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Abstract

Background: Among urban residents, increased contacts with nature are associated with reduced 

morbidity and mortality. The concept of allostatic load, a biomarker-based composite measure of 

physiological dysregulation, can be applied to study subclinical benefits of exposure, and to 

elucidate pathways leading to improved health.

Objective: This research explored associations between residential vegetated land cover and an 

allostatic load index calculated using the statistical distance measure known as Mahalanobis 

distance.

Methods: This cross-sectional population-based study involved 186 adult residents of the 

Durham-Chapel Hill, North Carolina metropolitan area. Measures of tree and grass cover within 

500 m of residence were derived from the U.S. Environmental Protection Agency’s EnviroAtlas 

land cover database. Fifteen biomarkers of immune, neuroendocrine, and metabolic functions were 

analyzed in serum samples. Regression analysis was conducted using generalized additive models 

with thin-plate spline functions of geographic coordinates, adjusting for modelled traffic air 

pollution from local sources and sociodemographic covariates.
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Results: The second and third tertiles of distance-weighted tree cover were associated with 14% 

(95% Confidence Limits 20%; 8%) and 15% (21%; 8%) reduction in adjusted median allostatic 

load, respectively, compared to the first tertile. The same tertiles of tree cover were also associated 

with 0.16 (0.03; 0.76) and 0.04 (0.01; 0.35) adjusted odds ratios of having allostatic load index 

above the 90th percentile of the sample distribution. Grass cover was inversely correlated with tree 

cover and was not associated with reduced allostatic load.

Conclusions: Subclinical beneficial health effects of green spaces demonstrated in this study are 

consistent with reduced susceptibility to acute environmental and social stressors, and reduced 

risks of morbidity and mortality.
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1. Introduction

There is accumulating evidence that contacts with green and natural environments in urban 

settings are associated with various health benefits (WHO, 2016). These benefits include 

improved mental health (Alcock et al., 2014, Beyer et al., 2014, Gascon et al., 2015), 

reduced risks of diabetes (Astell-Burt et al., 2014), cardiovascular disease (Tamosiunas et 

al., 2014) and mortality (Gascon et al., 2016, James et al., 2016, Kondo et al., 2018). 

Enhanced mental restoration and alleviation of chronic stress, improved social cohesion, 

enhanced physical activity, improved immune system functions, and reduced air pollution 

are some of the hypothesized pathways to better health (Hartig et al., 2014, Kuo, 2015). 

While relative contributions of these different pathways to specific health outcomes likely 

depend on the type of urban green space and specific population subgroup (WHO, 2016), 

restoration and stress alleviation appear to be a major pathway leading to improved mental 

and physical health (Triguero-Mas et al., 2015, Dadvand et al., 2016).

Previous studies have demonstrated that short-term contacts with the natural environment 

produced enjoyment, relaxation and reduced stress resulting in short-term beneficial 

physiological changes and improved levels of certain biomarkers (Haluza et al., 2014, 

Aspinall et al., 2015). The main objective of our research was to investigate long-term 

subclinical health benefits of chronic exposure to the natural environment using allostatic 

load (AL), a biomarker-based measure of physiological dysregulation, as the outcome 

variable. AL reflects the physiological consequences of neural or endocrine responses 

resulting from repeated stress (McEwen and Stellar, 1993, Seeman et al., 1997, McEwen, 

2002). Social and economic deprivation, and psychological traumas have been linked to 

increased AL (Clark et al., 2007, Bellingrath et al., 2009, Petrovic et al., 2016, Chandola and 

Zhang, 2018). Recent studies have also demonstrated inverse associations between 

residential greenness and allostatic load (Egorov et al., 2017), and between accessibility of 

urban green spaces and allostatic load (Ribeiro et al., 2019b). In turn, greater AL scores have 

been linked with adverse health outcomes including reduced cognitive performance, 

increased risks of cardiovascular diseases, other systemic diseases, and death (Borrell et al., 

2010, Juster et al., 2010, Juster et al., 2011, Cohen et al., 2014, Hwang et al., 2014, 
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Karlamangla et al., 2014, Milot et al., 2014, Cohen et al., 2015, McEwen, 2015, Arbeev et 

al., 2016, Arbeev et al., 2019).

Our previous research has demonstrated that greater vegetated land cover around residence 

as a marker of chronic exposure to the natural environment was associated with reduced AL 

indices based on multiple biomarkers of neuroendocrine, immune, cardiovascular, and 

metabolic functions (Egorov et al., 2017). That analysis utilized biomarkers that are known 

to be affected by chronic stress and to be predictive of adverse health outcomes. AL was 

calculated by summing binary biomarker data dichotomized at selected percentiles of 

sample distributions so that the AL index represented the number of biomarkers with 

potentially unhealthy values. Analysis of associations between vegetated land cover and 

individual biomarkers demonstrated that using an AL index was a statistically superior 

approach producing a much more significant and robust association than any single 

biomarker (Egorov et al., 2017).

The most common approach to estimating AL is the group AL index, which is based on the 

sum of biomarkers dichotomized at selected percentiles of a sample distribution (Juster et 

al., 2010). Variations of this approach involve dichotomizing biomarkers at specific 

percentiles of a population distribution or at clinical cut-off points when such data are 

available. A common approach to estimating AL using continuous biomarker data involves 

calculating a sum of z-scores or standard deviations from the sample mean for each 

biomarker (Juster et al., 2010). An alternative approach to estimating AL utilizing 

continuous biomarker data involves calculating statistical distance from the center of the 

joint distribution of biomarkers taking in account covariance among biomarkers, also known 

as the Mahalanobis distance(Cohen et al., 2013, Cohen et al., 2014).

The present manuscript describes results of further analysis of the above mentioned study in 

central North Carolina using a Mahalanobis distance-based AL index hereafter denoted as 

AL MAHA. In this new analysis, we also used improved exposure data involving separate 

estimates of grass cover and tree cover, and adjusted effect estimates for traffic air pollution 

from local sources.

2. Methods

2.1. Study design

This manuscript presents new results of analysis of data from a cross-sectional community 

study in adult residents of the Durham-Chapel Hill, North Carolina metropolitan area 

described in our previous publications (Egorov et al., 2017, Egorov et al., 2018). The 

protocol of this study was approved by the Institutional Review Board at the University of 

North Carolina in Chapel Hill. Study participants were recruited through advertisement in 

local newspapers and internet sites. All participants signed informed consent forms prior to 

data collection. Data collection was conducted during a single visit to the U.S. 

Environmental Protection Agency (US EPA) Human Studies Facility in Chapel Hill in May-

September 2013. Venous blood samples for analysis of biomarkers were drawn by registered 

nurses. Serum samples were archived at −80 °C until analysis. Physical examinations were 

limited to measurements of height and weight. Participants completed a questionnaire on 
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socio-demographic and behavioral factors. A total of 351 individuals participated in the 

parent study. Of these, 186 individuals who resided within the high-resolution urban land 

cover data area (see below) and had valid laboratory analysis results for all biomarkers were 

included in the present analysis.

2.2. Land cover data analysis

Residential addresses of study participants were geocoded at the building or property parcel 

centroid using ArcGIS software (Esri Inc., Redlands, CA, USA). Residential addresses that 

were not located at the building or property parcel centroid were located manually using a 

combination of address lookup, satellite imagery, and street-view to identify and confirm the 

center of the residence. The residential vegetated land cover data for the year 2010 were 

derived from 1 m resolution urban land cover imagery for the Durham-Chapel Hill, NC area, 

obtained from the US EPA EnviroAtlas database (https://www.epa.gov/enviroatlas) (Pickard 

et al., 2015). The high-resolution land cover data included five categories: (i) Water, (ii) 

Impervious surface, (iii) Soil & barren, (iv) Trees & forest, and (v) Grass & other 

herbaceous. While our previous analyses (Egorov et al., 2017, Egorov et al., 2018) used total 

vegetated land cover (trees and grass combined) to assess exposure, the present analysis used 

separate measures of tree cover and grass cover, as well as total vegetated land cover. Land 

cover measures were produced for a 500 m radius around each geocoded residence by ten 

concentric 50 m-wide annuli, from 0-50 m to 450-500 m. Exposure data were produced 

using four land cover estimation schemes for each land cover measure:

1. Average proportion of land cover within 150 m of residence

2. Average proportion of land cover within 500 m of residence

3. Weighted proportion of land cover within 500 m using equal weights assigned to 

all ten 50 m annuli

4. Weighted proportion of land cover within 500 m with annulus-specific weights 

exponentially declining with distance from the residence.

In the Scheme 4, annulus-specific weights were derived from a cumulative probability 

function of an exponential distribution with the parameter λ set equal to 0.0025 as described 

previously (Egorov et al., 2017). Weight for each annulus was calculated as an interval 

cumulative density:

P(x1 ≤ X ≤ x2) = e( − λx1) − e( − λx2)

where x1 is the inner radius and x2 is the outer radius of each annulus in meters.

To assess the degree of urbanicity, census block-group level data on average number of 

housing units per acre were abstracted from EPA’s Smart Location Database (https://

www.epa.gov/smartgrowth/smart-location-mapping#SLD). Housing unit density data were 

square root transformed and used as a covariate in regression analysis.
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2.3. Health effect biomarkers

The present analysis used 15 serological biomarkers that were available for most study 

participants as described previously (Egorov et al., 2017). These biomarkers included nine 

biomarkers of immune function: C-reactive protein (CRP), fibrinogen, interleukin (IL)-1β, 

IL-6, IL-8, intercellular adhesion molecule 1 (ICAM-1), myeloperoxidase (MPO), tumor 

necrosis factor (TNF)-α, and vascular cell adhesion molecule 1 (VCAM-1); four biomarkers 

of neuroendocrine function: dehydroepiandrosterone (DHEA), dopamine, epinephrine, and 

norepinephrine; and two biomarkers of metabolic function: serum amyloid A (SAA) and 

uric acid. VCAM-1 and ICAM-1 can also be characterized as biomarkers of endothelial 

function or vascular injury. All biomarkers were analyzed at EPA laboratories using 

commercially available assay kits as described previously (Egorov et al., 2017). 

Concentrations of analytes were estimated in accordance with kit manufacturers’ 

instructions. Results below the limits of detection (LOD) for dopamine, norepinephrine, 

MPO, IL-1β, IL-6, and TNF-α were substituted with ½ LOD values. Results for other 

biomarkers were all above LOD.

2.4. Statistical data analysis

Statistical analysis was conducted using SAS version 9.4 (SAS Institute, Cary, NC) 

software. Biomarker data were log-transformed for statistical analysis. AL MAHA measures 

were estimated using the mahalanobis function in the SAS procedure IML using sample-

derived mean and covariance values. This function uses the following formula:

AL MAHA = (x − μ)TS−1(x − μ)

where x is the vector of observations for k biomarkers, µ is the vector of mean biomarker 

values, and S is the covariance matrix.

Regression analysis of associations between vegetated land cover and AL MAHA was 

conducted using generalized additive models with a two-dimensional spline function (“thin-

plate spline”) of geographic coordinates to account for spatial trends (Webster et al., 2006, 

Ribeiro et al., 2019a). Regression models were fitted using the SAS procedure gampl. 
Exposure data (tree cover, grass cover or total vegetated land cover) were categorized into 

tertiles based on the sample distributions. All effect estimates are presented for tertiles 2 and 

3 vs. the reference tertile 1.

Two types of regression models were used:

• Model 1: Linear regression model for AL MAHA data. As AL MAHA values 

were approximately log-normally distributed, the outcome was log-transformed 

for regression analysis. The results are presented as multiplicative changes in 

median AL MAHA levels.

• Model 2: Regression models for binomial outcome using AL MAHA data 

dichotomized at the 90th percentile of the sample distribution. This analysis was 

conducted to assess the effect of tree cover on odds of having high AL MAHA 

level.
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Missing data on sociodemographic and behavioral covariates were imputed using the SAS 

procedure mi for arbitrary missing data applying the multivariate discriminant function 

method. The initial set of covariates for regression analysis was based on the final model for 

allostatic load developed previously (Egorov et al., 2017). It included age, gender, race 

(dichotomized as non-Hispanic Whites vs. all others), education (dichotomized as bachelor’s 

degree and higher vs. less than bachelor’s degree), BMI, square root transformed housing 

unit density at the census block group level, and two-dimensional spline of geographic 

coordinates.

This analysis also involved adjusting for ambient levels of traffic air pollution from local 

sources. Concentrations of nitrogen oxides (NOx), a representative traffic pollutant were 

estimated using the C-LINE/C-PORT online dispersion modeling tool for traffic and point 

sources of emission (Barzyk et al., 2015, Isakov et al., 2017). Model inputs included road 

network and traffic intensity data from North Carolina Department of Transportation. 

Annual average concentrations of NOx at residences of study participants were estimated 

taking in account meteorological data incorporated in the modeling tool.

A final multivariate regression model was developed from this initial model by adding other 

sociodemographic variables one at a time and removing the least significant variable one at a 

time (bidirectional elimination). Alternative regression models were compared using the 

Akaike Information Criterion Corrected (AICc) model fit statistics. Age was included in all 

models because it a biological factor affecting most biomarkers of health. Housing density, 

annual average concentration of NOx, and two-dimensional spline of geographic coordinates 

(“thin plate spline”) were also included in all regression models regardless of their statistical 

significance in order to demonstrate that effect estimates for land cover variables were 

adjusted for potential spatially-varying confounders, an important concern in research on 

green space and health.

To assess the robustness of the effects detected in the full dataset and identify potential effect 

modifiers, further analysis was conducted using the dataset stratified by binary factors: 

housing unit density (dichotomized at 1.5 housing units per acre or approximately 3.7 

housing units per hectare distribution based cut-off), sex, dichotomized race (White vs. all 

others), and obesity (obese individuals vs. all others). Due to sample size limitations, only 

continuous AL MAHA data (Model 1) were used in the stratified analysis. When warranted, 

potential effect modification was further explored in the full dataset using models with 

interaction terms.

3 Results

3.1. Descriptive statistics

Age of 186 study participants ranged from 18 to 85 years (mean 37.1 years). Approximately 

two-thirds (67.2%) of participants were women (Table 1). Just over half of study participants 

(52.2%) had at least a four-year college degree. This relatively high level of education 

reflected the composition of source communities. BMI data indicated that 28.5% of study 

participants were obese according to the World Health Organization’s definition (BMI ≥ 

30.0 kg/m2). Current smoking was reported by 26.3% of study participants.
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Approximately half of study participants (50%) lived in the city of Durham, 31% lived in 

Chapel Hill and 19% lived in smaller towns in the Durham-Chapel Hill, NC metropolitan 

area. Predominant types of housing in the study population were detached single family 

homes (the most prevalent housing type), townhouses and low-rise apartment buildings.

Housing unit density at a census block-group level ranged from 0.2 to 20.0 (median 3.8) 

housing units per hectare. Descriptive statistics for land cover measures are presented in 

Table 2. Total average vegetated land cover within 500 m of residence (land cover estimation 

Scheme 2) ranged from 37% to 95%. Weighted land cover measures, which assigned greater 

weights to vegetation near residence (Schemes 3 and 4), as well as average vegetated land 

cover within 150 m (Scheme 1), exhibited greater variability than the average within 500 m. 

This reflected the greater variability in land cover near residences. At most residences, 

vegetated land cover was represented mainly by tree cover.

Tree cover measures were negatively correlated with grass cover measures, with correlation 

coefficients ranging from −0.46 to −0.58 depending on the land cover estimation scheme 

(Supplemental Table 1). Total vegetated land cover measures were positively correlated with 

tree cover (correlation coefficients from 0.75 to 0.94) but weakly negatively correlated with 

grass cover (correlation coefficients from −0.17 to −0.27). A scatter plot of exponentially 

weighted grass cover vs. tree cover within 500 m of residence (Scheme 4) is presented in 

Figure 1.

Estimated annual average concentrations of NOx from local traffic sources at residences of 

study participants ranged from 0.5 to 79.5 parts per billion (ppb) with mean 12.4 ppb and 

interquartile range 10.7 ppb. Average annual background concentration estimated by the 

modeling software (3.1 ppb) was not included in these estimates. Estimated NOx levels were 

positively correlated with residential unit density (r = 0.28, p = 0.0001) and weakly 

negatively correlated with various vegetated land cover measures. The strongest negative 

correlation was observed for average total vegetated land cover within 500 m of residences 

(r = −0.19, p = 0.01). For exponentially weighted tree cover within 500 m of residence (land 

cover estimation Scheme 4), the negative correlation was very weak and not significant (r = 

−0.07, p = 0.3).

The values of AL MAHA index ranged from 2.0 to 7.2 (median 3.7). Log-transformed 

approximately normally distributed AL MAHA data were used in further analyses.

3.2. Associations between residential vegetated land cover and allostatic load

In addition to a measure of residential greenness, the final set of covariates for regression 

analysis included variables for age, education (dichotomized as bachelor’s degree or higher 

vs. less than bachelor’s degree), smoking status (dichotomized as current smokers vs. non-

smokers), BMI (log-transformed), housing unit density (square root transformed), annual 

average NOx level from local traffic sources, and a two-dimensional spline function of 

geographic coordinates. Race, ethnicity and sex were not included in regression models as 

these variables were not significant predictors of AL MAHA; removing them did not result 

in meaningful changes in parameter estimates for residential greenness variables. Although 

NOx concentration was positively associated with AL MAHA, its effect was not statistically 
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significant in any model. For example, in the model that included exponentially weighted 

tree cover data (Scheme 4) as the predictor of interest, an increase of 10 ppb (approximately 

equal to the interquartile range) in annual average NOx level was associated with 1.01 (0.99; 

1.04) multiplicative change in median AL MAHA (p = 0.3), or about 1% increase.

In order to select an optimal land cover estimation scheme, exposure measures produced 

under the four schemes described above were analyzed using Model 1 for continuous AL 

MAHA data and Model 2 for dichotomized AL MAHA data. Results were expressed in 

terms of adjusted multiplicative changes in median AL MAHA for Model 1 and adjusted 

odds ratios of having AL MAHA above the 90th percentile of the sample distribution for 

Model 2.

Greater tree cover was consistently associated with reduced median AL MAHA and reduced 

odds of having AL MAHA above the 90th percentile (Table 3). For both models, Scheme 2 

(simple average within 500 m) consistently produced the poorest model fit with the biggest 

AICc values and the smallest effect estimates while Scheme 4 (exponentially weighted mean 

within 500 m) produced the best model fit with smallest AICc values and the greatest 

adjusted effect estimates. In Model 1 for Scheme 4, the 3rd tertile of tree cover compared to 

the 1st tertile was associated with a multiplicative change of 0.85 (0.79, 0.92), p <0.0001 in 

AL MAHA. In other words, the median adjusted AL MAHA was reduced by 15 % (21%; 

8%). In Model 2 for Scheme 4, the adjusted odds ratio of having AL MAHA above the 90th 

percentile of the sample distribution was 0.04 (0.01; 0.35) - an approximately 25-fold 

reduction in the odds of having a high level of physiological dysregulation.

Further analyses comparing various exposure characterization approaches based on different 

land cover measures were conducted using Scheme 4 only. Both total vegetated land cover 

(exposure characterization approach A) and tree cover (exposure characterization approach 

B) were significantly associated with reduced AL MAHA (Table 4). However, both 

regression Models 1 and 2 for tree cover produced better fit, and stronger effect estimates 

with smaller p-values than corresponding models for total vegetated land cover. Grass cover, 

when analyzed without adjusting for tree cover (exposure characterization approach C), 

appeared to have a detrimental effect on AL MAHA. This effect was apparently due to 

confounding by tree cover which was negatively correlated with grass cover. When grass 

cover and tree cover variables were included in the same regression model (exposure 

characterization approach D), the effect of grass cover on AL MAHA was no longer 

significant. In contrast, adjusting for grass cover did not result in meaningful changes in 

effect estimates for tree cover.

Regression analysis stratified by four binary factors was conducted using the same 

regression models as described above, except analysis stratified by obesity excluded BMI as 

a predictor. The results (Figure 2) show that the inverse associations between tree cover and 

AL MAHA were consistent in all strata. Specifically, the estimated adjusted effect of the 3rd 

tertile of tree cover was statistically significant in seven out of eight stratified tests: in low 

housing density (N = 92) and high housing density (N = 94) strata, in males and females, in 

obese and non-obese individuals, as well as in non-Hispanic Whites (N = 100), but not in 

non-White or Hispanic individuals (N = 86). For example, estimated multiplicative effect on 
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AL MAHA for the 3rd tertile of tree cover vs. 1st tertile were 0.86 (0.76; 0.97) in men and 

0.84 (0.77; 0.93) in women. Further regression analysis of an interaction effect of 

dichotomized race/ethnicity and tree cover did not produce evidence of significant 

modification (p > 0.5, data not shown). Overall, stratified analyses produced no evidence of 

effect modification by housing unit density, sex, race, or obesity.

4. Discussion

4.1. Summary of findings and interpretation

This research applied a composite biomarker-based measure of physiological dysregulation 

known as allostatic load to demonstrate subclinical health benefits of residential tree cover 

and total vegetated land cover. The present analysis employed the Mahalanobis distance 

approach to estimate an allostatic load index denoted in this manuscript as AL MAHA. This 

approach utilizes continuous biomarker data and takes in account covariance. The results 

demonstrated a strong beneficial association between greater distance-weighted proportion 

of tree cover within 500 m of residence and reduced AL MAHA in adult residents of central 

North Carolina.

These new results corroborate our previous analyses which demonstrated the effects of total 

residential vegetated land cover on the AL index calculated using a different approach – a 

sum of dichotomized biomarker values reflecting the count of biomarkers with potentially 

unhealthy values (Egorov et al., 2017, Egorov et al., 2018).

The main findings showing beneficial effects of tree cover on AL MAHA were highly 

significant (p < 0.0001) despite the rather small study population of 186 adults. The 

observed effects were also consistent in regression analyses stratified by various 

sociodemographic and geographic factors, such as gender, race, obesity status, and housing 

unit density, suggesting that subclinical health benefits of urban greenery were similarly 

expressed in various sub-populations, and in urban and suburban areas.

Previous prospective cohort studies using AL MAHA indices comprised of various sets of 

neuroendocrine, metabolic and immune biomarkers demonstrated that greater AL MAHA 

was strongly associated with increased risks of cardiovascular and other systemic diseases 

and mortality, and that these associations were robust to changes in the composition of 

biomarkers (Cohen et al., 2014, Milot et al., 2014, Cohen et al., 2015, Arbeev et al., 2016, 

Arbeev et al., 2019).

The results of our study suggest that a mechanism linking exposure to urban green spaces 

with reduced morbidity and mortality effects demonstrated in previous studies (van den 

Bosch and Ode Sang, 2017, Kondo et al., 2018) involves a reduced stress-related 

physiological dysregulation. Our previous analysis also demonstrated significant beneficial 

effects of residential greenery on individual biomarkers of immune function and 

inflammation (Egorov et al., 2017). Chronic stress is known to be associated with increased 

chronic inflammation while chronic inflammation plays an important role in the etiology of 

cardiovascular and other systemic diseases (Wirtz and von Kanel, 2017, Furman et al., 
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2019). Alleviating chronic stress leads to reduced chronic inflammation and physiological 

dysregulation, and reduced susceptibility to systemic diseases.

This analysis involved adjusting effect estimates for vegetated land cover by estimated 

annual average exposure to NOx from local traffic sources. We modeled only NOx air 

pollution from local sources because background levels of nitrogen oxides change slowly 

over distance. Gradual spatial effects on the outcome would be accounted for by the two-

dimensional spline function of geographic coordinates that was included in all regression 

models.

As developed urban areas with higher levels of traffic air pollution tend to have less 

vegetation, air pollution could be a positive confounder inflating apparent beneficial effects 

of tree cover on AL. However, the results of this analysis show that traffic air pollution did 

not confound the observed beneficial effects of tree cover in the study area. This finding may 

not be generalizable to other urban areas, especially those with higher air pollution levels or 

with stronger negative associations between air pollution and greenness.

Reduction of air pollution exposure by urban greenery, such as green belts along roads 

providing barriers to the spread of air pollution to near-road residences, can potentially 

mediate health benefits of green spaces. It has been shown, however, that only properly 

designed, dense, uninterrupted green belts or barriers along roads can reduce behind-barrier 

levels of traffic air pollution (Abhijith et al., 2017, Baldauf, 2017). This may explain why 

some studies failed to show a reduction in traffic air pollution behind green belts (Yli-

Pelkonen et al., 2017). As C-LINE/C-PORT models do not take in account vegetation, we 

conducted additional exploratory analysis using Google street view (not shown in the 

Results section), and found that very few of the study participants lived in residences behind 

dense green barriers that could substantially reduce exposure to traffic air pollution from 

local sources.

4.2. Limitations

This cross-sectional observational study had certain limitations. Its findings could be 

affected by unmeasured confounding factors, such as health-oriented behaviors that might be 

correlated with living in greener areas. While the study involved collecting standard 

individual level socioeconomic and demographic data, behavioral data were limited to 

smoking and handling soil with bare hands – a risk factor for soil-borne infections (Egorov 

et al., 2018). Data on physical activity, spending time outdoors, gardening, and dietary habits 

were not collected. Further research on green space and physiological dysregulation should 

involve collecting more extensive behavioral data to address these concerns.

This study used a convenience sampling approach. Women were overrepresented relative to 

the general population due to their greater willingness to participate in the study. The level 

of education and racial composition were generally representative of the source population 

as discussed previously (Egorov et al., 2017). As this study involved adults only, these 

findings are not applicable to children. The findings may not be generalizable beyond the 

study area in central North Carolina. This research will need to be replicated in areas with 
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different types of vegetation, climate and land use practices, and in populations of different 

compositions.

This study aimed to assess beneficial subclinical effects of greenery in the vicinity of 

residences. Assessing potential effects of city parks, forests, green corridors, and other 

public green spaces was beyond the scope of this study. While potentially increased physical 

activity in residents of greener areas and greater benefits of physical activity in the natural 

environment (“green exercise”) could also be important pathways to health, this study was 

not designed to assess their benefits. Our previous analysis of the same dataset produced no 

evidence of an association between residential vegetated land cover and BMI (Egorov et al., 

2017). This finding supports the hypothesis that for the greenery around residences, 

relaxation, stress alleviation and improved immune system functioning are the most 

important pathways to improved health.

4.3. Strengths

The statistical method for estimating AL MAHA has several apparent advantages (Cohen et 

al., 2013). Compared to the AL estimation method based on dichotomized biomarkers, AL 

MAHA uses greater amount of the available information on individual biomarkers and their 

interrelationships. AL MAHA is also an improvement compared to another commonly used 

approach to estimating AL involving a sum of z-scores for individual biomarkers, which 

does not account for covariance (Ribeiro et al., 2019b).

A potential disadvantage of the AL MAHA method (as well as the AL estimation approach 

based on the sum of z scores) is that the statistical center of the sample distribution may not 

represent individuals in optimal health. Typical study participants may have a substantial 

amount of physiological dysregulation. As a result, a perfectly healthy, non-stressed 

individual may have a substantial estimated AL MAHA value. To assess the magnitude of 

this potential problem, we re-analyzed data using an alternative AL MAHA index which was 

calculated using the means of log-transformed biomarker values derived from a subset of 67 

healthiest study participants (36% of the study population). This subset excluded individuals 

with self-reported diabetes, arthritis, heart, kidney and liver diseases, ulcers, dyspepsia, 

inflammatory bowel disease, HIV infection, history of depression, and self-reported health 

status worse than “very good”, as well as individuals with positive results of serological IgG 

test for Toxoplasma gondii, which was linked with increased AL in our previous analysis 

(Egorov et al., 2018). Pearson correlation between the two log-transformed alternative AL 

MAHA indices was 0.94. The results of regression analysis using the alternative AL MAHA 

index were within 2 % of the results reported above. For example, the multiplicative effect 

estimates for the 3rd tertile vs. 1st tertile of distance-weighted average tree cover changed 

from 0.85 (0.79; 0.92) to 0.84 (0.78; 0.91). This suggests that the study findings were not 

affected by a high proportion of individuals with chronic diseases in the study sample.

Associations between residential vegetation and AL MAHA were analyzed using two 

alternative models: (1) linear regression for log-transformed AL MAHA to assess 

multiplicative effects of tree cover on median AL MAHA; and (2) regression models using 

dichotomized AL MAHA data (a binomial outcome) to assess the effect of tree cover on the 

odds of having AL MAHA above the 90th percentile of the sample distribution. The results 
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consistently demonstrated significant associations suggesting beneficial subclinical effects 

of exposure to greenery. The third tertile of tree cover compared to the first tertile was 

associated with an approximately 15% reduction in median AL MAHA (or approximately 

0.7 standard deviations reduction in log-transformed AL MAHA) and approximately 25-fold 

smaller odds of having AL MAHA above the 90th percentile of the sample distribution. The 

apparent discrepancy between the relatively small effect on the median AL MAHA and the 

pronounced effect on the odds of having high AL MAHA could be due to a combination of 

two mechanisms: (i) the entire distribution of AL MAHA values being shifted to the left in 

individuals exposed to greater residential tree cover; and (ii) stronger beneficial effects in 

highly stressed individuals on the right tail of the AL MAHA distribution. Future research 

using larger sample sizes should attempt to characterize effects of urban green spaces in 

highly stressed individuals.

The use of 1-meter resolution land cover data from US EPA’s EnviroAtlas enabled detailed 

analysis of vegetated land cover around each residence using concentric annuli. Accounting 

for distance-dependent decline in the effect of greenery was a strength of this analysis. 

Another strength was a regression modeling approach that involved fitting a two-

dimensional spline function of geographic coordinates to adjust for potential confounding by 

unknown geographically-varying factors associated with greenness and health.

In our previous analysis, an interquartile increase in total exponentially-weighted vegetated 

land cover was associated with an approximately 37% reduction in the mean Poisson-

distributed AL, which was calculated using dichotomized data on the same 15 biomarkers 

(Egorov et al., 2017). Re-analysis of the same Poisson-distributed AL index against newly 

generated tree cover data produced a comparable effect estimate: 57% (43%, 68%) reduction 

in AL at the third tertile of tree cover compared to the first tertile (not shown in the Results 

section). The corresponding effect estimate on AL MAHA was a relatively modest 15% 

(21%, 8%) reduction in the median AL MAHA value (Model 1, exposure characterization 

approach B in Table 4). It should be noted that the effects of greenery on AL index based on 

dichotomized biomarkers and AL MAHA based on continuous biomarkers are not directly 

comparable. For the former, the effect is a percent reduction in the count of biomarkers with 

potentially unhealthy levels; for the latter, the effect means a percent reduction in the 

statistical distance from the center of a multivariate distribution. The results of these two 

analyses support each other and demonstrate that the beneficial effects of residential tree 

cover are robust to variations in statistical approaches to estimating AL.

In this analysis the distance-weighted measure of tree cover within 500 m of residence with 

weights derived from an exponential distribution provided the best model fit and the biggest 

effect estimates. This finding is consistent with our previous analysis (Egorov et al., 2017). 

While the 500 m buffer size is common in epidemiological research on residential 

greenness, previous studies have used various buffer sizes from 100 m to 2 km (Dadvand et 

al., 2015, Browning and Lee, 2017, Dadvand et al., 2017). The strength of our approach was 

in accounting for the decline of effects with increasing distance from the residence. The 

results suggest that trees in proximity to the residence are associated with substantially 

stronger beneficial effects on health than trees located at a greater distance.
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Using a greater buffer size, such as 1,000 m, would result in a reduced sample size as some 

residences were located near the boundary of the high resolution EnviroAtlas land cover 

area. Results of an exploratory analysis using the 1,000 m buffer (not shown) suggested that 

the effects of trees located farther than 500 m from residence on AL MAHA were very small 

and, therefore, could be ignored. A large nationwide prospective cohort study also found a 

stronger protective effect on mortality of residential greenness within a 250 m buffer 

compared to 1,250 m buffer (James et al., 2016).

In the present study, tree cover was associated with reduced AL MAHA while grass cover 

was not linked with health benefits. In fact, grass cover was associated with a significantly 

increased AL MAHA in a regression model not adjusting for tree cover. As tree cover and 

grass cover were strongly negatively correlated in the study area, the observed negative 

effect of grass cover appeared to be due to confounding by tree cover. The effect of grass 

cover practically disappeared after adjusting for tree cover (Table 4, Approach D) while the 

effect of tree cover was not substantially affected by adjusting for grass cover. These 

findings may not be generalizable outside the study area. Further research in various 

geographic and climatic areas is warranted to elucidate the types of vegetation and its 

characteristics that are responsible for subclinical and clinical beneficial health effects.

To summarize, main strengths of this study include: (1) applying the statistically powerful 

concept of AL as a composite biomarker-based measure of subtle, subclinical health benefits 

of urban green spaces in a community-based setting; (2) utilizing the available information 

on biomarkers to the fullest extent and accounting for covariance; (3) accounting for the 

decline of effects of greenery with increasing distance from the residence; and (4) analyzing 

effects of different vegetation types and demonstrating that health benefits were associated 

with greater tree cover near the residence.

In supporting our previous findings (Egorov et al., 2017), this new analysis again 

demonstrated that summarizing data on multiple biomarkers of health in a single AL index is 

a very statistically powerful approach that can facilitate studies of subtle subclinical effects 

of environmental and social factors in small populations. Application of biomarker-based 

AL indices may enable assessment of subclinical health benefits in community studies and 

provide opportunities to demonstrate beneficial impacts of local policy interventions aiming 

to improve the urban environment. Examples of such studies may include urban greening 

and brownfield revitalization initiatives, and interventions aiming to improve lifestyle. 

Further research characterizing temporal changes in AL in response to changing 

environmental or social conditions is warranted in order to support the application of this 

approach in prospective studies assessing effects of policy measures.

5. Conclusions

This study demonstrated that greater tree cover near residence was associated with reduced 

Mahalanobis distance-based allostatic load. As allostatic load has been shown to be 

predictive of morbidity and mortality these results suggest that individuals living in greener 

environments have reduced risks of adverse health outcomes.
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CRP C-reactive protein

DHEA dehydroepiandrosterone

ICAM-1 intercellular adhesion molecule 1

IL interleukin

IQR interquartile range

pctl percentile

SAA serum amyloid A

TNF tumor necrosis factor

US EPA United States Environmental Protection Agency
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Fig. 1. 
Percent of tree cover vs. percent of grass cover within 500 m of residence, distance-weighted 

estimates with weights from an exponential decay function (Scheme 4).
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Figure 2. 
Results of stratified analysis of continuous AL MAHA data (Model 1) vs. tertiles of tree 

cover (Scheme 4) using the 1st tertile as a reference category.
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Table 1.

Demographic, socioeconomic and health characteristics of the study population.

Variable Category Number Percent

All 186 100%

Sex Female 125 67.2%

Male 61 32.8%

Race

White 106 57.0%

African American 66 35.5%

American Indian or Alaska Native 1 0.5%

Asian or Pacific Islander 4 2.2%

Other or mixed 8 4.3%

Not reported 1 0.5%

Ethnicity Hispanic 13 7.0%

Not Hispanic 173 93.0%

Education Did not graduate from high school 13 7.0%

High school 29 15.6%

Some college, no degree 34 18.3%

Associate degree 13 7.0%

Bachelor’s degree 55 29.6%

Post baccalaureate degree 42 22.6%

Smoking status Current smoker 49 26.3%

Not a current smoker 136 73.1%

Not reported 1 0.5%

BMI category

Obese 53 28.5%

Overweight 50 26.0%

Normal 80 43.0%

Underweight 3 1.6%
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Table 2.

Vegetated land cover around residences, percentage of total area.

Land cover estimation scheme Land cover type Min 33st pctl Median 67th pctl Max

1: Average within 150 m Vegetation 20 59 68 74 95

Trees 7 41 49 60 92

Grass 1 12 14 18 45

2: Average within 500 m Vegetation 37 66 73 77 95

Trees 24 51 57 64 93

Grass 3 12 14 16 31

3: Weighted average within 500 m with equal weights Vegetation 32 64 69 76 94

Trees 21 48 53 60 91

Grass 3 12 14 17 34

4: Weighted average within 500 m with exponential decay Vegetation 27 62 68 76 94

Trees 17 45 52 59 90

Grass 3 12 15 17 36
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Table 3.

Adjusted estimates of the effects of tree cover on AL MAHA by alternative land cover estimation schemes. 

Model 1: Multiplicative changes in continuous log-transformed AL data; Model 2: Odds ratios for AL above 

the 90th percentile of the sample distribution. Effect estimates were adjusted for age, smoking status, 

education, BMI, density of residential units per census block groups, concentration of NOx from local traffic, 

and thin plate spline of geographic coordinates.

Tree cover estimation scheme Tertile of 
tree cover

Model 1: multiplicative 
change in continuous AL 

MAHA

AICc for 

model 1
a

Model 2: aOR of AL 
MAHA above 90th 

pctl

AICc for 

model 2
a

1: Average within 150 m

1st Reference

−338

Reference

1252nd 0.92 (0.85, 0.99)* 0.29 (0.08, 1.07)

3rd 0.87 (0.81, 0.95)** 0.11 (0.02, 0.59)*

2: Average within 500 m

1st Reference

−335

Reference

1282nd 0.95 (0.88, 1.02) 0.59 (0.18, 1.90)

3rd 0.89 (0.82, 0.97)* 0.14 (0.02, 0.76)*

3: Average weighted with 500 m with 
equal weights

1st Reference

−345

Reference

1212nd 0.86 (0.80, 0.93)** 0.15 (0.03, 0.73)*

3rd 0.87 (0.80, 0.94)** 0.06 (0.01, 0.39)*

4: Average weighted within 500 m with 
exponential decay

1st Reference

−348

Reference

1202nd 0.86 (0.80, 0.92)*** 0.16 (0.03, 0.76)*

3rd 0.85 (0.79, 0.92)*** 0.04 (0.01, 0.35)*

*
p < 0.05

**
p < 0.001

***
p < 0.0001

a
Lower values indicate better model fit.
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Table 4.

The estimated effects of land cover types on AL. Model 1: Multiplicative changes in continuous log-

transformed AL MAHA data; Model 2: Odds ratios for AL above the 90th percentile of the sample 

distribution. Effect estimates were adjusted for age, smoking status, education, BMI, density of residential 

units per census block group, concentration of NOx from local traffic, and thin plate spline of geographic 

coordinates.

Exposure 
characterization 

approach

Type of land 
cover

Tertile of 
land cover

Model 1: adjusted 
multiplicative change in 
continuous AL MAHA

AICc for 
model 1

Model 2: aOR of 
AL MAHA above 

90th percentile

AICc for 
model 2

A Total vegetated 
cover

1st Reference

−333

Reference

1292nd 0.94 (0.87, 1.02) 0.32 (0.09, 1.20)

3rd 0.91 (0.84, 0.99)* 0.13 (0.02, 0.78)*

B Tree cover 1st Reference

−348

Reference

1202nd 0.86 (0.80, 0.92)*** 0.16 (0.03, 0.76)*

3rd 0.85 (0.79, 0.92)*** 0.04 (0.01, 0.35)*

C Grass cover 1st Reference

−334

Reference

1332nd 1.00 (0.96, 1.12) 2.06 (0.55, 7.72)

3rd 1.10 (1.02, 1.19) 1.69 (0.43, 6.61)

D Tree cover 1st Reference

−338

Reference

130

2nd 0.85 (0.79, 0.92)*** 0.20 (0.05, 0.82)*

3rd 0.86 (0.78, 0.93)** 0.07 (0.01, 0.51)*

Grass cover 1st Reference Reference

2nd 1.00 (0.93, 1.09) 0.69 (0.15, 3.18)

3rd 1.04 (0.96, 1.14) 0.78 (0.17, 3.62)

*
p < 0.05

**
p < 0.001

***
p < 0.0001
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