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From whole-mount to single-cell spatial
assessment of gene expression in 3D
Lisa N. Waylen1, Hieu T. Nim1,2, Luciano G. Martelotto3 &

Mirana Ramialison 1,2✉

Unravelling spatio-temporal patterns of gene expression is crucial to understanding core

biological principles from embryogenesis to disease. Here we review emerging technologies,

providing automated, high-throughput, spatially resolved quantitative gene expression data.

Novel techniques expand on current benchmark protocols, expediting their incorporation into

ongoing research. These approaches digitally reconstruct patterns of embryonic expression in

three dimensions, and have successfully identified novel domains of expression, cell types,

and tissue features. Such technologies pave the way for unbiased and exhaustive recapitu-

lation of gene expression levels in spatial and quantitative terms, promoting understanding of

the molecular origin of developmental defects, and improving medical diagnostics.

Spatial control of gene expression is crucial for defining tissue identity, from the patterning
of a zebra’s stripes, to the left-right asymmetry present in most species, and deviations from
this regulatory programme may result in developmental defects or disease, such as situs

inversus or the variation in antigens expressed at different layers of a cancer tumour.
Our body plan relies on spatial expression, achieved by correct deployment of a developmental

gene regulatory network (GRN) where the location, timing, and level of developmental gene
expression are crucial. For instance, Hox genes are a highly conserved family involved in body
axis patterning and provide an illustration of the requirement for specific timing, spatial
restriction, and expression degree across species. Hox genes are silenced until activated by
developmental timing cues, and sequential expression of Hox clusters will define the body plan
of the embryo1–3. Ectopic expression of Hoxa-1 in mice can reorganise regions of the hindbrain
by transforming developing rhombomeres4, and in zebrafish, misexpression of Gata5 induces
ectopic expression of myocardial genes such as nkx2.55. Of particular importance in develop-
ment are morphogens, a concentration gradient dependent signal that provides a pattern for
tissue differentiation and development. While some genes employ a simple on/off mechanism,
many developmental genes respond to different expression thresholds to provide phenotypically
distinct outcomes. In Drosophila, the maternal gene bicoid is responsible for regulating
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development of the anterior pole through graduated mRNA dif-
fusion6 and limb patterning in the chick is established by mor-
phogenic fields7.

Organoids raised from human stem cell cultures provide an
invaluable model for exploring disease mechanisms spatially, by
uncovering the cellular and molecular interactions occurring in
three dimensions (3D). For instance, embryonic models such as
gastruloids8, and subdomains of organs such as the kidney can be
recapitulated from the preferential induction of progenitors9.
This offers a unique platform to capture the spatial gene
expression information required for accurate tissue patterning.
Deviations from programmed, spatio-temporal gene expression
can lead to disease, as seen in congenital disorders10 and highly
heterogeneous cancer tumours which provide a prime target for
spatial profiling analysis. For example, the dysregulation of HOX
genes in leukaemia has been shown to support the immortalisa-
tion of malignant cells, while specific spatial expression patterns
of biomarkers inform clinical prognosis and therapies11,12. In
plants, changes in spatial gene expression have been shown to
provide advance warning for the progression of viral infection13.

Therefore, to accurately decipher the GRNs involved in spatial
gene expression, it is necessary to capture gene identity along with
quantitative data. Previously, the Allen Mouse Brain Atlas con-
structed by the Allen Institute for Brain Sciences14 integrated bulk
and computational methods with in situ hybridisation gene
expression data, later accompanied by human and macaque
atlases15,16. Despite challenging low resolution and lack of
quantitative data, these atlases significantly advanced the current
understanding of brain structure and function. More recently, the
Allen Mouse Brain Common Coordinate Framework (CCFv3)17

sampled 1675 mouse brains at 10 μm voxel resolution, integrating
multiple datasets in 3D. Virtual atlases are publicly available,
browsable cell reference maps where gene expression data is
reconstructed in 3D, digital space. They support myriad fields of
research through interactive visualisation and analysis, providing
a valuable source of information for many model organisms
including C. elegans (Wormbase)18, frogs (Xenbase)19, Droso-
phila20 and zebrafish21.

This review explores current techniques used to elucidate
spatial expression, from established robust methods with
throughput limitations, to cutting-edge systematic and unbiased
measurement of gene expression (Fig. 1, Table 1). We explain the
power of accurately capturing spatial gene expression data
quantitatively, to decipher molecular interactions driving major
biological processes.

Imaging-based methods for resolving gene expression
spatially
Historically, spatial patterns were captured from direct or in situ
staining of genes of interest. In situ hybridisation (ISH) techni-
ques (Fig. 1a) were developed to study spatial complexity. This
involves hybridisation of a labelled RNA to an endogenous
mRNA transcript within the cell22. Large-scale in situ hybridi-
sation is routinely used to simultaneously interrogate expression
patterns of genes in sections or whole organs and tissues23,24.
This is a particularly efficient method to screen for genes with
regionalised expression patterns, such as those responsible for
early growth determination25, but these techniques are low-
throughput. At most a hundred genes can be simultaneously
assessed, albeit in different samples. Another challenge of this
traditional model is that visualisation of expression relies on
probe binding efficiency, which varies significantly, eliminating
the ability to perform comparative study between tissues or genes,
without first performing background neutralising or equalising
equations26. While in situ hybridisation addresses the need for

spatially resolved data, accurate quantification of gene expression
is often difficult to achieve using this approach and therefore
requires further analysis.

Increasing sensitivity and accuracy. Further advancements to
accurate quantitative measurement of in situ gene expression
include the Spatial Genomic Analysis pipeline (SGA)27, which
integrates the output from sequential single-molecule fluores-
cence in situ hybridisation and hybridisation chain reaction
(HCR). HCR employs two complementary DNA probes which
form a fluorescently labelled amplification polymer capable of
relative quantification of mRNA expression28. In addition, this
technology achieves higher spatial resolution due to the inte-
grated single-cell imaging techniques. The SGA pipeline allowed
novel characterisation of a pluripotent stem cell niche in devel-
opment of the dorsal neural tube27. RNAscope provides a further
integration of qualitative and quantitative approaches whereby
probe hybridisation and signal amplification are performed
in situ, allowing spatially relevant analysis at single-molecule
resolution29. However, analysis is limited to a handful of target
genes, since throughput from SGA is restricted by the number of
distinguishable dyes.

Click-amplifying fluorescent ISH (ClampFISH) was developed
to improve the efficiency in FISH and the resulting weak signal
response that demands high power microscopy. Indeed, the
enzymes required in FISH may prove inefficient, providing
inconsistent amplification or poor diffusion through the cell.
ClampFISH detects unique nucleic acid molecules, and allows
padlock-style probes to be used without enzyme support. Click
chemistry is used to covalently circularise amplifier molecules by
linking 5′ and 3′ ends30, topologically entangling individual
amplifier molecules to increase binding specificity.

Recent advances in ISH have introduced a novel approach to
improve signal detection. Single-molecule fluorescence in situ
hybridisation (smFISH) relies on the use of many short probes
which target multiple regions of the mRNA transcript. This can
approximate the level of gene expression between different
tissues, but is not numerically quantitative31. It is also limited by
the need to bind sufficient primers to the query mRNA, which
may not be possible for many short mRNAs. Although smFISH
cannot assess non-coding RNAs such as those required for many
regulatory functions, as it targets the ribosome/mRNA interac-
tions, it can provide spatial localisation of RNA expression by
directly imaging individual RNA molecules in single cells.
Throughput is limited by the number of RNA species that can
be simultaneously measured in single cells.

While previous studies in smFISH have improved the number
of probed genes accessible via a targeted, barcode approach, a new
cyclic technique, ouroboros smFISH (osmFISH) relies on a non-
barcoded approach focussed on designing image processing tools
capable of processing large tissue areas and extensive data sets32.
smFISH is more efficient at detecting RNA than single-cell RNA
sequencing (scRNA-seq)33, and osmFISH has combined short
hybridisation times and background reduction to attain high
signal-to-noise ratios to further improve the sensitivity of RNA
detection. osmFISH achieved a rate of 30% zero counts in contrast
to the 82% registered by scRNA-seq, indicating its higher
sensitivity to recover low levels of gene expression. This is largely
because target number scales with the number of required
hybridisation rounds to reduce error, and highly expressed genes
do not affect the detection of non-highly expressed genes as
barcoding is not required, and images can be analysed separately.
FISH approaches rely on downstream image analysis to extract
numerical measurements of gene expression. Meanwhile, scRNA-
seq also requires reads filtering, mapping, and quality control to
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be converted into numerical measurements. osmFISH has been
optimised for thin tissue sections, and a study of murine brain
tissue developed an atlas of gene expression in the somatosensory
cortex using 33 marker genes. Although a majority (59%) of the
data came from neurons, many different cell types were observed
and characterised.

Increasing throughput and resolution. Multiplexed error-robust
fluorescence in situ hybridisation (MERFISH) multiplexes
smFISH34 and assigns barcodes to individual RNA species, which
can be imaged sequentially, allowing single-cell transcriptomic
profiling. Branched DNA (bDNA) amplification substantially
improved MERFISH detection efficiency, without increasing
fluorescent spot size for individual transcripts, and it is now
possible to use this method to study short RNAs35. This approach
generates in situ transcriptomic analyses and detects >1000 RNA
species, and provides error correction for >100. Further
improvements to the efficiency of MERFISH gene processing
allow simultaneous imaging of ~10,000 genes at a detection
efficiency of ~80%36. While providing a high standard of

subcellular resolution, the necessity for cell-dissociation chal-
lenges the spatial power of this approach.

Digital Spatial Profiling (Fig. 1b), a new platform from
Nanostring, allows multiplexed analysis of protein or RNA
(~100 and ~1000plex, respectively), capable of single-cell
resolution. Probes coupled with photocleavable, spatially bar-
coded tags can be used to simultaneously profile targets from a
sample tissue region. Early testing suggests that this will be a
powerful new tool in understanding the tumour microenviron-
ment and identifying unique, prognostic patient biomarkers37.
Reproducibility between sections is high, and result validation
demonstrates a fair correlation with IHC, FCM and QIF, with
some spatially restricted expression patterns of immune markers
found to be associated with patient outcome38. A key advantage
of this approach is that it is non-destructive, permitting
reanalysis, and analysis of protein and RNA in cohort on serial
sample sections. Digital Spatial Profiling is currently limited, with
only four fluorescent visualisation stains available to examine
tissue morphology and determine regions of interest.

Traditional spatial mapping relies on fluorescence light
microscopy or direct physical registration of transcripts. DNA
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Fig. 1 Principles of current methods for capturing spatial gene expression. Schematic overview of methods based on imaging profiling of the entire
specimen. a In situ hybridisation/fluorescence staining where bound oligonucleotide probes reveal spatial expression via fluorescent dyes. b Digital Spatial
Profiling where digital barcodes tag bound oligonucleotides and allow multiplexed spatial profiling. c DNA microscopy where chemical DNA reactions
permit spatial imaging. d seqFISH+ where accurate fluorescent barcoding is performed sequentially to improve throughput and generate spatial atlases
in situ. e DistMap where Drop-seq technology integrates scRNA-seq data and ISH imaging to reveal spatial gene expression. f STARmap where genes are
sequenced in situ using padlock amplification. g Tomo-seq where cryogenic tissue sections are individually analysed by bulk RNA-seq and spatial data
triangulated in three axes. h Geo-seq where cryogenic tissue samples are obtained through laser capture microdissection and analysed through bulk RNA-
seq with results spatially mapped. i High-definition spatial transcriptomics where cDNA synthesis is performed in situ and spatially barcoded prior to RNA-
seq. j Slide-seq where mRNA is barcoded in situ and spatially indexed by SOLiD. k novoSpaRc where scRNA-seq is digitally profiled to virtually reconstruct
the tissue. l NASC-seq where 4sU labelling identifies temporal and spatial features of single-cell data. Single-cell RNA-seq (scRNA-seq), in situ
hybridisation (ISH), sequencing by oligonucleotide ligation and detection (SOLiD).
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microscopy (Fig. 1c) instead, involves chemical reactions whereby
transcript molecules are tagged in situ with random nucleotides,
labelling each uniquely39. A second reaction amplifies these
tagged molecules, concatenates the copies, and adds new random
nucleotides. While high signal intensity is a drawback to
fluorescent imaging techniques, increased signal density is
beneficial to DNA microscopy. Molecular proximities are
computationally decoded from the overlapping diffusion fields
generated by these signals, from which it is possible to infer
physical images of the original transcripts at cellular resolution.
Sequencing power permits detection of single-nucleotide varia-
tion, and spatially resolves biological features such as somatic
mutation and stochastic RNA splicing. Variation in molecular
density, however, makes it difficult to reconstruct images
spanning large distances. Early applications indicate that DNA
microscopy can function as an imaging medium equivalent to
optical analysis, and is an important emerging approach to study
the complex chemical dynamics of biological systems.

FISH-based approaches allow transcripts to be directly labelled
within native tissue sections. In regions of dense transcript
concentration, molecular crowding leads to the spatial overlap of
fluorescence signals during simultaneous transcript imaging.
Extended sequential FISH (seqFISH+) serially reprobes a single
slide to generate multiple images which can be computationally
merged and analysed for a complete library of transcripts
(Fig. 1d), reducing the impact of optical crowding as only 1/
60th of the transcript is visualised in each image40. In one study,
10,000 genes were analysed in cultured mouse cells. The
subsequent gene expression profiles were quantitatively equiva-
lent to RNA-seq data. Within the brain, cells were characterised
based on their expression profile, revealing the expected tissue
layers when analysing the spatial relationships. Ligand-receptor
encoding RNA pairs observed in adjacent cells indicated
functional relationships which were dependent on local tissue
context/positioning. Comparison with the 60 genes analysed from
smFISH showed that detection efficiency of seqFISH+ was 49%
which is highly sensitive compared with scRNA-seq.

In summary, in situ mapping of spatial gene expression
captures both RNA quantity and position. It has overcome
challenges to maintain efficiency, signal intensity and accuracy
while scaling to large gene numbers. However, these approaches
are still limited in their throughput and ability to accurately
measure the level of gene expression.

Next-generation sequencing-based methods for resolving
gene expression spatially
Quantitative methods of measuring accurate gene expression
levels in high-throughput have been developed such as CAGE,
SAGE, and gene expression arrays. CAGE sequencing permits
analysis of coding and non-coding RNA expression by targeting
promoter regions instead of translation interactions41. Massive
parallel RNA sequencing (RNA-seq) allows a high-throughput
accurate measurement of RNA transcript levels that can be
achieved in an organ (bulk)42 or single cells through read-
counts43. Data from bulk tissue analysis may mask the expression
patterns of rare, or equally dominant cell types, or omit transient
expression patterns. The quantitative data gained in RNA-seq is
contrasted by the loss of spatial information. When isolated cells
are spatially dislocated from their tissue of origin, transcripts lose
spatial context; however, some studies have attempted to address
these issues by using downstream cell sorting which reunites
distinct cell populations. To achieve an analysis which benefits
from data obtained from both spatial and quantitative methods,
the two data sets need to be combined, a process which remains
largely manual. Recent experiments to combine spatial informa-
tion, with the quantitative data obtained from RNA-seq have
been used to query the transcriptional changes in different
regions of the cardiac infarct zone following heart injury in adults
and neonates, providing type-specific quantitative expression
data44.

Automated hybrid approaches. Mathematical models allow the
integration of spatial and quantitative results by associating
‘landmark’ reference genes with transcript counts. For instance,
Seurat is an algorithm that infers cellular localisation by inte-
grating scRNA-seq data with in situ expression patterns45. It
relies on spatial segregation of landmark genes, identified through
ISH experiments, to construct a reference map by including the
RNA-seq data to quantify the expression level of these landmark
genes. This map provides a transcriptome-wide reflection of
spatial patterning which was used to identify key cells sub-
populations in the Drosophila eye, including interommatidial cells
and photoreceptors, each exhibiting a unique set of differentially
expressed genes46.

Moreover, one of the primary problems associated with
scRNA-seq analysis, is the high technical noise of small-mass
embryos, and subsequent low-copy number transcripts. To

Table 1 Features of current methods for capturing spatial gene expression.

Methodology Coverage Number of genes Number of cellsa Spatial resolution

In situ hybridisation22 Targeted 3 Low Tissue
RNAscope29 Targeted 12 Low Cellular
ClampFish30 Targeted 3 Low Subcellular
smFISH33 Targeted 3 Low Subcellular
osmFISH32 Targeted 1–33+ Low Subcellular
MERFISH35 Targeted 10,000 Medium Subcellular
DNA microscopy39 Targeted Low Cellular
seqFISH+40 Targeted 10,000 High Subcellular
DistMap50 Targeted 8000+ High Cellular
STARMap51 Targeted 1020+ High Cellular
Tomo-seq52 Transcriptome-wide Whole transcriptome High Cellular
Geo-seq56 Transcriptome-wide Whole transcriptome High Cellular
Spatial transcriptomics/10X Visium59 Transcriptome-wide Whole transcriptome Medium 100 µm/55 µm
Slide-seq61 Transcriptome-wide Whole transcriptome Medium 10 µm
HDST63 Transcriptome-wide Whole transcriptome High 2 µm
novoSpaRc69 Transcriptome-wide Whole transcriptome High Cellular
NASC-seq72 Transcriptome-wide Whole transcriptome High Cellular

aNumber of cells—low: 0–100, medium: 100–1000, high: 1000–10,000+.
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overcome this, the computations in Seurat also consider the
spatial information of multiple genes that are co-regulated with
landmark genes, thus providing a reliable gene expression map.
Another computational method which integrates ISH with
scRNA-seq provides a high-throughput approach to identify the
tissue of origin for complex tissues47. A selection of brain cells
from marine annelid P. dumerilii was profiled, and 81% of these
cells were able to be mapped back to precise spatial locations.
This approach relies on knowledge of ISH gene expression, and
may not thoroughly encompass all embryonic domains. Both
computational methods are powerful tools to generate data that is
both spatially resolved, and quantitatively significant. However,
these results are algorithm-based, rather than direct reflections of
in situ measurements of the embryo.

Drosophila melanogaster is, traditionally, a strong model for
patterned expression with early emergence of a spatially defined
embryo. Using a technique employing low-input RNA-seq,
cryosectioned Drosophila embryos along the AP axis and isolated
and sequenced mRNA, spatial patterns were observed to closely
match previously determined in situ and microscopy patterns48.
This method was used to generate a time course of the developing
embryo. Many genes not previously characterised as spatial genes
were found to exhibit spatially restricted expression, such as pole
specific genes with no functional annotation. This approach
experienced a large degree of noise, as too much carrier RNA gave
only a small number of reads per slice. Expression was measured
across spatially resolved tissue slices, leading to the blending of
cell signals and providing poor resolution of cell populations that
did not reach the single-cell level. While spatial landmarks could
be identified, spatially intermixed populations could not be well
defined. Computational approaches can be employed to spatially
reconstruct complex tissues without needing prior annotation, a
process used to investigate maternal factors with mutants49,
however, this still provided lower resolution results than in situ
analysis, and it was difficult to observe transitional domains.

In order to encapsulate the complexity of developmental GRNs
in a digitally reconstructed embryo model, it is necessary to
perform genome-wide transcriptomics at single-cell resolution. A
recent approach analysed 84 well-characterised in situ gene
markers in combination with high-throughput, quantitative
Drop-Seq to generate computational based algorithm DistMap
(Fig. 1e), able to confidently resolve 87% of cells in the stage 6
Drosophila embryo50. This revealed novel roles for several
transcription and signalling factors, which had previously not
been implicated in early development, and demonstrated the
importance of non-coding RNAs in these pathways. Most cells
analysed exhibited unique transcriptomes, highlighting the
necessity for single-cell resolution.

A key benefit of scRNA-seq is the power to detect biological
variability between cells, and define characteristics of rare cell
types. While in situ RNA-seq is able to provide spatial context,
throughput efficiency is limited and is difficult to scale to whole
tissues. The STARmap (Fig. 1f) approach promises to deliver gene
expression in 3D to cellular resolution. Recent in situ hybridisa-
tion methods enable high-resolution imaging of RNA transcripts
in intact tissue by exploiting hydrogel-tissue chemistry (HTC) to
link in situ synthesised polymers51. All cellular RNAs are labelled
with two probes, one with a five-base barcode, providing a gene-
unique identifier for later multiplexed gene detection. Both
probes need to hybridise to the same RNA molecule to reduce
noise, and for enzymatic amplification which generates a DNA
nanoball with multiple copies of cDNA probes. This process
decodes the DNA sequence into multi-coloured fluorescence
signals ready to be imaged. Using this two-base sequencing
system, >1000 genes are sequenced over 6 imaging cycles. In
addition, sequencing with error-reduction by dynamic annealing

and ligation (SEDAL) is effective in rejecting errors. Using this
approach, a 160-gene set was detected and quantified in mouse
primary visual cortex, where clustering revealed distinct cell
types, overlaid with spatial expression distribution across layers of
cortex. Upregulation of activity-regulated genes in response to
visual stimulation was observed. Gene expression results were
found to correlate well to in situ hybridisation and scRNA-seq.
This technique is scalable to larger 3D tissue blocks and can be
adapted for higher gene numbers, with current best throughput at
~1000 genes. The challenge to sequence all genes simultaneously
remains.

High-throughput tissue sectioning-based approaches. Tomo-seq
(Fig. 1g) automatically generates spatial resolution equivalent to an
in situ hybridisation with the quantitative strength of RNA-seq52.
The tissue of interest is cryosectioned in three different orientations
(antero-posterior, dorso-ventral and lateral planes), followed by
bulk RNA-seq of each section. Triangulation algorithm, RNA-
tomography, is then automatically applied to estimate gene
expression levels at the intersection of the three sections, creating a
digital three-dimensional expression pattern of the whole embryo.
Depending on section thickness, this mathematical reconstruction
could recapitulate gene expression at a resolution equivalent to
single-cell analysis. However, the accuracy of this computed gene
expression value needs to be validated with scRNA-seq datasets.
Tomo-seq necessitates using identical samples for an accurate
overlay of sections on multiple axes. As this is biologically difficult
to accomplish, there is room for a degree of error in combining
tissue sections. Applied to developing zebrafish embryos at three
developmental stages (shield, 10 somites and 15 somites stages),
Tomo-seq delivers a comprehensive digital resource for embryonic
gene expression in the whole embryo. Approximately 20% of the
zebrafish transcriptome exhibited spatially restricted gene expres-
sion, a large number of which were functionally uncharacterised52.
Combined with chromosome conformation capture datasets,
Tomo-seq was used to identify spatially co-expressed genes corre-
lating with topological domains53. Pre-zygotic transcription exhib-
ited strict structuring with super enhancers clustering during
development, a pattern which is similar to that previously observed
in mammals. Super enhancer regions present a greater degree of
transcriptional regulation, and are associated with more highly
expressed genes54. Tomo-seq has also been successfully applied to
an entire isolated organ. Indeed, a high spatial resolution map of the
embryonic zebrafish heart obtained with Tomo-seq revealed 1100
genes being differentially expressed in the various sub-
compartments of the developing heart, 502 of which were pre-
viously uncharacterised. Further examination of the sinoatrial
pacemaker region of the heart revealed a novel role for Wnt/β-
catenin signalling in the pathway regulating autonomic control,
which provided useful insights into the molecular basis of heart
function. This illustrates the discovery potential of this technique to
search for novel gene targets for therapeutic use55.

A complementary method, Geo-seq (Fig. 1h), cryosections
organs or tissues of interest in one direction only. Each section is
sampled by laser capture microdissection, generating cell clusters
(~10 cells per cluster), which are then subjected to bulk RNA-
seq56. As the spatial origin of each cell cluster is uniquely
identified, this allows reconstruction of spatial distribution of
gene expression within the whole tissue using the Zipcode
Mapping Feature. Geo-seq was applied to gastrulating mouse
embryos to generate a virtual whole-mount 3D model of the
spatial expression of all 20,000 mouse genes at this stage57. This
iTranscriptome was central in revealing novel molecular markers
for different cell lineages, for instance, highlighting the role of
Oct4 in cell fate determination and A–P axis patterning58.
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Spatial transcriptomics (Fig. 1i) is the least biased method to
capture spatial gene expression from sections. cDNA is directly
synthesised from fixed tissue sections on 6.2 mm × 6.6 mm pucks
and is concomitantly labelled with molecular barcodes which
record the spatial location of the transcript within the section59.
The cDNA is then sequenced by RNA-seq. This approach
eliminates the need for cell isolation, and was able to detect low-
level transcript expression and capture more genes and
transcripts than laser capture microdissection, and with higher
sensitivity and resolution compared to Tomo-seq and Geo-seq.
The ability to generate histological data which precisely
complements the tissue section involved in quantitative analysis
is unique to Spatial transcriptomics (microarray-based technol-
ogy) and not possible with NGS-based methods. By processing
different tissue domains within the same reaction, Spatial
transcriptomics is able to remove much of the technical variation
experienced by many standard expression methods. Application
of this technique in murine brain tissue demonstrated gene
clustering that correlated with morphological layers, allowing
identification of cluster (and subsequently tissue) specific
markers, while analysis of human breast cancer cells revealed
that invasive cells exhibited high expression of extracellular-
associated genes, and an unexpectedly high degree of cellular
heterogeneity within biopsy samples, information important for
decisions about prognosis59. The integration of Spatial transcrip-
tomics with scRNA-seq from dissociated whole human embryo-
nic hearts was able to identify a novel population of Myoz2-
enriched cardiomyocytes in both the atria and ventricles which
complemented recent findings in mice, yet to be observed in
humans60. Currently, the resolved power of Spatial transcrip-
tomics remains limited by the spacing of primers required for
barcoding.

Slide-seq (Fig. 1j) alleviates this limited resolution using DNA-
barcoding beads bound to 3-mm slides and exposed to fresh
tissue sections releasing mRNA from which barcode sequences
can be determined with sequencing by oligonucleotide ligation
and detection (SOLiD)61. This variant of Drop-seq62 allowed the
identification of fine spatial features including single-cell layers in
the mouse brain61. It revealed cell zonation patterns and cellular
constituents, consistent with findings observed in human post
mortem brain tissue. Tissue structure dimensions did not change,
indicating minimal lateral diffusion from the barcoded beads.
Analysis of gene expression following traumatic brain injury
revealed cell proliferation progressing to differentiation. This
technique accurately reflected spatial distribution of classical
neuronal and non-neuronal cell types, ~66% of the DNA-
barcoding beads matched to single-cell types, while ~33%
matched to two cell types. Expression values concurred with
results from bulk-mRNA-seq and scRNA-seq, and average
mRNA capture was consistent across all tissues61. Advancements
have further improved spatial resolution, such as high-definition
spatial transcriptomics (HDST) which employs 2 μm spatial
barcoding63 and permits histological analysis which is not
possible with Slide-seq.

Computational approaches for resolving spatial gene
expression
Integrating spatial and expression information. It is possible to
map scRNA-seq data onto Slide-seq data using non-negative
matrix factorisation regression (NMFreg) which reconstructs
Slide-seq expression as a combination of cell-type signatures from
scRNA-seq61. LIGER (linked inference of genomic experimental
relationships) is a computational method for spatially locating
cells present in scRNA-seq data from in situ transcriptomic data,
thereby increasing the resolution of the in situ data64. The

Harmony algorithm, which projects cells into a shared embed-
ding in which cells group by cell type rather than dataset-specific
conditions, is shown to be both efficient and accurate65. Another
multiple datasets integration pipeline, inspired by multiple
sequence alignment, utilises canonical correlation analysis (CCA)
to identify anchor points across heterogeneous datasets66. An
alternative approach is SpaOTsc, which utilises genes with spatial
measurements to extrapolate the spatial properties of scRNA-seq
data67. A different approach is found in Giotto, a user-friendly
workspace that utilises cell-type-specific gene signatures to infer
cell-type enrichment scores for downstream analyses with the
capability for integration of spatial information68. Altogether,
these computational approaches present timely developments to
capitalise on the rapid growth of high-throughput tissue
sectioning-based technologies and are summarised in Table 2.
However, these methods cannot yet incorporate multiple data
types, such as gene expression and intergenic methylation, in
defining cell types.

De novo spatial position prediction using only expression data.
Rather than combining two different datasets, a new class of
advanced computational techniques enables the prediction of
spatial information from a single gene expression dataset.
novoSpaRc is a recent gene expression cartography technique that
performs mapping based on the variation of gene expression
across a tissue section, using a probabilistic optimisation techni-
que69. However, the accuracy can be sub-par due to the lack of
reference map, and a set of a priori marker genes with known
expression patterns is desirable. In Drosophila, ScoMAP (Single‐
Cell Omics Mapping into spatial Axes using Pseudotime order-
ing) is another reference-free technique that spatially integrates
expression data into a virtual latent space, resembling the orga-
nization of a 2D tissue70. At the single-cell resolution level, the
CSOmap (Cellular Spatial Organization mapper) algorithm can
partially reconstruct the tissue spatial organisation based on
ligand-receptor interaction71. Altogether, these computational
advances demonstrate the potential power of in silico techniques
in de novo spatial mapping of expression data, but there is still
room for improvement in prediction accuracy.

High-throughput native single-cell approaches. Recently, the
emergence of high-throughput single-cell resolution 3D analysis
methods has provided the spatio-temporal expression informa-
tion necessary to understand embryogenesis and development.
The main advantage of these techniques over the previous inte-
grating methods, is that these do not require prior annotation,
nor do they rely on tissue dissociation to obtain quantitative
values.

novoSpaRc (Fig. 1k) is a new computational framework which
allows de novo spatial reconstruction of single-cell gene
expression69. Previous computational approaches have required
a reference atlas of marker genes to assign spatial coordinates.
Prior knowledge is not required for novoSpaRc, as this method
takes single-cell transcriptome profiles, sequenced from disso-
ciated cells as its input, then returns a virtual tissue of a chosen
shape, which can be queried for the expression of all genes
quantified in the data. There is a high degree of variability in how
these sequenced cells may be arranged. The novoSpaRc hypothesis
is that genes are often expressed in spatially contiguous
territories, and by tracking cells exhibiting similar features, the
best matching spatial arrangement of cells can be found. Spatial
patterns are reconstructed with little prior knowledge, by looking
for the spatial arrangement of sequenced cells in which nearby
cells have transcriptional profiles that are often more similar than
cells that are further apart.
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Analysis of newly synthesised RNA has previously been limited
to the level of cell populations, as weak detection tools required a
large amount of total RNA. Dynamically produced RNA is an
important measure of rapid gene expression in response to
stimuli, a response which is not universal across cell populations.
For this reason, a single-cell resolution technique is required. New
transcriptome alkylation-dependent single-cell RNA sequencing
(NASC-seq)72 is an emerging disruptive technology which
monitors newly synthesised and pre-existing RNAs simulta-
neously (Fig. 1l), by sequencing the T–C chemical conversions in
response to 4-thiouridine (4sU) labelling. This can be used to
computationally separate, old and new RNA transcripts by
sequence analysis, providing spatial and temporal monitoring at
the single-cell level.

Data visualisation and management
There is high demand for public repositories of spatially resolved
transcriptomic data, which allow comparison and integration of
multiple sources and resolutions of analysed output73. Progres-
sing beyond curated databases, 3D-visualisation cell atlases
modelling detailed spatial data will provide the most benefit in
research and medical applications74. Several applications exist
which allow high fidelity imaging datasets to be integrated with
quantitative data for completely interactive analysis, such as
Virtual Fly Brain75, and the atlas of embryonic human hearts
which combines Spatial Transcriptomics and scRNA-seq60.
Results from DistMap were used to generate Drosophila Virtual
Expression eXplorer (DVEX), an online, browsable database
which generates virtual ISHs capable of predicting spatially
resolved expression patterns in stage 6 embryos. Expression data
is currently limited to binarized bins under defined thresholds,
each expressing 6500–8500 genes, and cells are mapped inde-
pendently with no incorporation of previously mapped cells into
score refinement. Other 3D-visualisation tools such as Morph-
oNet76 will assist in integrating quantitative information from
different platforms or sources on the same 3D object.

Data management standards. To promote reproducibility, stan-
dards for data storage, analysis and exchange are urgently needed,
as spatial transcriptomics currently lack common guidelines for
data management, compared to more mature sequencing technol-
ogies (e.g. RNA-seq, scRNA-seq)77. Fortunately, the majority of
analysis tools in spatial transcriptomics are publicly available on
GitHub (e.g. https://github.com/10XGenomics, https://github.com/
SpatialTranscriptomicsResearch), paving the way for building
community standards, potentially enabling integration of different
spatial transcriptomics technologies to address a common biological
question. Further, it has become standard practice in the research
community to have preprints publicly available (e.g. BioRXiv.org,
MedRXiv.org), allowing rapid dissemination of methods and
results, and lessons can be learned from the systems biology
standards78,79. This presents a great opportunity and a critical goal
for the spatial transcriptomics community now that various tech-
nologies are in the developmental phase.

Discussion and future directions
Standard techniques such as in situ hybridisation are widely used
to interrogate spatial gene expression. Based on visual examina-
tion, these techniques are extremely powerful in detecting chan-
ges in gene expression patterns. While providing useful data
spatially, the quantitative power of fluorescence imaging remains
low80. Tools have continued to develop, with various improve-
ments to the efficiency, versatility and power of these non-
invasive imaging approaches81–83. Recent improvements in
single-molecule detection rendered this technology amenable for

quantitative measurements and larger throughput, forecasting
future scalability to assess whole transcriptomes.

RNA sequencing and its derivative technologies have answered
the need for quantitative data and are suitably high-throughput
for assaying whole genomes. These methods, however, lack the
acuity necessary to deliver spatial results. Combining ISH and
scRNA-seq using computational integration, achieves the level of
accuracy required for resolving accurate spatio-temporal gene
expression pattern. Identification of spatial markers and arche-
typal expression patterns is the basis for these current integrative
approaches. Cell types can be visualised in 3D with computational
techniques, however, this is based on measurement of spatial
information from 2D slides and careful sampling is required to
ensure faithful recapitulation of spatial patterning. Challenges
remain in scaling these methods to accommodate large tissue
volumes, however, as sequencing costs drop, it is forecast that it
will be feasible for these technologies to scale to whole organisms.
High-resolution, imaging-based approaches require high magni-
fication and fine sectioning necessitating long imaging times,
which will protract further with scaling. Methods which employ
targeted probes carry the inherent limitation of finite available
fluorophores, and will be challenging to scale. Underpinning
these challenges is that, as more cells and tissues are analysed with
higher resolution, more data points are required, demanding
higher computational power, and scalable mathematical models
for future 3D visualisation and data interpretation. Spatial tech-
nologies vary in their readiness for scaled analysis, and this will
prove a key determinant of the lifespan and relevancy of the
technology. Further limitations remain such as the difficulties in
obtaining reproducible results due to single-cell analysis varia-
bility, and the applications in heterogeneous tissues such as eye
retinas and cancer tumours remain to be determined. Methods to
integrate spatial measurements with scRNA-seq data are begin-
ning to emerge84, employing “multimodal intersection analysis”
to capitalise on the strength of information about cellular identity
gained from scRNA-seq and the spatial data from microarrays to
highlight spatially restricted gene networks and cell enrichment.
Such approaches pave the way towards establishing virtual atlases
which achieve a whole-organism transcriptome with cellular
resolution. Several single-cell atlasing projects are endeavouring
to develop these public resources which provide a valuable source
of information for many model organisms including The Human
Cell Atlas85 and single-cell zebrafish transcriptome atlas86. Ulti-
mately, spatially resolved transcriptomics will be paramount in
adding spatial coordinates to these single-cell atlasing projects87.

Accessibility to spatially resolved methods will determine
popularity and speed of incorporation into research. Commer-
cialisation of novel technologies supports consistent and reliable
results, and promotes competition-driven enhancements to sen-
sitivity and efficiency. CARTANA (Sweden) offers kits and ser-
vicing for padlock-based in situ sequencing technologies, while
10X Genomics acquired Spatial Transcriptomics and their Visium
Spatial Gene Expression system reduced barcode spacing, leading
to an improved resolution and 55 µm microarray88. Ongoing
modifications and novel data integration enhance utility, pro-
viding new versions of existing technologies such as Slide-seqV2
which is currently in development89.

Several types of RNA molecules are active within the cell,
engaging in diverse roles from mRNA encoding proteins, to non-
coding and small RNAs regulating gene expression at the tran-
scriptional, post-transcriptional and epigenomic levels90. To
generate a transcriptomic map capable of capturing the com-
plexity of gene expression, it must be possible to detect a range of
RNA molecules, unrestricted by length, and have the ability to
distinguish between similar isoforms. Technologies which lack
sequencing capabilities, also lack the ability to discriminate
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between many alternate and splice forms, and cannot faithfully
predict the effect of RNA structure. Approaches like smFISH
which require multi-probe binding, restrict the discovery of short
sequences of RNA such as microRNA and tRNA, and limit the
profiling of different isoforms. Technologies which fail to capture
subtle variations in sequence length and identity, or which lack
the resolution to distinguish unique isoforms of RNA, comprise
the complexity of these systems, and novel insights regarding cell
type and gene function may be overlooked.

Rather than supplant existing techniques, many new approa-
ches are designed to integrate with current technologies,
expanding the scope of retrieved data. Many fields of science
provide valuable insights into spatial genomics, however, without
a wide-ranging, collaborative effort, these assets will remain
underutilised. Mass spectrometry imaging is one such avenue yet
to be fully explored for its integrative potential, despite demon-
strating clear benefits in applications such as proteogenomics
where structural imaging is followed by RNA sequencing91.
Computationally aligning spatially registered images with quan-
titative expression data will allow a unique appreciation of the
complexity of tissue structure and composition. High-throughput
spatial transcriptomics are becoming an essential component of
both bench and bedside medicine, with an increasing demand for
efficient analysis pipelines in clinical histology and pathology. The
ultimate goal is to generate spatial-omics data, where a single
sample may be non-destructively analysed to reveal temporal,
spatial, and quantitative data simultaneously.

Integration of temporal expression datasets will enhance
understanding of spatial transcriptomics. Incorrect temporal
expression patterns can lead to developmental disorders or dis-
eases like cancer. Understanding the gene expression timescale is
crucial to identifying key triggers at different stages of develop-
ment. For instance, single-cell studies performed at different
stages of pluripotent cells differentiating into cardiomyocytes,
revealed novel developmental pathways underlying lineage spe-
cification during cardiogenesis92. Recent reports capturing
expression data in vivo by tracking transcription factor binding
have illustrated the possibilities of these techniques93, including
developing predictive GRNs94. Integrating 3D regulatory infor-
mation, such as epigenomics studies, will complete our appre-
ciation of the GRN controlling spatio-temporal gene expression
patterns. Advances in epigenomic studies to allow single-cell
analysis, such single-cell ATAC-seq95 have provided new insights
into regulatory heterogeneity in complex tissues96. Ultimately,
incorporating chromatin architecture and regulation in a 3D
digital embryo will provide a comprehensive framework to
uncover the GRNs executing spatio-temporal control of gene
expression97. This promises to accurately predict the downstream
effects of genetic perturbations, such as those caused by muta-
tions resulting in developmental disorders or disease, in an
immediate, automated manner.
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