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Structural determinants of dynamic fluctuations
between segregation and integration on the human
connectome

Makoto Fukushima® 23 & Olaf Sporns® 4>

While segregation and integration of neural information in the neocortex are thought to be
important for human behavior and cognition, the neural substrates enabling their dynamic
fluctuations remain elusive. To tackle this problem, we aim to identify specific network
features of the connectome that are responsible for the emergence of dynamic fluctuations
between segregated and integrated patterns in human resting-state functional connectivity.
Here we examine the contributions of network features to dynamic fluctuations by con-
structing rewired surrogate connectome in which network features of interest are selectively
preserved, and then by assessing the magnitude of fluctuations simulated with these sur-
rogates. Our analysis demonstrates significant contributions from global geometry and
topology of the connectome, as well as from localized structural connections involving visual
areas. By providing structural accounts of dynamic fluctuations in functional connectivity, this
study offers new insights into generative mechanisms driving temporal changes in segre-
gation and integration in the brain.
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tural connectivity allow obtaining whole-brain network

maps, referred to as the connectome!. Complex patterns
of structural connections have been investigated using methods
widely adopted in network science research?. Notable network
features of the connectome are its community structure and
its interconnected hubs. Brain regions within communities
are densely connected to each other>=>, supporting local com-
munication within functionally segregated systems in the brain.
In parallel, some brain regions connect with many others across
diverse communities. These hub regions form a densely inter-
connected network core®=8 (but see also Rubinov®), promoting
global integration of information processed within segregated
communities.

Through communities and interconnected hubs, the con-
nectome provides a structural backbone on which functional seg-
regation and integration of neural information!® can fluctuate
spontaneously or in response to momentary demands from the
environment! 12, The balance between segregation and integration
is essential for balancing effective local processing and global
communication of neural information, which jointly support
cognition. Recent functional magnetic resonance imaging (fMRI)
studies suggest that this balance manifests in changing patterns
of co-activations (ie. functional connectivity) among brain
regions!>14. For instance, Cohen and D’Esposito! demonstrated
that segregated and integrated patterns of functional connectivity
were critical for motor execution and working memory tasks,
respectively, and that flexible reorganizations between these two
patterns were related to better behavioral performance. While
Cohen and D’Esposito!® used functional connectivity computed
from the entire fMRI scan durations, Shine et al.'4 used functional
connectivity on a time scale of tens of seconds (for a review of this
time-resolved functional connectivity, see Preti et al.!>). Dynamic
fluctuations of fMRI time-resolved functional connectivity were
first reported in humans!®, and later in other species!”:!8, While
there is ongoing discussion regarding the stationarity of fMRI
functional connectivity!>?0, an emerging consensus affirms the
existence of state- and task-related fluctuations on functional
networks and favors the use of rigorous statistical tests and models
for their robust estimation?!. A prominent feature of time-resolved
functional connectivity is ongoing fluctuation between more seg-
regated and more integrated connectivity patterns!$22-2> Shine
et al.!* demonstrated that fluctuations between segregated and
integrated time-resolved connectivity patterns shifted toward more
integration with greater task demands and that this shift also
supported fast and effective performance on working memory
tasks. Furthermore, fluctuations between segregated and integrated
patterns during rest were correlated with fluctuations in pupil
diameter, an index of state-dependent neuromodulatory activity!4.
The fluctuating dynamics between segregation and integration
are thus related to a variety of aspects of human cognition and
behavior.

Despite these observations, the specific neural substrates
enabling dynamic fluctuations between segregated and integrated
connectivity patterns remain largely unknown. In a recent
study?®, Shine and colleagues applied a computational method to
investigate the origin of dynamic fluctuations between segregation
and integration. They simulated resting-state fMRI (rs-fMRI)
data using local models of oscillatory neural dynamics that are
globally coupled based on the connectome?’-2%. They found that
externally controlling a neural gain parameter in the simulation
model can alternate connectivity patterns between segregation
and integration. This finding suggests that active processes of
neural gain control by neuromodulatory systems may contribute
to the appearance of fluctuating connectivity patterns. In par-
allel, rs-fMRI data were simulated using neural oscillator models

Q dvances in measuring techniques of white matter struc-

coupled based on the connectome, and the extent to which this
simulated data can replicate dynamic fluctuations between
segregation and integration in empirical rs-fMRI data was
investigated without an explicit control of the neural gain3(.
It was shown that the simulated data can reconstruct ~80%
of the magnitude of empirical dynamic fluctuations in global
network measures that characterize connectivity patterns
of segregation and integration. This finding suggests that, in
addition to potential neuromodulatory mechanisms, the
intrinsic organization of the structural connectome may con-
tribute to the emergence of dynamic fluctuations between seg-
regation and integration.

Here we attempt to uncover which specific network features of
the connectome can account for the magnitude of dynamic fluc-
tuations between segregation and integration. First, we examined
the contribution of geometry of the connectome. The connectome
is a spatially embedded network whose nodes (brain regions) and
edges (structural connections) are tied to physical locations. Spatial
embedding entails that nodes are more likely to be connected
within their spatial neighborhoods, resulting in conservation of
wiring cost?31:32, We evaluated the role of this geometric factor to
dynamic fluctuations by simulating brain activity using surrogate
connectome data in which connectivity weights were permuted
while preserving the spatial relationship between weights and
lengths of structural connections3*34. Second, we investigated the
contribution of topology of the connectome, especially for the
representative topological features introduced above, communities
and interconnected hubs. We evaluated their potential contribu-
tions to dynamic fluctuations by using surrogate connectome data
in which the weight permutation was restricted to preserve the
topologies of communities and interconnected hubs. Finally, we
examined the contributions of local edges in the connectome using
surrogate connectome data. The purpose of this analysis was to
find out which local edge sets prominently contribute to dynamic
fluctuations in simulations. To identify them, we searched over sets
of edges connected to each of the known resting-state networks
(RSNs)32:36,

Our surrogate data analyses demonstrated that both geometry
and topology of the structural connectome significantly con-
tributed to shaping the magnitude of dynamic fluctuations between
segregated and integrated patterns of simulated functional con-
nectivity. This magnitude was, however, not fully accounted for
either by geometry, topology, or their combination. The residual
amount of the magnitude in dynamic fluctuations was explained by
the contribution of localized structural connections involving the
visual network.

Results

Constructing surrogate data that preserve geometry and/or
topology of the connectome. We performed surrogate data
analysis to evaluate the contributions of geometry and topology of
the connectome to dynamic fluctuations between segregation and
integration. The whole workflow of this analysis is summarized in
Fig. 1. We first constructed surrogate connectome data that
preserve geometric and/or topological features of the actual
connectome data. These surrogate data were constructed by
randomly permuting non-zero weight edges of the group-level
structural connectome data with constraints imposed on their
geometric and/or topological properties (1 in Fig. 1). The geo-
metric constraint was used for preserving the spatial relationship
between weights and lengths of structural connections in the
connectome3334, This constraint restricted the weight permuta-
tion within edges of similar streamline lengths (see Fig. 2a). The
topological constraint consists of two parts and these were jointly
used for preserving communities and interconnected hubs of the
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Fig. 1 Workflow of surrogate data analysis. (1) Constructing surrogate data of the connectome by permuting structural connectivity weights of the actual
data with geometric and/or topological constraints depicted in Fig. 2. Blue lines represent regional structural connections (A: anterior; P: posterior; L: left; R:
right). (2) Simulating spontaneous oscillatory neural signal using phase oscillator models coupled based on structural connectivity weights and lengths in
the connectome. (3) Converting simulated neural signal into simulated rs-fMRI signal using a hemodynamic model. (4) Computing time-resolved
functional connectivity of simulated rs-fMRI signal using tapered sliding windows. (5) Calculating global network measures of time-resolved functional
connectivity to track dynamic fluctuations between segregated and integrated patterns of functional connectivity. Small circles represent brain regions, and

lines between them indicate regional functional connections.
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Fig. 2 Schematics of geometric and topological constraints during the weight permutation. a Constraint on geometry to preserve the spatial relationship
between weights and lengths of structural connections in the connectome. A small circle corresponds to an edge in networks. Weights were permuted
within each bin of lengths. The manner to determine the number of length bins is described in “Methods section”. b Constraint on topology to preserve the
community structure of the connectome. Weights were permuted within each community or between communities. € Constraint on topology to preserve
the interconnected hub structure of the connectome. Small circles and lines between them represent nodes and edges, respectively. Weights were

permuted within edges connecting a node of degree = d and another node of degree > d. Colors of bins in a, colors of communities in b, and colors of edge

categories in ¢ are independent and not related to each other.

connectome. These constraints restricted the weight permutation
within edges in each community or between communities (see
Fig. 2b), and within edges connecting a node of a certain degree d
and another node of degree > d (see Fig. 2c). We referred to the
surrogate data without constraint as R, with the geometric con-
straint only as G, with the topological constraints only as T, and
with the combined geometric and topological constraints as GT.

Exemplars of the surrogate data R, G, T, and GT are presented
in Fig. 3a. Spatial layout of GT was very similar to that of the
actual connectome data because the number of edges that can be
permuted in GT was less than a half of that in the other types of

the surrogate data. The fraction of the number of permuted edges
averaged over surrogate samples to the number of all non-zero
weight edges was 1.00, 0.98, 0.91, and 0.40 for R, G, T, and GT.

Permuting edge weights broke the original sequence of node
strength (i.e. weighted degree) in the actual connectome data. To
solve this problem, we applied a weight adjustment method33-34
to preserve the strength sequence of the actual data. Applying this
method after the weight permutation did not essentially affect the
extent to which G and GT preserved geometry (see Fig. 3b) and
GT preserved topology of the actual connectome data (see Fig. 3c,
d). In T, the community structure was remained preserved
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Fig. 3 Profiles of the surrogate and actual connectome data. a Spatial layout of the connectome. Blue lines represent regional structural connections.
Exemplars are shown for the surrogate data R, G, T, and GT. Edges with smaller connectivity weights are superimposed by edges with larger connectivity
weights in these graph plots. b Connectivity weights averaged over edges within each bin of streamline lengths. The weight-length relationship of the

actual data was preserved both in G and GT. ¢ Connectivity weights averaged over edges within each community or between communities. The weight
profile of the actual data over the horizontal axis was preserved both in T and GT. d The weighted rich-club coefficient” (i.e. the ratio of the sum of edge
weights between hub nodes to the sum of all edge weights). The coefficient profile of the actual data over the degree to define hub nodes was preserved in

GT, but not in T.

(see Fig. 3c) while the interconnected hub structure became less
pronounced (see Fig. 3d). Thus, it should be noted that the
contribution of topology as assessed by T later is mainly
attributable to the contribution of the community structure alone.

Simulating dynamic fluctuations between segregation and
integration on the connectome. The contributions of con-
nectome geometry and topology to the fluctuating dynamics of
segregation and integration were examined by comparing the
magnitudes of such fluctuations in rs-fMRI data simulated with
the actual and surrogate connectome data (2-5 in Fig. 1). We first
simulated spontaneous oscillatory neural signal using a variant of
the Kuramoto model3’, consisting of simple phase oscillators
coupled based on structural connectivity weights and lengths of
the connectome3®3839. Simulated neural signal was converted
into simulated rs-fMRI signal using the Balloon/Windkessel
hemodynamic model*%4!. From simulated rs-fMRI signal, time-
resolved functional connectivity was computed using tapered
sliding windows!”. For each instance of time-resolved functional
connectivity, three global network measures, mean participation
coefficient (mean PC), mean temporal participation coefficient
(mean TPC), and modularity, were calculated to track dynamic
fluctuations between segregated and integrated patterns of
functional connectivity!423-2442 The time series of mean PC,
mean TPC, and modularity served as proxies of dynamic fluc-
tuations between segregation and integration in the brain. In
this paper, we present results obtained from the mean PC in the
main figures.

The computational model used for simulating neural signal has
two free parameters, the global coupling constant k and the mean
delay 7. In the simulations with the actual connectome data, these
parameters were specified as k=55 and 7 = 12ms based on
systematic parameter selection under the objective of accurate
reconstruction of empirical functional connectivity profiles
(for details of the parameter search procedure, see “Methods
section” or Fukushima and Sporns3?). In the simulations with the
surrogate data, we fixed T as 12 ms to save computation time, but
searched for k in each surrogate sample for which the mean of the
order parameter (i.e. the global synchrony level) of simulated
neural signal most closely approximated that obtained from the
actual data with k=55. Depending on k and the type of the
surrogate data, the global synchrony level greatly changed
between zero (fully incoherent) and one (fully synchronized) in
simulation samples generated from the connectome (see Fig. 4a).
Distributions of k selected in R, G, T, and GT are shown in
Fig. 4b.

Both geometry and topology contribute to the emergence of
dynamic fluctuations. To assess the contributions of connectome
geometry and topology to the segregation-integration dynamics,
we compared the magnitudes of dynamic fluctuations in mean
PC between different types of the surrogate data. Figure 4c pre-
sents distributions of these magnitudes of dynamic fluctuations,
shown as the standard deviation (SD) of the simulated time
series of mean PC. The magnitudes of dynamic fluctuations
obtained from the geometry-constrained surrogate data G and
the topology-constrained surrogate data T were both greater
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Fig. 4 Dynamics of simulated neural signal and functional connectivity patterns. a The global synchrony level of neural signal simulated with the
surrogate data. The averages over 50 simulation samples are presented. The global synchrony level similar to those averaged over simulation samples
generated from the actual data (0.37) is shown in close to white. b Probability distribution of the global coupling constant k selected so that the global
synchrony level of simulated neural signal became closest to that simulated with the actual data. ¢ The magnitude of dynamic fluctuations in mean PC
(boxplot elements: center line, median; box limits, upper and lower quartiles; whiskers, 1.5 times interquartile range; “plus” symbols, outliers; these
definitions are equivalent throughout the paper). Blue shading is used for improving the visibility of the boxplots. The magnitude was quantified by the SD
of mean PC across time. The median SD computed from empirical rs-fMRI data is shown by a red vertical line. An asterisk indicates significant differences
between the SDs (p < 0.05, FDR corrected across all the 10 comparisons). The exact p and n are shown in Supplementary Table 1.

than the magnitude from the constraint-free surrogate data R
(Mann-Whitney U test; p = 3.8 x 1076 and 7.3 x 1079, two-sided,
FDR corrected by the Benjamini-Hochberg method; Cliff’s
delta = 0.55 and 0.53, respectively; see Supplementary Table 1 for
full statistical reporting). This result indicates that both geometry
and topology of the connectome significantly contributes to
dynamic fluctuations between segregation and integration. We
confirmed that this finding held true even when mean PC was
replaced with mean TPC or modularity. The magnitudes of
dynamic fluctuations in mean TPC and modularity obtained
from G and T were both greater than the magnitudes from R (see
Supplementary Figs. 1 and 2 and Supplementary Tables 2 and 3).

When computing time-resolved functional connectivity in this
study, we used a window parameter setting similar to that in Allen
et al3 as a default (width of windows =66 TRs [= 47.52s];
displacement between windows = 3 TRs; see “Methods section” for
details). We confirmed that our finding also held true with widths
of 44 TRs (= 31.68s) and 88 TRs (= 63.36s), as well as
displacements of 1 TR and 66 TRs (= the width; see Supplementary
Figs. 3-6 and Supplementary Tables 4-7).

Dynamic fluctuations are not fully accounted for either by
geometry, topology, or their combination. We then examined
the extent to which geometry and topology of the connectome
can explain the magnitude of dynamic fluctuations generated
from the actual connectome data. To this end, we compared the
magnitudes of dynamic fluctuations in mean PC between the
actual data and the geometry- and/or topology-constrained sur-
rogate data G, T, and GT. We found that the magnitudes of
dynamic fluctuations obtained from G, T, and GT surrogates were
smaller than the magnitude from the actual data (p = 1.4 x 10712,
1.4x 10719, and 3.9 x 1077, FDR corrected; Cliff's delta=0.73,
0.66, and 0.52, respectively; see Fig. 4c and Supplementary
Table 1). This result suggests that, even with significant con-
tributions from geometry and topology, these global structural
features of the connectome alone cannot fully account for
dynamic fluctuations between segregation and integration. This
finding also held for analyses that examined dynamic fluctuations
in mean TPC and modularity. The magnitudes of dynamic
fluctuations in mean TPC and modularity from G, T, and GT

were smaller than the magnitudes from the actual data (see
Supplementary Figs. 1 and 2 and Supplementary Tables 2 and 3).
The magnitudes from G, T, and GT were also smaller than those
from the actual data when the window width was changed to 44
TRs and 88 TRs, or the window displacement was changed to 1
TR and 66 TRs (see Supplementary Figs. 3-6 and Supplementary
Tables 4-7).

Unexplained dynamic fluctuations are shaped by structural
connections of the visual network. In the following, we aim to
identify local edge sets in the connectome that were responsible
for dynamic fluctuations not explained by a combination of
geometry and topology. To approach this aim, we performed
simulations using a more constrained version of the surrogate
connectome data GT. Under the geometric and topological con-
straints imposed on GT, the weight permutation in this new
surrogate data were restricted only within an edge set of interest
allowing us to examine the contribution of this specific set to the
residual dynamic fluctuations. The contribution of a given local
edge set was evaluated by comparing the magnitude of dynamic
fluctuations simulated using the above surrogate data (referred to
as the ’main’ surrogate data hereafter) with the magnitude
simulated using its control surrogate data. The control surrogate
data were also a more constrained version of GT, but the weight
permutation was restricted within edges not included in the edge
set of interest in the main surrogate data. The fraction of per-
muted edges was equalized between the main and control pair
of the surrogate data by randomly selecting edges not to be
permuted in the control surrogate data. The local contribution of
a specific edge set of interest was assessed by quantifying the
decrease in the magnitude of dynamic fluctuations simulated
using the main from the control surrogate data.

With this methodology, we examined the local contribution of
single RSN, defined as a cluster of brain regions that coherently
fluctuate during the resting state. The RSNs in this study were
defined based on a canonical 7-network parcellation®, which
includes the control network (CON), the default mode network
(DMN), the limbic system (LIM), the dorsal attention network
(DAN), the saliency/ventral attention network (VAN), the
somatomotor network (SMN), and the visual network (VIS).
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The exact p and n are shown in Supplementary Table 8. b Cortical surface plots of the z-values of differences between the SDs (Main - Control).

We investigated the local contribution of an RSN by specifying
the edge set of interest in the main surrogate data as the set of
edges structurally connected to at least a node belonging to the
corresponding RSN.

Figure 5a shows the magnitudes of dynamic fluctuations in
mean PC simulated using each main-control pair of the RSN-
constrained surrogate data. We found that the magnitude
of dynamic fluctuations significantly decreased in the main
surrogate data from its control when the weights of edges
connected to the visual network were permuted (p = 4.0 x 1077,
FDR corrected; Cliff's delta= —0.44; see also Fig. 5b). In all
other cases of RSN, there was no significant decrease in the
magnitude of dynamic fluctuations in the main surrogate data
(see Supplementary Table 8). In addition, only in the case of the
visual network, the magnitude of dynamic fluctuations was
comparable between the main surrogate data and GT (p = 0.36)
and between the control surrogate data and the actual data (p =
0.92), while in all other RSNs these comparisons were with p <
0.05 (FDR corrected; see Supplementary Table 8). These
findings indicate that structural connections of the visual
network disproportionately contribute to shaping the difference
between GT and the actual data in the magnitude of simulated
dynamic fluctuations, i.e., the residual amount of simulated
dynamic fluctuations not explained by geometry or topology
of the connectome. The same conclusion was reached for
the magnitude of dynamic fluctuations in mean TPC and
modularity (see Supplementary Figs. 7 and 8 and Supplemen-
tary Tables 9 and 10). Results with window widths of 44 TRs
and 88 TRs, or window displacements of 1 TR and 66 TRs, are
shown in Supplementary Figs. 9-12 and Supplementary
Tables 11-14. Even with these window parameter settings, we
observed the greatest contribution of the visual network to the
residual dynamic fluctuations.

The large contribution of the visual network to the residual
dynamic fluctuations was not due to the differences over the
RSNs in the number of permuted edges in the RSN-constrained
surrogate data. The fraction of the number of permuted edges
averaged over surrogate samples to the number of all non-zero
weight edges was 0.022 (CON), 0.131 (DMN), 0.058 (LIM), 0.032
(DAN), 0.058 (VAN), 0.060 (SMN), and 0.078 (VIS).

Discussion
In this study, we used surrogate connectome data and brain
activity simulations to identify which network features of the

connectome are crucial for the emergence of fluctuating func-
tional connectivity patterns between segregation and integration.
We addressed this question by quantifying the magnitudes of
dynamic fluctuations in mean PC, mean TPC, and modularity
while simulating time-resolved rs-fMRI functional connectivity
on the surrogate and actual connectome data. We demonstrated
that the magnitude of dynamic fluctuations obtained from the
geometry- or the topology-constrained surrogate data was greater
than the magnitude from randomly permuted surrogate data and
that the magnitude from the geometry- and topology-constrained
surrogate data was smaller than the magnitude from the actual
data. These findings indicate that geometry and topology of the
connectome significantly contribute to the appearance of
dynamic fluctuations between segregation and integration, but
these global network features of the connectome do not fully
account for the magnitude of dynamic fluctuations emerged from
the actual connectome data. We then evaluated the contribution
of structural edges connected to each RSN and found that edges
connected to the visual network were most effective in generating
the residual dynamic fluctuations not explained by a combination
of geometry and topology of the connectome.

The finding that geometry of the connectome did not fully
account for the magnitude of dynamic fluctuations between
segregation and integration implies that the connectome hosts
richer dynamics than expected from its spatial embedding alone.
The effect of spatial embedding on the connectome can be seen in
the characteristic relationship between weights and lengths of
structural connections3-34, which reflects the principle of wiring
cost minimization3!. Previous studies have shown that wiring cost
minimization cannot entirely explain the topology of the con-
nectome and have suggested that the connectome realizes its
richer topology at the expense of increasing wiring cost*+4>. Our
study suggests that this also holds true for realization of the
fluctuating dynamics of segregation and integration. Increased
wiring cost in the connectome may thus serve to not only yield
complex network topology, but also enhance dynamic reconfi-
gurations between segregated and integrated functional network
organizations in the brain, which are essential for flexibly
responding to a variety of cognitive demands!3.

We further demonstrated that topology of the connectome also
did not fully explain the magnitude of dynamic fluctuations
between segregation and integration, even when geometry was
simultaneously taken into account. We examined the contribu-
tions from two representative topological features of the con-
nectome, communities?, and interconnected hubs’. The proposed
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roles of communities and interconnected hubs in supporting
segregation and integration of neural information!!12 as well as
complex dynamics® suggest an important role in the emergence
of fluctuations between segregation and integration. The sig-
nificant contribution of topology to dynamic fluctuations shown
in “Results section” partially supports this prediction. However,
our finding that the geometry- and topology-constrained surro-
gate data fell short of generating the full extent of dynamic
fluctuations obtained from the actual data indicates that addi-
tional features other than geometry or topology are involved and
motivated us to assess potential additional contributions from
local structural edges in the connectome.

Among the seven RSNs3%, we found that structural connections
of the visual network were most capable to generate dynamic
fluctuations between segregation and integration not accounted
for by a combination of geometry and topology. We confirmed
that this finding was not due to the variability over the RSNs in
the number of permuted edges in the surrogate data and was
therefore more likely to result from the specific embedding of the
visual network in the overall connectome. One notable feature of
the visual network structural connectivity is its high intrinsic
density. Numerous studies have demonstrated that nodes in the
visual areas indeed maintain dense anatomical interconnec-
tions%’. In our data, we also noted that the density of structural
connections within each RSN was the greatest in the visual net-
work (Supplementary Fig. 13). This observation raises the pos-
sibility that the locally dense connectivity architecture within the
visual network may not only support local processing of visual
information, but may also contribute to shaping global network
dynamics of functional segregation and integration. The possible
contribution to the global dynamics could explain the promi-
nence of the visual network in within-subject variability of rs-
fMRI functional connectivity*$, where functional connectivity
among regions including the visual areas was shown to be highly
variable across a number of scanning sessions in a highly sampled
individual brain. The greater variability of visual functional
connectivity could result from varying forms of the contribution
from the visual areas via their dense structural connections, so
that the balance between segregation and integration is appro-
priately controlled under varying states of the resting brain across
scanning sessions.

Although we focused on group-level connectome data in the
present study, examining individual differences in the structural
organization of the connectome and relating them to empirical
dynamics of segregation and integration are important directions
for future research. Recent studies established evidence for indi-
vidual differences in rs-fMRI functional connectivity*® including its
dynamic properties of fluctuating connectivity patterns between
segregation and integration?4. Structural accounts of these indivi-
dual differences could be identified by assessing their relations to
individual differences in the network features of the connectome
whose contributions to the segregation—integration dynamics were
demonstrated in this study. For instance, individual differences in
empirical functional connectivity and its network dynamics could
be associated with individual differences in the strength of
weight-length relationship, the modularity of network commu-
nities, the distinctness of hub-to-hub connections, or the local
density of visual structural connectivity. Furthermore, by com-
prehensively relating them to individual differences in behavioral
and cognitive functions, one could explain mechanisms inside the
end-to-end relation between reconfigurations of the connectome
and declines in behavioral and cognitive performances through e.g.
aging® or brain diseases®!.

It should be noted that the simulations using the actual con-
nectome data in this study only partially replicate spatial patterns
of empirical functional connectivity3’. A principal reason for this

limitation is that we fitted free parameters in the simulation
model to accurately reproduce the temporal dynamics of rs-fMRI
functional connectivity in addition to fitting its spatial pattern. In
Fukushima and Sporns3?, we showed that parameter fitting
optimized only for replicating spatial patterns severely compro-
mised the reproducibility of temporal dynamics and therefore
fitted parameters using multiple criteria to balance reproducing
both spatial patterns and temporal dynamics. The resulting cor-
relations between simulated and empirical functional connectivity
(0.26 for all node pairs; 0.34 for structurally connected node
pairs) are comparable to those obtained from simulations using
more complex and biophysically realistic models of neural masses
or spiking neurons3°. Future work may be directed at improving
the joint reproducibility of spatial patterns and of temporal
dynamics. One potential solution is to use more reliable con-
nectome data in the simulations. Replacing undirected con-
nectome data derived from non-invasive tractography with
directed connectome data derived from invasive tract tracing®?
could improve the overall replication accuracy of spatial patterns.
Another possible solution is to include subcortical areas in the
simulations and newly model the role of neuromodulatory sys-
tems in actively controlling the neural gain®3. Given the possible
contribution of the neural gain control to the fluctuating
dynamics of segregation and integration!426, such a model
improvement could enhance the reproducibility of temporal
dynamics even when parameter fitting is primarily optimized for
replicating spatial patterns.

As previously demonstrated in Fukushima and Sporns30, the
magnitude of dynamic fluctuations in global network measures
for segregation and integration in the simulations (with the actual
connectome data) was smaller than the empirical magnitude
(Fig. 4; see also Supplementary Fig. 14 and Supplementary
Table 15). One possible reason for this is the lack of physiological
noise in simulated rs-fMRI data. Even though no consistent
relation was found between empirical fluctuations in mean PC in
our dataset and either head movement or respiration?”, residuals
of noise in preprocessed empirical rs-fMRI data might partially
contribute to the difference between the magnitudes of simulated
and empirical fluctuations. Another potential reason for the dif-
ference is the lack of subcortical areas in the simulations. Mod-
eling the role of neuromodulatory systems in controlling the
neural gain may also enhance the simulated magnitude of
dynamic fluctuations between segregation and integration.

In sliding window analysis, we need to determine the width of
and the displacement between sliding windows. According to a
comprehensive review paper!® on time-resolved functional con-
nectivity, previous studies suggest that widths of 30-60s can
successfully capture fluctuations in resting-state functional con-
nectivity. Concerning the displacement, both overlapping and
non-overlapping sliding windows have been used in the literature.
In this study, we used the width of ~45 s and the displacement of
~2s*3. We confirmed that the major findings of this study also
held true with widths of around 30s and 60s, as well as dis-
placements of < 1s and the window width. These observations
suggest that the results are stable across reasonable settings for the
width of and the displacement between sliding windows.

In conclusion, we identified specific network features of the
connectome that were responsible for the emergence of dynamic
fluctuations between segregated and integrated connectivity pat-
terns simulated on the connectome. We found significant con-
tributions to the dynamic fluctuations from geometry and
topology of the connectome, as well as distinct local contributions
from structural connections of the visual network. These findings
provide fine-grained information about how the structure of the
connectome promotes ongoing segregation-integration dynam-
ics, thus allowing a deeper understanding of the generative
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processes underlying dynamic fluctuations between functional
segregation and integration in the brain.

Methods

Data acquisition and processing. Raw structural, functional, and diffusion MRI
data were from the WU-Minn Human Connectome Project (HCP)>. The HCP
recruited the subjects and collected written informed consent, including consent to
make de-identified data publicly available. All experimental procedures were
approved by the institutional review board at Washington University and all data
analyses were performed in accordance with relevant ethical regulations and
guidelines of National Institute of Information and Communications Technology.
We downloaded the MRI data sets from the public database of the HCP, Con-
nectomeDB (https://db.humanconnectome.org), and used the data sample labeled
as 100 Unrelated Subjects in this database. We collected this data sample using the
user interface of the Connectome DB. From the 100 subjects in this data sample, 15
high motion subjects during rs-fMRI sessions with the criteria used in Xu et al.>
and one subject categorized as age > 36 were excluded to obtain a quality-
controlled data sample from 84 young adults aged between 22 and 35 (44 females).
No sample size calculation was performed.

The MRI data in the HCP data sets were acquired with a 32-channel head coil
on a modified 3T Siemens Skyra. Image acquisition parameters>®>7 are as follows;
structural MRI: 3D MPRAGE T1-weighted sequence, repetition time (TR) =
2,400 ms, echo time (TE) = 2.14 ms, flip angle = 8°, field of view (FOV) =224 x
224 mm?, 320 slices, and voxel size = 0.7 mm isotropic; rs-fMRI: gradient echo EPI
sequence, TR = 720 ms, TE = 33.1 ms, flip angle = 52°, FOV = 208 x 180 mm?,

72 slices, and voxel size = 2 mm isotropic; diffusion MRI: diffusion weighted
sequence, TR = 5,520 ms, TE = 89.5 ms, flip angle = 78°, FOV = 210 x 180 mm?,
111 slices, voxel size = 1.25 mm isotropic, three shells of the b-value = 1000, 2000,
and 3000 s/mm?, and the number of gradient directions =270 (90 x 3). A notable
acquisition parameter is the TR of rs-fMRI data, 720 ms. This TR realized a
sampling frequency higher than that in a standard acquisition setting (typically, the
TR of rs-fMRI data is 2-3's) and is suitable for time-resolved functional
connectivity analysis. The duration of each run of rs-fMRI data was 14.4 min. The
number of runs per subject was four. The rs-fMRI data were acquired with an eyes
open condition.

The downloaded MRI data were already preprocessed with the minimal
preprocessing pipeline developed by the HCP?8. In the minimally preprocessed
data sets, the MRI data were transformed into Montreal Neurological Institute
(MNI) space. Moreover, correction of gradient distortion, motion correction,
removal of bias fields, correction of spatial distortion, and normalization of the
image intensity were applied to rs-fMRI data; and corrections of susceptibility
distortion, eddy current distortion, motion-related artifact, and gradient
nonlinearly, as well as normalization of the intensity, were applied to diffusion MRI
data. We further preprocessed these minimally preprocessed data using AFNI
16.0.01 (https://afni.nimh.nih.gov), FreeSurfer 5.1.0 (https://surfer.nmr.mgh.
harvard.edu), FSL 5.0.9 (https:/fsl.fmrib.ox.ac.uk), and custom code implemented
in MATLAB R2016a. This includes preprocessing of rs-fMRI data by (i) removing
the first 10 s of volumes, (ii) removing outlier volumes and applying interpolation
using 3dDespike in AFNI (on average, 3.6% of the total volumes were interpolated),
(iii) regressing out the global, white matter, and cerebrospinal fluid mean time
series and the Friston-24 motion time series®®, and (iv) applying detrending and
band-pass filtering. The low cut frequency of filtering was specified as 0.021 Hz
(1/the width of a sliding window for computing time-resolved functional
connectivity) to suppress spurious connectivity fluctuations®, and the high cut
frequency was set to 0.1 Hz.

Functional connectivity. The Fisher z-transformed Pearson correlation coefficient
of node-averaged rs-fMRI signals was used as the weight of functional connectivity
between nodes. The node-averaged rs-fMRI signal was obtained by averaging the
time courses of voxels within each cortical parcel made from a subdivision of the
Desikan-Killiany atlas®! (the number of parcels: 114), which we downloaded from
https://github.com/LTS5/cmp.

Time-resolved functional connectivity was computed using a tapered sliding
window!® with its shape and size specified in a similar manner as in Allen et al.43.
Specifically, the tapered sliding window was constructed by convolving a rectangle
of width =66 TRs (= 47.52 s) with a Gaussian kernel of =9 TRs (= 6.48 s) and
was shifted toward the end of the time series in steps of 3 TRs (= 2.16 s). This
procedure yielded 369 sliding windows in total for each run of rs-fMRI data. We
constructed time-resolved functional connectivity networks of individual samples
as weighted networks without thresholding. We did not threshold the weights here
because both positive and negative weights of functional connectivity are useful for
identifying the community organization of functional brain networks*2,

We examined the robustness of our findings against moderate changes in
window parameters. In this robustness analysis, we changed the width of the
rectangle window and the o of the Gaussian kernel for convolution from the default
66 TRs and 9 TRs to either 44 TRs (= 31.68 s) and 6 TRs or 88 TRs (= 63.36s) and
12 TRs. We also investigated the effect of the displacement between windows by
changing it from the default 3 TRs to either 1 TR or 66 TRs (= the width of
windows). We used the same preprocessed rs-fMRI data in this robustness analysis,

except when we changed the window width to 44 TRs. In this exception, we filtered
out again frequency components < 1/the window width (in this case, 0.032 Hz) to
suppress spurious fluctuations®.

Structural connectivity. The structural connectome was constructed using the
same parcellation scheme used to calculate functional connectivity. To obtain the
structural connectome, distributions of white matter fiber orientations were esti-
mated for each voxel of diffusion MRI data using the generalized g-sampling
imaging®3. The estimated orientation distributions were used for reconstructing
fiber tracts between cortical parcels by deterministic streamline tractography, as
performed in van den Heuvel et al.%%. The streamline count between a pair of
cortical parcels divided by the geometric mean of their surface areas was used as the
weight of structural connectivity between nodes.

We employed group-level structural connectivity throughout the paper. The
weight of group-level structural connectivity was computed using a consensus
thresholding approach that preserves the within- and between-hemisphere
streamline length distributions of individual subjects®®>. We adopted the consensus
thresholding to exclude structural connections inconsistent over individual subjects
from the simulations. The resulting density after the thresholding was 0.19. Non-
zero connectivity weights and streamline lengths were averaged over subjects to
obtain group-level matrices, which are shown in Fig. 1.

While the weights of structural connectivity were maintained in this study, we
employed measures for unweighted networks as well to structural connectivity in
the following two cases. First, we used the degree of the structural connectivity
network to compute and preserve the weighted rich-club coefficient’ when
constructing topology-constrained surrogate data (see Surrogate connectome data
below for more details). Second, we reported the density of structural connections
over the whole brain in the above paragraph, and the density of structural
connections within each RSN (Supplementary Fig. 13) to discuss the role of the
visual network in shaping dynamic fluctuations (see “Discussion section”).

Community detection and modularity. Communities in connectivity networks
were detected by applying a modularity maximization method®®. In this method, a
partition in a network is optimized to maximize the modularity quality function (or
simply, modularity) that quantifies the extent to which a network is decomposed
into densely connected sub-networks. To deal with negative edge weights in the
network of functional connectivity, a generalized version of the modularity quality
function®? Q" was maximized in this study. Q" is defined as

L1 I 1 - -
Q = FZ}:(WU - e[.j) 6c,,c, - mz@"z,}' - eij)ac,,cjﬂ (1)

ij
where §, . =1 if nodes i and j are within the same community and 6. . =0
G 06

otherwise. The positive and negative superscripts to the edge weight w;; between
nodes i and j are used for separating positive and negative edge weights, where
wi; = w;; and w;; = 0 if wi; >0, and w]; = 0 and w;; = —w,; otherwise. The term
e =si's" /[v*, where s =} wi and v* =37, w7, is the expected positive or
negative edge weight between nodes i and j given a null model preserving each
node’s strength. When the modularity quality function was computed for a con-
nectivity matrix containing no negative weight, the second term in the right hand
side of Eq. (1) was ignored. Q" was maximized through the Louvain algorithm®”
using the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet), where
the resolution parameter y was specified as the default value one. In each case of
modularity maximization for a given connectivity matrix, the Louvain algorithm
was applied 100 times with random initial conditions. We regarded the maximum
of Q" over the 100 trials as the maximized modularity score and the partition
yielded this score as a final solution of detected communities. The modularity Q; of
time-resolved functional connectivity can be used to track dynamic fluctuations
between segregated (high Q;) and integrated (low Q}) connectivity patterns?>24.

Participation coefficient and temporal participation coefficient. The PC is a
node-wise measure that quantifies the extent to which a node is connected to other
nodes across diverse communities®®. We computed the PC of time-resolved
functional connectivity and its mean averaged over all nodes. Based on commu-
nities detected in an instance of time-resolved functional connectivity, the PC of
node i at time ¢t was computed as

. Neg ki 2 "
where Ng; is the number of detected communities at time ¢, «;, is the strength of
the positive edge weights of node i at time ¢ within community ¢, and «;, is the
strength of the positive edge weights of node i at time ¢ across all communities. The
PC was then averaged over all nodes to obtain a network-wise measure PC, (mean
PC). The mean PC can also be used as a proxy of dynamic fluctuations between
segregated (low PC,) and integrated (high PC,) patterns of time-resolved functional
connectivity!4.
A recent study*? proposed TPC by extending PC in Eq. (2) to improve its

interpretability with time-varying community partitions. The TPC of node i at time
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t was calculated using all temporal community partitions as follows:

1 T Neu K_+ . 2
_ i,C,
TPC,, = 1 —?ZZ o) (3)

u=1 c=1
where T is the number of sliding windows. Together with modularity and mean
PC, we used the TPC averaged over all nodes (mean TPC) to quantify the
magnitude of dynamic fluctuations between segregation and integration.

Surrogate connectome data. Surrogate connectome data were constructed by
permuting non-zero structural connectivity weights of the actual connectome data.
During the weight permutation, geometric and/or topological features of the actual
connectome were preserved by constraints to assess their contributions to the
emergence of dynamic fluctuations between segregation and integration. After the
weight permutation, weights of the surrogate connectome data were adjusted to
preserve the strength sequence of the actual data3>3* using strengthcorrect.m in
https://github.com/breakspear/geomsurr. We referred to the strength-preserved
surrogate data without constraint as R (= Ry, in Gollo et al.3%). Procedures to
construct the surrogate data with geometric, topological, and both of these con-
straints G (= G, in Gollo et al.34), T, and GT, as well as the GT-based RSN-
constrained surrogate data, were described in detail below.

Geometry-constrained surrogate data. A geometric constraint was imposed on the
surrogate data G and GT to preserve the spatial relationship between weights and
lengths of structural connections®>34. In these geometry-constrained surrogate
data, the weight permutation was restricted within each equal-width bin of
lengths®* (Fig. 2a). The number of bins needs to be large enough to capture the
weight-length relationship in the actual data, while it must not be very large to
secure variations in surrogate samples. We specified the number of bins in this
study as 30. We obtained this number by decreasing the number of bins from
100 in steps of 10 (100, 90, 80, and so on) and then finding the case when the
percentage of bins containing only three or fewer edges became < 10% for the first
time. We confirmed that all bins contained more than one edge with this bin
number setting. The adjustment of weights in G and GT to preserve the strength
sequence did not essentially alter the weight-length relationship of the actual
connectome data (see Fig. 3b).

Topology-constrained surrogate data. Two topological constraints were imposed on
the surrogate data T and GT to preserve communities and interconnected hubs of
the network of structural connections. In these topology-constrained surrogate
data, the weight permutation was restricted within each community detected in the
actual connectome or within edges connecting whatever pairs of two different
communities (Fig. 2b), and simultaneously within each edge category consisting of
edges connecting a node of a certain degree d and another node of degree > d
(Fig. 2¢). Permuting weights within each of such degree-based edge categories
preserves the weighted rich-club coefficient’, i.e. the ratio of the sum of edge
weights between hub nodes to the sum of all edge weights, over different degree
thresholds to define hub nodes. The adjustment of weights in GT did not influence
on the extent to which the surrogate data preserved communities and inter-
connected hubs of the actual data (see Fig. 3c, d). The weight adjustment in T also
did not essentially change the extent to which the community structure was pre-
served (Fig. 3c), whereas it made the interconnected hub structure less pronounced
as the weighted rich-club coefficient of T became closer to that of R (Fig. 3d).
Therefore, the contribution of topology to dynamic fluctuations as assessed by T in
“Results section” was mainly represented by the contribution from the community
structure alone.

RSN-constrained surrogate data for assessing local contributions of RSNs. Surrogate
data to examine the contribution of local edge sets in the connectome were con-
structed under the geometric and topological constraints imposed on GT. This
approach was chosen to uncover which local edge sets were responsible for
dynamic fluctuations not accounted for by a combination of geometry and
topology of the connectome. We searched for them in a spatial resolution of RSNs
defined based on the 7-network parcellation3®, where each cortical parcel (node) in
this study was assigned to one of the following seven RSN, the control network,
the default mode network, the limbic system, the dorsal attention network, the
saliency/ventral attention network, the somatomotor network, and the visual net-
work, by selecting an RSN of the maximum area of cortical surface overlap. The
surrogate data were constructed as a more constrained version of GT, in which
permuting weights was allowed only within edges connected to at least a node in an
RSN of interest. We quantified the effect of permuting edges connected to an RSN
of interest on the segregation-integration dynamics by comparing the magnitude
of dynamic fluctuations generated from the above main surrogate data and that
from another more constrained version of GT referred to as the control surrogate
data, where permuting weights was performed only within edges not connected to
the RSN of interest. The number of edges that can be permuted in the control
surrogate data was always greater than that in the main surrogate data when there
was no correction. To properly compare the magnitudes of dynamic fluctuations
between each main-control pair of the surrogate data, the number of permuted
edges in the control surrogate data was reduced by permuting weights of only a

randomly selected subset of edges. By optimizing the size of this subset, the dif-

ference in the fraction of the number of permuted edges to the number of all non-
zero weight edges between each main-control pair of the surrogate data became

< 10~ on average for each RSN.

Simulation of resting-state activity. A variant of the Kuramoto model®’, in
which phase oscillators are coupled based on the structural connectome, was used
for simulating spontaneous oscillatory neural signal. The Kuramoto model is a
simple dynamic model while it can generate synchronization dynamics of neural
populations®® and can also reproduce a variety of empirical findings about resting-
state functional connectivity?®3? including its network dynamics®(. In this model,
the periodical dynamics of a phase oscillator at node i is expressed by its phase 0,(t),
which obeying the following differential equation:

do, N
T;:znf+k;ciJ51n(ej(¢—fiJ) —9,.<t)), (4)

where fis the natural frequency, set to 60 Hz in the gamma band for all nodes®, N
is the number of nodes, k is the global coupling constant, c;; is the weight of
structural connectivity between nodes i and j, and 7;; is the delay of interactions
between nodes i and j. The weight c;; was normalized so that the mean non-zero
edge weights of structural connectivity equals one, and k controlled the overall
coupling strength. The delay 7;; was simply assumed to be L;;/v as in previous
studies?®, where L; is the streamline length between nodes i and j, and v denotes
the conduction velocity. Equation (4) was solved numerically using the Heun
method with the step size of 0.2 ms. The initial value of the phase was set at
random from the range [0, 277] and the initial history of the phase was obtained by
running the simulations without interactions for a short duration. Transient
dynamics were removed by discarding the initial 20 s of simulation data.

Simulated rs-fMRI signal was derived from the simulated phase time series of
coupled oscillators. The simulated phase 6;(¢) was first transformed into the
amplitude space as r;(t) = sin(6;(¢)) to obtain the amplitude of simulated
oscillatory neural signal. Then, after downsampled to the sampling frequency of
1 kHz, the simulated neural signal was converted to simulated rs-fMRI signal using
the Balloon/Windkessel hemodynamic model*>#!. The simulated rs-fMRI signal
was band-pass filtered using the same filter as applied to empirical rs-fMRI signal.
In addition, the simulated rs-fMRI signal was downsampled to match the sampling
frequency between the simulated and empirical data, and the global mean signal
was also regressed out for consistency. The number of time points in a single
simulation sample was the same as the number of time points in a single run of the
empirical data. Time-resolved functional connectivity and its global network
measures (mean PC, mean TPC, and modularity) were also computed for the
simulated data in the same manners to track dynamic fluctuations between
segregation and integration.

The global synchrony level of coupled oscillators in the simulation model was
evaluated through the order parameter r(t):

N
r(£)e) = 1 > e(t), (5)
=

where y(t) is the phase of the global ensemble of oscillators. The order parameter
r(t) varies between 0 and 1, quantifying the uniformity of phases over all oscillators.
The average of r(t) over time was used for quantifying the level of global synchrony
of the whole coupled oscillator system”?.

Model parameter search. The simulation model in Eq. (4) has two free para-
meters, the global coupling constant k and the mean delay 7 = L/v, where L is the
streamline length averaged over all edges of non-zero structural connectivity
weights. In Fukushima and Sporns, these model parameters were optimized so
that simulated rs-fMRI data generated from the structural connectome can
reproduce empirical properties of functional connectivity measured over the entire
scan durations, as well as those of time-resolved functional connectivity including
dynamic fluctuations in its global network measures. The comparison between the
simulated and empirical data was performed in a two-stage manner. At the first
stage, parameter sets yielding the Pearson correlation coefficient of long-time scale
functional connectivity at structurally connected edges > 0.33 and the
Kolmogorov-Smirnov distance of the edge weight distributions of time-resolved
functional connectivity < 0.33 were extracted from 2.5 to 70 (step size: 2.5) for k
and 2-17 ms (step size: 1 ms) for 7. From these extracted parameter sets, the one
that best reproduced the magnitudes of dynamic fluctuations in mean PC and
modularity was identified at the second stage. After this comparison procedure,
optimal values for reproducing the empirical properties were found to be k=55
and 7 = 12 ms for the data that were also used in the present study as the actual
connectome data. The selected T corresponds to v = 7.0 m/s, which is in a realistic
range of the conduction velocity of the primate brain (5-20 m/s)’. In all,
100 simulation samples with this parameter set were generated in Fukushima and
Sporns®® and were employed as the simulation samples obtained from the actual
connectome data in “Results section”.

Since spatial connectivity patterns in the surrogate connectome data were
changed by the weight permutation, the goodness of fit of empirical connectivity
profiles cannot be used for specifying the free parameters in the simulations with
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the surrogate data. Instead, we employed the global synchrony level (the temporal
average of r(t) in Eq. (5)) of simulated neural signal as a criterion for the model
parameter search. Selecting the free parameters that make the global synchrony
level comparable between simulation samples generated from the surrogate and
actual connectome data allows meaningfully comparing the magnitudes of
dynamic fluctuations in mean PC, mean TPC, and modularity between the
surrogate and actual data.

As this parameter search needed to be performed for each sample of the
surrogate connectome data, we reduced the total amount of computation by fixing
the mean delay 7 to 12 ms (the same value as in the simulations with the actual
data), which yielded a realistic conduction velocity as already mentioned above.
The global coupling constant k was changed from 2.5 to 70 in steps of 2.5. The
simulations were run with these values of k for each surrogate connectome sample,
and the global synchrony level of simulated neural signal was computed for each k.
Then, the difference between the synchrony level from the surrogate data and the
synchrony level (averaged over all simulation samples) from the actual data was
evaluated. The k in the surrogate data that yielded the synchrony level most closely
approximated that from the actual data was specified as a value from which the
above difference became the minimum over the candidates of k. When this
minimum difference was greater than the radius (i.e. the maximum difference from
the mean) of the distribution of the synchrony level from the actual data (this was
0.085), then the corresponding surrogate connectome sample was discarded and a
new surrogate sample was regenerated. Finally, we obtained 50 synchrony-level
controlled simulation samples from each type of the surrogate connectome data R,
G, T, and GT.

We found that the k selected for the surrogate data GT was within a range
between 50 and 60 (see Fig. 4b). We took advantage of this result to reduce the
parameter search space of k for the RSN-constrained surrogate data, which were
with the geometric and topological constraints imposed on GT. For these surrogate
data, k was changed from 50 to 60 in steps of 2.5 during the parameter search. With
this reduced parameter search space, we generated 100 x 2 simulation samples
from each main and control sets of the RSN-constrained surrogate data for
each RSN.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The MRI data used in this study are available from the data sample 100 Unrelated Subjects
in the HCP’s public database, ConnectomeDB (https://db.humanconnectome.org).

Code availability

Custom code to construct all types of the surrogate connectome data employed in this
study is provided as Supplementary Software in Zenodo”? (we used MATLAB r2016a to
run this code). Custom code that is not deemed central to the conclusions is also
available from the corresponding author upon request.
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