method MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

Model-based (interpretable)

Linear Regression 3.54 4.84 0.81 4.51 6.19 0.62 0.67 0.85 0.78

CART 2.67 3.43 0.77 2.39 3.62 0.81 0.70 0.99 0.77

M5 3.29 4.96 0.77 4.32 6.55 0.65 0.68 0.90 0.72

Random Forest 2.76 3.54 0.09 2.58 3.93 0.77 0.70 0.92 0.82

Gradient boosting 3.16 4.45 0.68 2.84 3.91 0.68 0.81 1.03 0.79

Model-based (non-interpretable)

ANN 3.35 4.22 0.77 2.77 4.46 0.79 0.88 1.15 0.76

SVM 3.42 4.54 0.79 4.07 6.08 0.43 0.57 0.80 0.82

Instance-based

KNN 2.16 3.08 0.87 1.24 1.97 0.81 0.50 0.75 0.88
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