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Abstract

Purpose.—We aimed to explore the hypothesis that early subclinical cardiac chamber 

dysfunction secondary to tyrosine kinase inhibitors (TKIs) in patients with metastatic renal cell 

carcinoma could be signaled by abnormal cardiac mechanics demonstrated by velocity vector 

imaging.

Methods.—Echocardiographic images were acquired from the apical views in 23 metastatic 

renal cell carcinoma patients. All patients had baseline and at least a 3-month follow-up 

echocardiogram after receiving TKI therapy. Subendocardial borders of all the cardiac chambers 

were traced to obtain volumetric and deformation indices.

Results.—Mean age was 67 ± 9 years with 92% men. The right ventricle peak systolic global 

longitudinal strain (GLε) and strain rate were significantly lower after TKIs (−23.49 ± 5.1 versus 

−19.81 ± 5.5, p = 0.002 and −1.52 ± 0.52 versus −1.24 ± 0.35 p = 0.02, respectively). LV GLε was 

not statistically different. Volumetric and deformation indices showed a minimal decrease of the 

right atrium reservoir and conduit functions, and no significant changes of left atrial function.

Conclusions.—The right heart exhibited greater strain changes than the left heart after TKI 

treatment. The implications of these findings and their potential significance warrant further work.

Keywords

tyrosine kinase inhibitors; renal cell carcinoma; velocity vector imaging; cardiac chambers; 
function; echocardiography

INTRODUCTION

Renal cell carcinoma (RCC) is the most common malignant kidney neoplasm. It has a 

proclivity for metastasis with approximately 30% of patients already with metastases at the 

time of first presentation.1,2 In the setting of metastatic disease, contemporary treatments of 
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metastatic RCC (mRCC) include inhibitors of vascular endothelial growth factor receptor 

(VEGFR) and of mammalian target of rapamycin.1,2 Targeted therapies, mainly tyrosine 

kinase inhibitors (TKIs), have had a significant impact on the treatment of mRCC. TKIs 

improved quality of life with reduced adverse effects compared with conventional 

chemotherapy.3–5

Protein kinases contain a conserved ATP binding pocket, which is a key region targeted by 

inhibitors. The mechanism of TKIs includes inhibition of growth factor receptors such as 

VEGFR, platelet-derived growth factor receptor, stem cell factor KIT receptor, and other 

signaling pathways. This leads to significant deceleration of tumor cell proliferation and 

angiogenesis.4–6 However, the conservation of the ATP binding pocket may lead to “off-

target” effects on unintended kinases, and TKIs have several side effects including 

gastrointestinal upset, hypothyroidism, bone marrow toxicity, hand-foot syndrome, and 

stomatitis. Furthermore, cardiotoxicity such as hypertension, congestive heart failure (CHF), 

drop of left ventricular ejection fraction (LVEF) by 10%, myocardial ischemia, and arterial 

thromboembolic events has been reported. In meta-analyses of randomized control trials, the 

incidence of fatal adverse events and CHF related to VEGFR TKIs were 1.5% and 2.4%, 

respectively. However, the exact risk of cardiac events and the potential for recovery are still 

unknown.2–9

Velocity vector imaging (VVI) is a relatively novel tool that can assess myocardial 

mechanics using a sophisticated technique that involves endocardial border tracking 

achieved with Fourier techniques. It permits a multidirectional exploration of myocardial 

motion in an angle-independent manner. This validated technique is promising for evaluating 

cardiac chamber global and regional function because it is relatively load-independent.10–15 

We aimed to explore the hypothesis that early subclinical cardiac chamber dysfunction, 

secondary to TKIs in patients with mRCC, could be signaled by abnormal mechanics 

assessed by VVI.

MATERIALS AND METHODS

Study Population

Between January 2012 and December 2014, 56 consecutive patients with mRCC were 

retrospectively screened. Patients with mRCC referred for echocardiograms were included. 

Inclusion criteria were as follows: (1) mRCC treated with TKIs; (2) baseline (pre-TKI 

treatment) transthoracic echocardiogram (TTE); (3) at least 3 months post-TKI 

commencement TTE; (4) age ≥18 years. Patients who received a regimen other than TKIs 

(N =14) or with uninterpretable echographic images were excluded (N = 19). The study 

complied with the Declaration of Helsinki and was approved by the Institutional Review 

Board.

Conventional Echocardiography

All patients underwent comprehensive two-dimensional Doppler and tissue Doppler imaging 

echocardiography. The images were acquired from the standard views for calculation of 

dimensions, volumes, and mass. Complete visualization of all cardiac chambers, including 
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both atria, was ensured. All measurements were achieved according to the American Society 

of Echocardiography guidelines.16–18

Velocity Vector Imaging

Two-dimensional echocardiography gray-scale images were stored as DICOM (Digital 

Imaging and Communications in Medicine) format and analyzed using a VVI tracking 

system (Syngo US Workstation; Siemens Medical Solutions, Inc., Malvern, PA). For VVI 

analysis, the three apical views were used for the left ventricle (LV) and the apical four-

chamber view was used for the right ventricle (RV). Both RV/LV subendocardial borders 

were traced and tracked by the software along the borders in order to achieve average global 

systolic longitudinal strain (GLε) and strain rate (SR). Manual adjustments of the tracking 

points were attained as appropriate. Inadequately tracked segments were excluded (Figure 

1).11,13,15,19

Right and left atrial (RA and LA) subendocardial borders were outlined and tracked by the 

software in the apical four-chamber view. Manual adjustments of the tracking points were 

accomplished as appropriate. ε and SR values were obtained through the cardiac cycle 

(Figure 2).10,13,14,19

Computer-generated LA/RA volume curves were produced by continuous tracing of the 

atrial endocardium. Subsequently, atrial ejection fraction (EF) and the ensuing volume 

indices were calculated: maximum atrial volume (AVmax), minimal atrial volume (AVmin), 

and the atrial volume before the atrial contraction (AVpre-a) (Figure 2).

Furthermore, dynamic atrial function indices were calculated from the measured 

volumes10,19–26:

1. Atrial reservoir function:

Filling volume = (AVmax – AVmin).

Expansion index = ([AVmax – AVmin]/ AVmin)×100.

Diastolic emptying index = ([AVmax – AVmin]/AVmax)×100.

2. Atrial conduit function:

Passive emptying percent of total emptying = ([AVmax – AVpre–a]/[AVmax – AVmin])

×100.

Passive emptying index = ([AVmax – AVpre–a]/AVmax)×100.

3. Atrial booster pump function:

Active emptying percent of total emptying = ([AVpre–a – AVmin]/[AVmax – AVmin])×100.

Active emptying index = ([AVpre–a –AVmin]/AVpre–a)×100.
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ε and SR curves were employed for analysis. Peak positive ε (εPos), peak negative ε (εNeg), 

peak early negative SR (SREarlyNeg), peak late negative SR (SRLateNeg), and peak positive 

SR (SRPos) values were calculated. Consequently, εNeg (matching the atrial booster pump 

function) and εPos (matching the conduit function) were computed. The SR values 

(SRLateNeg, SRPos, and SREarlyNeg), representing atrial contraction, beginning of ventricular 

systole, and beginning of ventricular diastole, were gauged (Figure 2).10,19–26

Statistical Analysis

Data are presented as mean ± SD. Student’s t test was used to compare different variables. 

Pearson correlation analysis was performed to test the correlations between the variables. p 
value < 0.05 was considered statistically significant. After a delay of 8 weeks from the initial 

appraisal, intra- and interobserver variability was evaluated by submitting arbitrary selected 

images for analysis and measurement by another observer blinded to the earlier results. Ten 

individuals were randomly selected for this analysis. Variability was calculated as the 

absolute alteration among the corresponding repetitive measurements as a percent of their 

mean.

RESULTS

Patient Characteristics

Baseline characteristics of the patients are summarized in Table 1. The study enrolled 23 

subjects with a mean age of 67 ± 9 years (range 46–85 years). Four patients had a history of 

transient ischemic attacks and two had prior percutaneous coronary intervention, but no 

myocardial infarction. The incidence of pre-existing hypertension was high (43%). No 

patients had a history of CHF.

The TKI pazopanib (800 mg orally once daily) was the agent most frequently used, followed 

by sunitinib (50 mg orally for 4 weeks, then stopped for 2 weeks), and axitinib (5 mg orally 

twice daily) (Table 1). Three patients were switched from axitinib to pazopanib due to 

intolerance (n = 1) and/or lack of adequate response (n = 2).

Clinical Cardiotoxicity

Four patients (18%) developed new onset hypertension and two (9%) had worsening of pre-

existing hypertension while on therapy. All were receiving either pazopanib (n = 4) or 

sunitinib (n = 2). Sixty-seven percent of the hypertensive patients required therapy with at 

least a single antihypertensive agent, and 33% of patients needed two or more agents (Table 

1). No patients developed new onset CHF.

No significant differences were noted in regards to biomarkers post-TKIs (i.e., serum levels 

of brain natriuretic peptide and troponins; data not shown).

Conventional Indices of Cardiac Function

The median interval between baseline echocardiography and follow-up was 169 days.
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There was no significant decrease in mean LVEF, RV fractional area change (FAC) %, and 

tricuspid annular plane systolic excursion (TAPSE) with TKI therapy. Global S′ wave of the 

mitral valve was significantly lower in the post-TKIs than in the pre-TKIs group. 

Differences in the remaining systolic and diastolic function variables between groups were 

not statistically significant (Table 2).

LV/RV Global Longitudinal Deformation Indices

LV peak systolic GLε and SR did not statistically change. However, RV peak systolic GLε 
was significantly lower post-TKIs (p = 0.002).27 RV peak systolic SR was significantly 

lower as well (p = 0.02) (Table 3). No significant correlations were noted between LV/RV 

global longitudinal deformation indices and variables of LV/RV systolic and diastolic 

functions (data not shown).

Dynamic Global Atrial Function Applying Volumetric Indices

VVI data for global atrial function are summarized in Table 4. LA volumes and EF did not 

change significantly with TKIs. Dynamic global function indices revealed that atrial filling 

during ventricular systole (reservoir function), passive LV filling in early diastole (conduit 

function), and atrial contraction (booster pump function) were similar pre- and post-TKI 

therapy.

RA volumes and EF did not change significantly with TKIs. Nonetheless, dynamic global 

function indices showed that reservoir and conduit functions were slightly reduced with 

TKIs. Booster pump function did not change significantly. No significant correlations were 

noted between dynamic global LA/RA function indices and variables of LV/RV systolic and 

diastolic functions (data not shown).

Global Atrial Function Utilizing Deformation Indices

LA deformation indices of dynamic global function were similar with TKIs. On the other 

hand, RA conduit function was slightly reduced while reservoir function showed a trend but 

no significant decline with TKIs. Booster pump function did not change with TKIs (Table 

5). No significant correlations were observed between LA/RA deformation indices and 

parameters of LV/RV systolic and diastolic functions (data not shown).

The assessment of intra- and interobserver variability documented fair correlation for indices 

of global and regional cardiac chambers function (Figure 3).

DISCUSSION

To the best of our knowledge, this is the first study in the literature addressing all cardiac 

chamber deformation in a single cohort as well as the potential subclinical hazardous effects 

of TKIs on cardiac function in patients with mRCC. The principal findings of this study are: 

(1) RV peak systolic GLε and SR significantly decreased post-TKIs; (2) LV peak systolic 

GLε and SR were not statistically altered post-TKIs; (3) global S′ wave of the mitral valve 

was significantly lower after TKIs; (4) reservoir and conduit functions of the RA were 

slightly reduced with TKIs according to volumetric and deformation indices; (5) no 
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significant effects were noted with TKIs on dynamic LA function; and (6) LVEF as well as 

conventional indices of RV function did not change significantly with TKIs.

Mechanisms of Cardiotoxicity

The plausible mechanisms of cardiotoxicity caused by TKIs are not entirely explored, but 

mouse studies suggest that angiogenesis, in part mediated by VEGFR2 and platelet-derived 

growth factor receptor (PDFGRβ), maintains cardiac homeostasis. TKI inhibition leads to 

impairment of vascular endothelial signaling, mitochondrial dysfunction, and loss of 

myocyte contractility.2–9 Patients are more susceptible to off-target side effects with wider 

inhibition of tyrosine kinases. Sunitinib, with a wide spectrum of tyrosine kinases inhibition, 

carries considerable cardiovascular risks compared with pazopanib with a narrow spectrum 

of inhibition, and bevacizumab, which principally antagonizes the VEGFR.2–9

Among our patients, 18% developed new onset hypertension and 9% had worsening of pre-

existing hypertension while on therapy. Incidence of hypertension appears to be less striking 

than in other cohorts.2–9 This might be explained by the small cohort number and wider 

employment of pazopanib, with its narrow spectrum of tyrosine kinases inhibition and lower 

cardiovascular risk than the very potent TKI sunitinib. Of note, no patient developed other 

forms of cardiotoxicity (i.e., CHF or drop of LVEF). This is presumably due to better control 

of hypertension and meticulous follow-up.

Ventricular Deformation Indices

We observed that LV peak systolic GLε/SR was not statistically altered after TKIs with 

preserved LVEF in the absence of any reported symptoms (Table 3). Thavendiranathan et al,
27 in their systematic review of 1,504 patients, indicated that peak systolic GLε, measured 

with speckle tracking echocardiography, seems to be the best parameter consistently 

detecting incipient myocardial injury during chemotherapy. They expressed that a 10% to 

15% early reduction in GLε is the best index for the prediction of cardiotoxicity, defined as 

a CHF or LVEF reduction. Plana et al28 distinguished relative percentage drop of GLε > 

15% from baseline to be abnormal. Our cohort showed no significant change in GLε/SR 

after TKIs therapy.

Global S′ wave of the mitral valve was significantly reduced after TKIs (Table 2). Impaired 

tissue Doppler indices, essentially S′ wave of the mitral valve, have been observed in early 

and late phases of follow-up in patients with breast cancer treated with anthracycline and 

trastuzumab.28–30 However, the implication as a potential predictor of systolic function post-

chemotherapy still needs to be explored.28

There was no significant change in conventional indices of RV systolic and diastolic 

function, principally FAC%, TAPSE, global S′ wave of the tricuspid valve, and RV systolic 

pressure as recommended by the expert report from the American Society of 

Echocardiography28 (Table 2). However, RV peak systolic GLε and SR were significantly 

reduced post-TKIs in the absence of any signs of pulmonary hypertension (Table 3). 

Kocabaş, et al,31 using tissue Doppler indices, noted that the RV was more susceptible to 

diastolic dysfunction, whereas the LV was more prone to systolic dysfunction in 72 children 

with cancer under low anthracycline dose. Oliveira et al32 analyzed 3,812 mechanical 
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circulatory support patients from the INTERMACS (Interagency Registry for Mechanically 

Assisted Circulatory Support) database. They compared patients with chemotherapy-induced 

cardiomyopathy to patients with nonischemic and ischemic cardiomyopathy. They perceived 

that chemotherapy-induced cardiomyopathy patients have significant markers of RV 

dysfunction, lower pulmonary pressure, and higher need for RV assist device support in 

comparison to the remaining cardiomyopathy groups.32 Our study uncovered noticeable 

reduction of RV indices in comparison to the LV indices. This ensured better sensitivity of 

deformation relative to conventional indices in detecting incipient RV dysfunction. Based on 

our cohort, together with the abovementioned studies, the RV is likely more vulnerable to 

chemotherapy than the LV in the absence of pulmonary hypertension and LV incipient 

dysfunction. We speculate that the RV has mainly longitudinal strain, which might be 

affected by TKIs. Conversely, LV has three strain components, including longitudinal, 

circumferential, and radial, which are participating in LV systolic function. In addition, RV 

has a thinner wall than the LV. This is the reason RV may have showed earlier involvement 

than LV. Also, the absence of LV circumferential and radial strain analysis and long-term 

follow-up might be a reason of unmasking LV incipient dysfunction hand in hand with RV 

dysfunction.31–33

Atrial Dynamic Function

Atrial function is an essential contributor of ventricular filling and has a prognostic 

implication in numerous cardiovascular diseases. The LA has three phasic components that 

reflect its dynamic function. Atrial reservoir function is defined as the capability of the LA 

to fill from the pulmonary veins during ventricular systole. Atrial conduit function matches 

the passive LV filling during early diastole and diastasis. Atrial booster pump or contractile 

function is related to the active atrial emptying at end diastole enhanced LV filling. The RA 

has three similar components. It has a dynamic share in RV filling. However, RA function 

has not been fully explored.10,19–21,34–36

According to volumetric and deformation indices, LA/RA volumes and EF as well as LA 

dynamic function indices were similar in both groups. On the other hand, RA reservoir and 

conduit functions were slightly reduced with TKIs with no significant change of booster 

pump function. Those finding are in keeping with and additive to the notion that the right 

side of the heart is more prone to damage secondary to chemotherapy than the left side 

(Tables 4 and 5).

Clinical Implications

This study provides further insights into the global influence of TKIs on the mechanical 

function of all cardiac chambers. Our data suggest that RV/LV deformation indices could be 

considered a diagnostic tool that may enable unmasking of incipient ventricular dysfunction 

in patients treated with TKIs. The study of atrial dynamic function is still in infancy, but it 

might have a prognostic significance. We recommend obtaining baseline and follow-up 

RV/LV indices for all patients on TKIs. The same algorithm might be applicable to atrial 

dynamic function if feasible. In case of development of subtle contractile dysfunction of any 

cardiac chamber, prompt decision regarding discontinuation of TKIs can be made before 

overt dysfunction or heart failure ensues. The impact of these conclusions and their potential 
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use will necessitate further study. Longer term study would be beneficial to assess whether 

LVEF or RVEF decline can be predicted by these findings.

Limitations

This study has limitations that deserve comment. It is a retrospective small cohort at a single 

institution. However, we noted differences in several variables. VVI of the atria is more 

complex and time-demanding than for the ventricles. VVI software is optimized for analysis 

of the ventricles and the use of the software for atrial deformation requires further validation. 

Our values are not similar to those of other investigators. This is presumably due to the use 

of VVI for analysis, whereas the majority of other studies applied the EchoPac software for 

image analysis by speckle tracking (Vingmed; GE-Healthcare, Horten, Norway).19 No 

subgroup analysis was obtained to delineate the impact of individual TKI, new onset 

hypertension, RCC subtype, or TNM classification on deformation indices due to the small 

cohort. Additional imaging of cardiac chambers’ myocardium, applying cardiac magnetic 

resonance, might be indicated to detect structural changes and lend support to our data. 

Finally, our median follow-up was 169 days to ensure completeness of TTE data, and no 

long-term follow-up was conducted to detect late effects of TKIs on deformation.

CONCLUSIONS

The influence of TKIs on all cardiac chambers in mRCC patients, treated in the short to 

intermediate term, shows that the right side of the heart exhibited greater changes in strain 

after TKI treatment than the left-sided chambers. The implication of these findings and their 

potential significance warrants further study, which is also necessary to assess the longer 

term effects.
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FIGURE 1. 
(A) Tracing of the right ventricle (RV) endocardial border in apical four-chamber view. (B) 

Strain versus time curves. LA, left atrium; LV, left ventricle; RA, right atrium.
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FIGURE 2. 
Example of assessment of left atrium (LA) volumes and strain (ε)/strain rate (SR). (A) 

Tracing of the LA endocardial border in the apical four-chamber view. (B) Maximum, 

minimum, and preatrial contraction volumes were computed from the generated volume 

curve. (C, D) ε and SR versus time curves. LV, left ventricle; Pre-A, pre-atrial contraction 

volume; εPos, peak positive ε; εNeg, peak negative ε; SREarlyNeg, peak early negative SR; 

SRLateNeg, peak late negative SR; SRPos, peak positive SR.
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FIGURE 3. 
Intra- and interobserver agreement of the left/right ventricles (A), left atrium (B), and right 

atrium (C) measurements. AVmax, maximum atrial volume; AVmin, minimal atrial volume; 

AVpre-a, atrial volume before the atrial contraction; εPos, peak positive ε; εNeg, peak 

negative ε; LVε, left ventricle E; LVSR, left ventricular strain rate; RVε, right ventricle ε; 

RVSR, right ventricular strain rate; SREarlyNeg, peak early negative SR; SRLateNeg, peak late 

negative SR; SRPos, peak positive SR.
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TABLE 1

Baseline Clinical Characteristics of the Study Population

Study Population (N = 23)

Age, years 67 ± 9

Men (%) 21 (92)

Height (cm) 174 ± 7.9

Weight (kg) 86.7 ± 14.7

Body surface area (m2) 2.01 ± 0.18

Body mass index (kg/m2) 28.4 ± 4.3

Heart rate (bpm) 68 ±12

Systolic blood pressure (mmHg) 132 ± 14

Diastolic blood pressure (mmHg) 77 ±9

Risk factors

 Hypertension (%) 10 (43)

 Diabetes mellitus (%) 2 (9)

 Dyslipidemia (%) 14 (61)

 Coronary artery disease (%) 3 (13)

TKIs

 Pazopanib (%) 15 (65)

 Sunitinib (%) 6 (26)

 Axitinib (%) 2 (9)

Cardiac medications

 Beta-blockers (%) 9 (39)

 Calcium channel blockers (%) 4 (18)

 Angiotensin converting enzyme inhibitors (%) 4 (18)

 Angiotensin receptors blockers (%) 1 (4.5)

 Statins (%) 10 (43)

 Aspirin (%) 7 (30)

Abbreviation: TKIs, tyrosine kinase inhibitors.
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TABLE 2

Echocardiographic Characteristics of the Study Population

Pre-TKIs Post-TKIs p Value

LAVI (ml/m2) 27.9 ± 7.6 27.6 ± 8.6 0.44

LV end-diastolic diameter (mm) 47.9 ± 4.2 46.5 ± 5.9 0.18

LV end-systolic diameter (mm) 30.1 ± 3.9 30.2 ± 6.5 0.48

Septal wall thickness (mm) 11.2 ± 2.1 11.3 ± 2.1 0.41

Posterior wall thickness (mm) 10.5 ± 1.8 10.5 ± 1.9 0.35

LV mass index (g/m2) 93.7 ± 24.2 93.9 ± 21.2 0.42

LVEF (%) 61.5 ± 6.1 59.7 ± 7.1 0.14

E wave (m/s) 0.66 ± 0.15 0.63 ± 0.25 0.28

A wave (m/s) 0.69 ± 0.21 0.68 ± 0.19 0.38

E/A ratio 0.95 ± 0.34 0.88 ± 0.35 0.28

E deceleration time (msec) 228.4 ± 42.3 213.4 ± 70.6 0.2

E′ wave (m/sec)* 0.07 ± 0.03 0.06 ± 0.02 0.07

A′ wave (m/sec)* 0.09 ± 0.025 0.08 ± 0.02 0.16

S′ wave (m/sec)* 0.08 ± 0.2 0.07 ± 0.02 0.02

E/E′ ratio* 10.1 ± 4.5 11.4 ± 7.4 0.18

LV MPI (pulsed Doppler) 0.29 ± 0.08 0.29 ± 0.09 0.47

RA end systolic area (cm2) 15.2 ± 3.9 13.6 ± 3.5 0.06

RA major diameter (mm) 49.2 ± 5.5 49.2 ± 5.3 0.46

RA minor diameter (mm) 36.9 ± 5.1 34.6 ± 5.1 0.08

RV basal diameter (mm) 35.4 ± 5.9 33.1 ± 5.5 0.1

RVOTP 30.8 ± 4.4 30.5 ± 3.8 0.45

RVOTD 22.4 ± 4.1 23.1 ± 3.4 0.18

RV subcostal wall thickness (mm) 56 ± 12 52 ± 10 0.08

RV FAC (%) 48.8 ± 8.5 48.4 ± 7.3 0.32

TAPSE (mm) 22.9 ± 3.9 22.2 ± 4.6 0.41

Tricuspid E wave (m/s) 0.52 ± 0.09 0.54 ± 0.11 0.4

Tricuspid A wave (m/s) 0.49 ± 0.14 0.49 ± 0.1 0.4

Tricuspid E/A ratio 1.12 ± 0.26 1.14 ± 0.31 0.28

Tricuspid E deceleration time (msec) 188. ± 58.2 197.3 ± 57.2 0.2

Tricuspid E′ wave (m/sec) 0.09 ± 0.04 0.09 ± 0.03 0.4

Tricuspid A′ wave (m/sec) 0.12 ± 0.04 0.11 ± 0.04 0.3

Tricuspid S wave (m/sec) 0.12 ± 0.03 0.11 ± 0.02 0.2

Tricuspid E/E′ ratio 0.77 ± 0.34 0.79 ± 0.29 0.2

RV MPI (pulsed Doppler) 0.28 ± 0.09 0.29 ± 0.08 0.17

RVSP (mmHg) 28.9 ± 7.9 30.8 ± 7.9 0.5

Values are expressed as mean ± SD.

Abbreviations: E, peak early filling transmitral velocity; A, peak late filling transmitral velocity; E′, peak longitudinal early diastolic tissue velocity 
of the mitral valve annulus; A′, peak longitudinal late diastolic tissue velocity of the mitral valve annulus; LA, left atrium; LAVI, indexed LA 
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volume; LV, left ventricle; LVEF, left ventricular ejection fraction; RA, right atrium; RV, right ventricle; RV FAC, RV fractional area change; 
RVOTD, RV outflow tract distal; RVOTP, RV outflow tract proximal; TAPSE, tricuspid annular plane systolic excursion; RVSP, RV systolic 
pressure; MPI, myocardial performance index.

*
Values represent the average of medial and lateral velocities.
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TABLE 3

Aspects of Left Ventricle (LV)/Right Ventricle (RV) Function Assessed by Deformation Indices

Pre-TKIs Post-TKIs p Value

Left ventricle

 GLε (%) −16.53 ± 2.81 −15.69 ± 2.92 0.076

 % change of GLε −5.3%

 SR (s−1) −1.01 ± 0.35 −0.95 ± 0.25 0.19

Right ventricle

 GLε (%) −23.49 ± 5.1 −19.81 ± 5.5 0.002

 % change of GLε −15.6%

 SR (s−1) −1.52 ± 0.52 −1.24 ± 0.35 0.02

Abbreviations: GLε, Global longitudinal strain; SR, strain rate.
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TABLE 4

Aspects of Atrial Function Assessed by Volumetric Indices

Pre-TKIs Post-TKIs p Value

Left atrium

  AVmax (ml) 60.2 ± 22.3 53.8 ± 27.6 0.12

  AVmax/BSA (ml/m2) 29.8 ± 10.4 26.8 ± 13.1 0.12

  AVmin (ml) 22.6 ± 13.4 20.1 ± 12.6 0.18

  AVmin/BSA (ml/m2) 11.11 ± 6.2 9.9 ± 5.9 0.18

  AVpre-a (ml) 41.1 ± 20.9 36.8 ± 20.3 0.14

  AVpre-a/BSA (ml/m2) 20.3 ± 9.9 18.3 ± 9.6 0.14

  Atrial ejection fraction (%) 64 ± 12.4 61.8 ± 13.3 0.21

 Atrial reservoir function

  1. Filling volume (ml) 37.6 ± 13.1 33.6 ± 18.1 0.14

  2. Expansion index (%) 59.2 ± 22.2 52.8 ± 27.6 0.12

  3. Diastolic emptying index 59.8 ± 22.2 53.4 ± 27.5 0.12

 Atrial conduit function

  1. Passive emptying (%) of total emptying 36.9 ± 13.1 32.9 ± 18.1 0.14

  2. Passive emptying index 59.5 ± 22.2 53.1 ± 27.6 0.12

 Atrial booster pump function

  1. Active emptying (%) of total emptying 18.1 ± 9.2 16.3 ± 11.1 0.15

  2. Active emptying index 40.5 ± 20.9 36.2 ± 20.3 0.14

 Right atrium

  AVmax (ml) 52.5 ± 17.5 44.6 ± 17.1 0.052

  AVmax/BSA (ml/m2) 25.9 ± 8.3 22.4 ± 8.6 0.06

  AVmin (ml) 21.7 ± 11.1 19.5 ± 9.6 0.15

  AVmin/BSA (ml/m2) 10.7 ± 4.9 9.8 ± 4.5 0.15

  AVpre-a (ml) 36.2 ± 16.3 31.6 ± 14.1 0.12

  AVpre-a/BSA (ml/m2) 17.8 ± 7.5 15.9 ± 6.9 0.14

  Atrial ejection fraction (%) 59.1 ± 12.8 56.3 ± 12.4 0.2

 Atrial reservoir function

  1. Filling volume (ml) 30.8 ± 12.5 25.03 ± 11.3 0.041

  2. Expansion index (%) 51.5 ± 17.5 43.6 ± 17.1 0.046

  3. Diastolic emptying index 52.1 ± 17.5 44.1 ± 17.1 0.046

 Atrial conduit function

  1. Passive emptying (%) of total emptying 30.1 ± 12.6 24.3 ± 11.4 0.04

  2. Passive emptying index 51.8 ± 17.5 43.8 ± 17.1 0.46

 Atrial booster pump function

  1. Active emptying (%) of total emptying 14.1 ± 9.7 11.6 ± 7.1 0.19

  2. Active emptying index 35.5 ± 16.3 30.9 ± 14.1 0.12

Abbreviations: AVmax, maximum atrial volume; AVmin, minimal atrial volume; AVpre-a, atrial volume before the atrial contraction; BSA, body 
surface area.
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TABLE 5

Aspects of Atrial Function Assessed by Deformation Indices

Pre-TKIs Post-TKIs p Value

Left atrium

 Total longitudinal 36.5 ± 16.6 31.53 ± 13.77 0.13

 atrial ε (%)*

 Atrial reservoir function

  SRpos 1.26 ± 0.43 1.093 ± 0.47 0.09

 Atrial conduit function

  SREarlyNeg −0.93 ± 0.45 −0.77 ± 0.37 0.09

  εPos 34.3 ± 17.4 29.59 ± 13.42 0.14

 Atrial booster pump function

  εNeg −2.22 ± 2.53 −1.94 ± 3.59 0.32

  SRLateNeg −1.04 ± 0.45 −0.92 ± 0.57 0.18

 Right atrium

  Total longitudinal 52.38 ± 22.1 43.12 ± 29.06 0.09

 atrial ε (%)*

 Atrial reservoir function

  SRpos 1.47 ± 0.49 1.22 ± 0.49 0.058

 Atrial conduit function

  SREarlyNeg −1.19 ± 0.46 −0.95 ± 0.45 0.044

  εPos 51.05 ± 22.81 40.89 ± 29.79 0.07

 Atrial booster pump function

  εNeg −1.33 ± 2.07 −2.22 ± 2.81 0.12

  SRLateNeg −1.26 ± 0.56 −1.03 ± 0.51 0.07

Abbreviations: TKIs, tyrosine kinase inhibitors; ε, strain; SR, strain rate; εPos, peak positive ε; εNeg, peak negative ε; SREarlyNeg, peak early 

negative SR; SRLateNeg, peak late negative SR; SRPos, peak positive SR.

*
Calculated as the average value throughout the whole cardiac cycle.
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