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The diversity and near universal expression of G protein-coupled
receptors (GPCR) reflects their involvement in most physiological
processes. The GPCR superfamily is the largest in the human ge-
nome, and GPCRs are common pharmaceutical targets. Therefore,
uncovering the function of understudied GPCRs provides a wealth
of untapped therapeutic potential. We previously identified an
adhesion-class GPCR, Gpr116, as one of the most abundant GPCRs
in the kidney. Here, we show that Gpr116 is highly expressed in
specialized acid-secreting A-intercalated cells (A-ICs) in the kidney
using both imaging and functional studies, and we demonstrate
in situ receptor activation using a synthetic agonist peptide unique
to Gpr116. Kidney-specific knockout (KO) of Gpr116 caused a sig-
nificant reduction in urine pH (i.e., acidification) accompanied by
an increase in blood pH and a decrease in pCO2 compared to WT
littermates. Additionally, immunogold electron microscopy shows
a greater accumulation of V-ATPase proton pumps at the apical
surface of A-ICs in KO mice compared to controls. Furthermore,
pretreatment of split-open collecting ducts with the synthetic ag-
onist peptide significantly inhibits proton flux in ICs. These data
suggest a tonic inhibitory role for Gpr116 in the regulation of
V-ATPase trafficking and urinary acidification. Thus, the absence
of Gpr116 results in a primary excretion of acid in KO mouse urine,
leading to mild metabolic alkalosis (“renal tubular alkalosis”). In
conclusion, we have uncovered a significant role for Gpr116 in
kidney physiology, which may further inform studies in other or-
gan systems that express this GPCR, such as the lung, testes, and
small intestine.
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Gprotein-coupled receptors (GPCRs) are a large and diverse
family of integral membrane proteins that recognize a tre-

mendous assortment of extracellular molecules, including neu-
rotransmitters, hormones, light, and odors (1). Their diversity
and nearly universal expression underlie their significance in many
physiological processes, as well as their enormous potential as
therapeutic targets (2). To this end, considerable effort has been
made in recent years to understand the function of understudied
GPCRs.
GPCRs can be further characterized, based on sequence ho-

mology, as belonging to one of five major phylogenetic sub-
families (3). The adhesion class of GPCRs (aGPCR) form the
second largest subfamily, consisting of 33 identified members in
the mammalian genome, including Gpr116 (ADGRF5) (4). The
defining feature of the aGPCRs is an extended N-terminal
ectodomain that culminates at a GPCR proteolytic site motif
(5, 6). Autocatalytic processing causes the large extracellular do-
main to be cleaved, yet remain noncovalently associated with the
membrane-bound fragment. Recent studies have demonstrated
that Gpr116 and similar aGPCRs are activated by a tethered ligand
proximal to the first transmembrane α-helix (7, 8). Structural
changes in the aGPCR allow for the tethered ligand to be exposed,
leading to receptor activation. Cells expressing heterologous

Gpr116 can be stimulated and activated in vitro by addition of a
16-amino acid peptide corresponding to the tethered ligand of
Gpr116. Addition of this peptide results in accumulation of IP1
and an increase in intracellular calcium (7, 8).
Although initially described and cloned from rat lung (9),

Gpr116 is expressed in a number of tissues outside of the lung,
including brain, heart, skeletal muscle, and kidney. In fact, we
previously reported that Gpr116 is among the most highly expressed
GPCRs in the kidney (10). Several knockout (KO) mice models
have been developed to study the biologic significance of this re-
ceptor. Experiments performed on these animal models demon-
strate that Gpr116 is critically important to the regulation of
pulmonary surfactant pool size, as well as limiting alveolar macro-
phage infiltration (11–15). Additionally a vascular endothelium
specific Gpr116 KO model displays a leaky blood–brain barrier,
suggesting Gpr116 also plays a crucial role in maintaining endo-
thelial junctional integrity (14) as well as initiation of subretinal
vascularization (16). Despite our growing understanding of the bi-
ological significance of Gpr116 in the lung and other tissues, its role
in kidney physiology has not yet been investigated. In the present
study, we present evidence of a significant role for Gpr116 in renal
physiology, where it plays a key role in regulating urinary pH.

Results
Gpr116 Is Localized to A-Intercalated Cells. We (10) and others (9,
13, 17–19) have previously reported expression of Gpr116 in
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mouse kidney. To further identify the localization of Gpr116 in
the kidney, we performed qRT-PCR on murine lung, heart, thymus,
colon, and kidney, as well as isolated renal cortical and medullary
tissue (Fig. 1A). Gpr116 expression (normalized to Gapdh) was
highest in the lung (CT = 26.1 ± 0.5; ΔCT = 0.6 ± 0.3), followed by
the kidney (CT = 28.1 ± 0.3; ΔCT = 5.0 ± 0.6) and the heart (CT =
28.0 ± 0.5; ΔCT = 5.8 ± 0.5). Gpr116 mRNA was more abundant in
the renal medulla (CT = 27.4 ± 0.4; ΔCT = 4.9 ± 0.6) than the
cortex (CT = 30.1 ± 1.3; ΔCT = 7.4 ± 1.1). Surfactant protein C
(SP-C) and aquaporin 2 (AQP2) were used as positive controls for
lung and kidney mRNA, respectively (Fig. 1A). Next, we performed
a Western blot on whole-organ lysates from lung, kidney, heart,
thymus, and colon, as well as HEK293 cells expressing murine
(mGpr116) and human (hGpr116) Gpr116 (Fig. 1B). We observed
a band at the expected molecular mass for Gpr116 (150 kDa) in
lung, kidney, and heart, as well as in mGpr116- and hGpr116-
expressing HEK cells.
Previous studies (9, 13) have suggested localization of Gpr116

to A-intercalated cells (A-ICs) of the cortical and medullary

collecting duct in mouse kidney. We performed immunofluo-
rescence imaging on fixed-frozen kidney sections using a previ-
ously published primary antibody that we also validated using
Western blot (9). Representative images in Fig. 1D demonstrate
colocalization of Gpr116 with the B subunit of the vacuolar-type
H+-ATPase in the medulla (V-ATPase), where A-ICs predom-
inate (V-ATPase antibody recognizes B1/2). In collecting ducts
from the inner stripe of the outer medulla, we observed Gpr116
staining on every AQP2− cell with apical V-ATPase staining,
which is consistent with localization of Gpr116 to A-ICs. Similarly,
Gpr116-expressing cells are interspersed among AQP2-expressing
principal cells in outer medullary collecting ducts (Fig. 1D).
However, in the renal cortex, where pendrin-positive type B-ICs
are also present, we observed that Gpr116 localizes to only a
subset of the AQP2− cells (SI Appendix, Fig. S1). Furthermore, we
found that Gpr116 and pendrin expression in the cortex are dis-
tinct (SI Appendix, Figs. S2 and S3), demonstrating that Gpr116
protein expression is restricted to A-type cells. Together, these
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Fig. 1. Gpr116 is highly expressed in kidney and is localized to V-ATPase expressing ICs of the collecting duct. (A) Gpr116 mRNA expression as measured by
qRT-PCR in various tissues including lung and kidney. SP-C and AQP2 served as positive controls of lung and kidney mRNA. Gene expression is normalized to
Gapdh. Cycle threshold of 35 approximately corresponds with 0.001 on the y axis. (B) Western blot analysis of Gpr116 expression in various tissues as well as
stably transfected HEK293 cells with mouse (mGpr116) or human (hGpr116) Gpr116. Expected molecular mass for Gpr116 is ∼150 kDa. (C) Diagram of the
murine outer medullary collecting duct (OMCD) showing water-transporting principal cells (PC) and acid-secreting A-IC. Proton secretion is coupled to bi-
carbonate reabsorption throughout the nephron. (D) Representative immunofluorescence images demonstrating colocalization of Gpr116 with V-ATPase in
mouse collecting ducts. Similarly, Gpr116 is interspersed among AQP2 expressing cells in mouse collecting ducts. (Scale bars, 20 μm.)
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data demonstrate the localization of Gpr116 to A-ICs in the murine
kidney.

Peptide Agonist Activates Ca2+ Signaling in Gpr116-Expressing Cells.
Gpr116 is an adhesion-class GPCR that possesses a tethered li-
gand (20). Synthesized exogenous agonist peptides, which have
identical amino acid sequences to the native tethered ligand,
have previously been shown to stimulate aGPCRs in vitro, in-
cluding Gpr116 (7, 8). Using the synthetic agonist p16 peptide
described by Brown et al. (7), we observed an increase in [Ca2+]i
in mGpr116 and hGpr116-expressing HEK293 cells, as measured
by ΔF340/F380 with Fura-2 calcium-imaging (Fig. 2 A–E). Next,
we performed calcium-imaging experiments on split-open murine
cortical collecting ducts (Fig. 2F). For this experiment, A-ICs were
identified by immunofluorescence staining for V-ATPase after the
calcium imaging was complete. Cells without V-ATPase were

identified as principal cells. Addition of the synthetic peptide ag-
onist did not lead to an increase in [Ca2+]i in principal cells (Fig.
2G). However, addition of the synthetic peptide agonist did
stimulate an increase in [Ca2+]i in V-ATPase expressing A-ICs
(Fig. 2H). These data further establish the localization of func-
tional Gpr116 to V-ATPase expressing A-ICs in the collecting
ducts.

Development of a Kidney-Specific Gpr116 KO Mouse. Whole-animal
Gpr116 KO mice develop a well-documented pulmonary phe-
notype characterized by the accumulation of alveolar surfactant
(12, 13, 15). In contrast, Gpr116 expression has been reported
in the kidney, but the physiological role of Gpr116 in the kidney
has not been examined. To study the function of Gpr116 in the
kidney without interference from the pulmonary phenotype, we
developed a kidney-specific Gpr116 KO mouse using KSP-Cre
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Fig. 2. Gpr116 activation by exogenous synthetic agonist peptide mobilizes calcium in vitro and in split-open cortical collecting ducts. (A–E) Stimulation of
heterologous murine and human Gpr116 in HEK293 cells with p16 synthetic agonist peptide (200 μM), but not with the control peptide (F3A), causes an
increase in [Ca2+]i as measured by ΔF340/F380. Nontransfected control is shown in E. In A and C, traces are the mean ± SEM of 20 individual p16-responsive
cells; in B, D, and E traces are the mean ± SEM of 16 regions of an entire field of view. (F) Representative images of Fura-2 loaded murine split-open collecting
ducts demonstrating identification of V-ATPase expressing ICs. As these are split-open tubules viewed from above, V-ATPase stain can be used to identify cell
types (but not for subcellular localization). Magnification: 40×. (G) Calcium mobilization in principal cells following stimulation with p16 (200 μM) and then
ATP (50 μM) in split-open collecting ducts. Trace is mean ± SEM of 24 cells from three collecting ducts. (H) Calcium mobilization in V-ATPase expressing ICs
following stimulation with p16 and then ATP. Trace is mean ± SEM of 21 cells from 3 collecting ducts.
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and Gpr116-loxP animals. While WT mice have expression of
Gpr116 in A-ICs in the collecting ducts among AQP2-expressing
principal cells (Fig. 3A), kidney-specific KO animals (KO) have a
complete absence of Gpr116 in A-ICs (Fig. 3B and SI Appendix,
Figs. S4 and S5). Of note, Gpr116 is also expressed in the vas-
cular endothelium, and vascular signal for Gpr116 is still detected

in the kidney-specific KO, confirming the epithelial specificity of
the KSP-Cre driven KO. KO mice still possess V-ATPase–expressing
cells, demonstrating the presence of A-ICs in KO nephrons. In
calcium-imaging experiments, split-open cortical collecting ducts
from WT mice exhibited increased [Ca2+]i after exposure to
the synthetic peptide agonist as compared to the control peptide
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Fig. 3. Targeted deletion of Gpr116 in kidney tubules results in loss of Gpr116 in collecting ducts. (A) Representative immunofluorescence images dem-
onstrating localization of Gpr116-expressing cells among AQP2 expressing cells in WT mouse collecting ducts. (B) Representative immunofluorescence images
demonstrating loss of Gpr116-expressing cells in mouse collecting ducts after targeted deletion with KSP-Cre/Lox system. (Scale bars, 20 μm.)

F3A p16
ATP F3A p16

ATP

-20
0

20
40
60
80

100

200

300

%
of

C
on

tro
l

0.1

60s

60s

0.1

WT

KO

F3A p16

ATPA B

WT KO

0.0506

>0.9999

Fig. 4. Split-open cortical collecting ducts from kidney-specific Gpr116 KO do not contain cells that are stimulated by exogenous p16 synthetic agonist
peptide. (A) Representative Fura-2 (ΔF340/F380) traces of split-open collecting ducts from WT and KO mice. Traces are mean ± SEM of all ATP-responsive cells
in three split-open collecting ducts. (B) Summary data of ΔF340/F380 for all ATP-responsive cells observed in split-open collecting ducts from WT and KO mice.
Data are normalized to ΔF340/F380 of WT tubules to ATP. Bars are mean ± SEM. n = 63 WT cells, 37 KO cells. Statistical analysis performed using
Kruskal–Wallis test followed by Dunn’s multiple comparisons.
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(P = 0.0506), whereas this difference was not seen in tubules from
KO mice (P > 0.9999) (Fig. 4). Together, these data demonstrate
the effective deletion of Gpr116 from mouse distal nephron/
collecting duct.

Gpr116 Regulates Acid Excretion. A major function of A-ICs is the
secretion of protons into the primary urine via apical V-ATPase
(21, 22). Therefore, we hypothesized that Gpr116 may regulate
urinary pH due to its localization to A-ICs. We collected 24-h
urine samples from male mice housed in metabolic cages and
found that kidney-specific Gpr116 KO mice have reduced urine
pH compared to WT mice (Fig. 5A). KO mice do not have sig-
nificantly increased excretion of titratable acids or ammonia
(Fig. 5 B and C), and do not have an acidemia (Fig. 5D). To
challenge the A-ICs of KO mice to further acidify urine and
compensate for an increased acid load, we added 280 mM NH4Cl
to the drinking water (23). WT mice drinking NH4Cl water
exhibited a significant drop in urine pH compared to controls (Fig.
5A). However, KO mice did not significantly acidify their urine
while drinking NH4Cl water compared to KO mice drinking
control water (Fig. 5A), suggesting that deletion of Gpr116 from
A-ICs already maximally acidifies urine. Addition of NH4Cl to the
drinking water caused significantly reduced blood pH (Fig. 5D),
significantly reduced blood bicarbonate (Fig. 5E), and significantly
reduced pCO2 (Fig. 5F) in both WT and KO mice, demonstrating
an induced metabolic acidosis consistent with an increased acid
load, although we cannot rule out some contribution due to
hypertonicity.
We noted that in initial experiments in metabolic cages, the

blood pH and blood HCO3
− of KO animals both trended higher

as compared to WT controls (Fig. 5 D and E) and blood pCO2
trended lower (Fig. 5F), a pattern that we had also observed in a
cohort of female animals (SI Appendix, Fig. S6). (Blood pH
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values in Fig. 5 reflect mixed venous blood; arterial samples from
ventilated mice are shown in SI Appendix, Fig. S6.) In an ex-
panded cohort of male WT and KO mice (not housed in meta-
bolic cages), we found that KO mice had significantly more
alkaline blood pH compared to WT (7.265 ± 0.07 vs. 7.212 ±
0.06; P = 0.002) and lower pCO2 (47.6 ± 5.4 vs. 50.3 ± 5.4; P =
0.04) (Fig. 6 A and C). We also observed a trend toward greater
blood HCO3

− (21.8 ± 3.1 vs. 20.4 ± 2.7; P = 0.06) in KO mice
compared to WT (Fig. 6B). Interestingly, we did not observe a
statistically significant change in total CO2, which suggests KO
mice have more CO2 in the form of HCO3

− but do not accu-
mulate more CO2 than WT mice (Fig. 6D).
These data support the hypothesis that Gpr116 deletion from

A-ICs induces a primary excretion of H+ in the urine, leading to
a decrease in urinary pH and a concurrent increase in blood pH.
However, a previous study similarly observed reduced urine pH

in Gpr116 whole-animal KO mice (24), but also reported re-
duced blood pH and increased pCO2. Kubo et al. attributed the
increased urine acidity in the whole-animal KO to a primary
respiratory acidosis caused by the loss of Gpr116 in type II
pneumocytes, which led to an appropriate compensatory de-
crease in urinary pH. Therefore, we wanted to ensure that the
kidney-specific KO mice did not have reduced urine pH due to
an unexpected lung phenotype. Whole-animal KO mice have a
striking pulmonary phenotype, with turbid bronchoalveolar la-
vage (BAL) fluid as well as increased BAL protein content. We
found that kidney-specific KO mice do not have turbid BAL fluid
and do not have increased BAL protein content compared to
WT mice (SI Appendix, Fig. S7). These data demonstrate that
kidney-specific KO mice do not possess the pulmonary pheno-
type associated with whole-animal deletion of Gpr116. More-
over, kidney-specific KO mice do not have increased pCO2 or
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decreased blood pH, indicating that kidney-specific KO mice do
not have a respiratory acidosis. Together, these data strongly
suggest Gpr116 deletion from A-ICs induces a primary excretion
of H+ in the urine.

Deletion of Gpr116 Causes Increased Surface Density of V-ATPase in
A-ICs. Next, we investigated whether the reduced urine pH ob-
served in kidney-specific Gpr116 KO mice was caused by a
change in the abundance of A-ICs. A quantification of WT and KO
medullas stained with AQP2 and AE1 (SLC4A1, A-IC–specific
marker) (Fig. 7A and SI Appendix, Fig. S8) revealed no significant
difference in the abundance of AE1+ cells (Fig. 7B) or AQP2+ cells
(Fig. 7B) between WT and KO mice. These data indicate that KO
mice do not have significantly more A-ICs than WT mice. Addi-
tionally, qPCR analysis of WT and KO kidneys revealed no sig-
nificant change in the abundance of V-ATPase mRNA (Fig. 8).
Quantification of AQP2, SLC4A1, AQP6, and CLCN5 mRNA
similarly showed no significant difference between WT and KO
mice (Fig. 8).
To determine if V-ATPase may be redistributed in A-ICs of

Gpr116 KO, we examined surface expression of V-ATPase on A-
ICs using immunogold labeling of V-ATPase followed by electron
microscopy. We found greater accumulation of V-ATPase–associated
gold particles on the surface of A-ICs from KO mice as compared
to WT mice drinking control water (0.5% sucrose) (Fig. 9 A, C,
and F). Notably, V-ATPase was mostly localized to subapical
vesicles in WT A-ICs (Fig. 9A). Induction of a metabolic acidosis
using NH4Cl increased surface expression of V-ATPase in WT
mice, but not KO mice (Fig. 9F), whereas apical membrane length
increased similarly in WT and KO mice (Fig. 9E). Notably, KO
mice drinking control water exhibited an increased accumulation
of V-ATPase at the apical membrane of A-ICs without any cor-
responding increase in apical membrane length (Fig. 9 E and F).
These data suggest that Gpr116 plays an important role in
V-ATPase trafficking.

Activation of Gpr116 Significantly Inhibits Proton Flux in A-ICs. Fi-
nally, to determine if Gpr116 has a direct role in regulating surface
density of V-ATPase, we investigated the effects of Gpr116 acti-
vation on intracellular pH (pHi) in A-ICs from split-open murine
collecting ducts harvested from the cortex. Split-open collecting
ducts loaded with BCECF-AM and pretreated with 100 μM syn-
thetic agonist p16 peptide demonstrated a significantly reduced

pHi recovery compared to untreated collecting ducts following
40 mM NH4Cl pulse (Fig. 10B). The proton extrusion rate was
nearly fourfold reduced in the p16-stimulated ICs compared to
controls (Fig. 10C) (0.14 ± 0.01 vs. 0.50 ± 0.08, P < 0.0001). These
data support the hypothesis that Gpr116 activation inhibits
V-ATPase surface expression.

Discussion
We examined renal function in kidney-specific Gpr116-null mice
and uncovered a significant physiological role of this under-
studied GPCR in the kidney. Deletion of Gpr116 from the mu-
rine nephron causes accumulation of V-ATPase proton pumps on
the surface of acid-secreting A-ICs, resulting in a physiologically
inappropriate reduction in urine pH. Furthermore, induction of a
metabolic acidosis by addition of NH4Cl to the drinking water did
not cause a further drop in urine pH, suggesting that loss of
Gpr116 from A-ICs is sufficient to maximally acidify urine. Ad-
ditionally, Gpr116 activation caused a significant reduction to pHi
recovery in ICs from split-open tubules. These data argue that
Gpr116 is a major regulator of kidney acid excretion by acting as
an inhibitor of V-ATPase mediated proton secretion. There are
several interesting observations from the data that strongly support
this model.
First, the reduction in urine pH observed in the KO mice

appears to be the primary defect. KO mice have healthy lungs (SI
Appendix, Figs. S6 and S7) and do not have a baseline respiratory
acidosis driving urine acidification [as previously observed in
whole-animal Gpr116 KO mice (24)]. In contrast, kidney-specific
KO mice have more alkaline blood, as well as a trend toward
higher blood HCO3

− (P = 0.064) (Fig. 6). These data indicate
that Gpr116 KO mice have a mild metabolic alkalosis, a phe-
nomenon we term “renal tubular alkalosis.” We propose that
deletion of Gpr116 in A-ICs causes increased surface density of
V-ATPase, which in turn results in increased excretion of H+

into the urine. This increase in H+ secretion from the A-ICs is
the primary defect, and leads to a concurrent increase in HCO3

−

reabsorption (Fig. 11B). The net result of this process is de-
creased urine pH, increased blood pH, and a small but signifi-
cant decrease in blood pCO2 caused by the increased flux of
protons across the luminal membrane (Fig. 11B).
Second, KO mice do not have significantly more A-ICs than

WT mice (Fig. 7B), nor is there a significant up-regulation of
V-ATPase subunit mRNAs (Fig. 8). Rather, it seems likely that
the increased surface density of V-ATPase on A-ICs explains
why Gpr116 KO mice excrete a more acidic urine (Fig. 9). Based
on the present study, Gpr116 appears to be a significant regu-
lator of V-ATPase surface density.
There are several processes that regulate V-ATPase activity

and surface expression. For example, it is well understood that
subapical, vesicle pools of V-ATPase are recruited to the luminal
surface of A-ICs in response to a variety of physiologic stimuli
(21, 25, 26). Acidosis causes an increase in surface expression of
V-ATPase in A-ICs as well as other proton-secreting epithelia
(21, 27, 28). cAMP-dependent signaling also causes translocation
of subapical vesicles containing V-ATPase to the apical mem-
brane of proton-secreting epithelia, including A-ICs (29–31).
Furthermore, both aldosterone and angiotensin II have direct,
nongenomic, effects on surface density of V-ATPase by inducing
translocation of subapical vesicles (32–36). Additionally, V-ATPase
is also regulated by the reversible dissociation of the V1 catalytic and
V0 proton transporting domains. In cultured renal epithelial cells,
assembly of functional V-ATPase, as well as membrane transloca-
tion, is stimulated by glucose in a PI3K-dependent pathway (37).
Retrieval of V-ATPase from the surface is not as well char-

acterized. A-ICs have a very high endocytic activity which is
known to play a role in recycling of V-ATPase from the apical
surface to subapical vesicles (38, 39). However, endocytotic vesi-
cles involved in V-ATPase retrieval are not clathrin-coated nor are

AQ
P2
SLC

4A1

ATP
6V1

B1

ATP
6V0

D2

ATP
6V1

G3 AQ
P6
CLC

N5
0.001

0.01

0.1

1
R
el
at
iv
e
Ex
p r
es
si
o n

WT
KO

Fig. 8. mRNAs of V-ATPase subunits are similar in WT and KO mice. qPCR
analysis of AQP2, SLC4A1 (AE1), V-ATPase subunits ATP6V1B1, ATP6V0D2,
ATP6V1G3, AQP6, and CLCN5 mRNAs are not statistically different in WT and
KO kidney samples. V-ATPase subunits ATP6V0D2 and ATP6V1G3 were
previously shown to be unique transcriptional markers for A-ICs in the kid-
ney (18). AQP6 and CLCN5 encode for proteins that colocalize with V-ATPase
in subapical vesicles (59). Bars are mean ± SEM. n = 4 WT kidneys, 3 KO
kidneys. Cycle threshold of 35 approximately corresponds with 0.001 on the
y axis.

26476 | www.pnas.org/cgi/doi/10.1073/pnas.2007620117 Zaidman et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2007620117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2007620117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2007620117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2007620117


they coated with any other recognized coat protein, such as cav-
eolin, suggesting V-ATPase protein itself may play a crucial role in
their own recycling (40, 41). Coimmunoprecipitation experiments
revealed numerous proteins that directly bind V-ATPase and may
have important roles in pump regulation, including ERM protein
ezrin and RAC1 GDP/GTP exchange factor ARHGEF7 (42).
Notably, V-ATPase B subunit interaction with actin filaments
suggests modulation of the cytoskeleton may be important in
V-ATPase retrieval from the plasma membrane (43–45). Still,

direct evidence of pathways stimulating V-ATPase internalization,
to this moment, has been absent.

Potential Mechanisms for Gpr116 Action. Our data support the
hypothesis that Gpr116 affects V-ATPase surface expression by
regulating retrieval of H+ pumps from the apical membrane.
Gpr116 exclusively couples with Gq/11 protein α-subunits. Here,
we demonstrate that a synthetic peptide agonist stimulates an
increase in cytosolic [Ca2+] in Gpr116 expressing A-ICs from
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isolated collecting ducts (Fig. 2). Intracellular calcium was pre-
viously shown to be a critical component of CO2-stimulated
exocytosis of V-ATPase in mitochondria-rich cells in turtle

bladder epithelium (46, 47). In these studies, chelation of in-
tracellular calcium in acidified cells prevented pH recovery that
was attributed to a reduction in V-ATPase H+ current. However,
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our data suggest that Gpr116 signaling decreases surface den-
sity of H+ pumps, as we demonstrate greater accumulation of
V-ATPase at the apical membrane of A-ICs, as well as acidifi-
cation of urine, in KO mice. Furthermore, stimulation of Gpr116
with the synthetic agonist peptide significantly inhibits pHi re-
covery in ICs from split-open tubules (Fig. 10), again demon-
strating an inhibitory role for Gpr116 signaling pathways on
proton excretion in A-ICs.
While the canonical Gαq signaling pathway results in an in-

crease in cytosolic [Ca2+], a previous study demonstrated Gpr116
coupling through a Gαq-p63RhoGEF pathway. This results in the
activation of Rho family GTPases, RhoA and Rac1, and down-
stream effects on actin stress fibers and the cytoskeleton in MDA-
MB-231 breast cancer cells (48). Inhibition of Rho, as well as Rho-
associated protein kinase, in epididymal proton-secreting clear
cells also induced an accumulation of V-ATPase at the apical
membrane, a result that mirrors the effect of deleting Gpr116 in
A-ICs (49). Therefore, we hypothesize that Gpr116 activation may
result in the stimulation of Rho GTPases, leading to the removal
of V-ATPase proton pumps from the luminal membrane of A-ICs
(Fig. 11A). Thus, in the absence of Gpr116, V-ATPase membrane
expression would be up-regulated (Fig. 11B).
Although the mechanism by which Gpr116 might sense urine

pH and limit proton excretion remains unknown, one study reported
that collectin protein surfactant protein-D (SP-D) activates Gpr116
(13). However, our experiments on Gpr116-expressing HEK cells
did not demonstrate an increase in [Ca2+]i after exposure to
recombinant human SP-D, suggesting that SP-D is not an activator
of Gpr116. Another obvious possibility is that Gpr116 is itself a
luminal pH sensor. In this scenario, an increased concentration of
protons would cause a conformational shift in the extracellular
domains of the receptor and exposure of the tethered ligand [which
is embedded in the GPCR-autoproteolysis inducing domain (6)],
directly activating Gpr116 and limiting excessive urine acidification.
Another possibility concerns the similarities between type II pneu-
mocytes and A-ICs. Both type II cells and A-ICs are specialized
secretory epithelial cells with high rates of endo- and exocytosis.
Type II cells are easily identified by a “rough” apical membrane with
prominent microvilli as well as the abundance of subapical, dense
lamellar bodies, which are packed with surfactant lipids and proteins
(50, 51). Mechanical stretching of type II cells, as well as various
other physical and chemical stimuli (52), leads to secretion of these
lamellar bodies (53). As previously noted, loss of Gpr116 in alveolar
epithelial cells leads to increased surfactant secretion and signifi-
cantly reduced recycling (endocytosis). Similarly, stimulated acid-
secreting A-ICs have greater apical membrane surface area through
growth of microvilli, and have increased luminal expression of
V-ATPase (22). We hypothesize that Gpr116 activation in A-ICs
is tied to changes in apical membrane surface forces, possibly
through interactions with the glycocalyx and adhesion-like domains
in the extended N terminus of Gpr116, which cause the tethered-
ligand to be revealed. In activated, proton-secreting A-ICs, changes
in membrane morphology would lead to activation of Gpr116, in-
creasing endocytosis of V-ATPase at the apical membrane and, thus,

inhibiting excessive acid excretion. In this scenario, surface tension,
or shear forces associated with protein–protein interactions, would
act as the “endogenous” activator of Gpr116 in both the lung and
kidney epithelium.

Conclusions. In the present work, we confirm the expression and
localization of Gpr116 in the murine kidney. Additionally, we
demonstrate activation of endogenous Gpr116 on the luminal
membrane of A-ICs in split-open collecting ducts using the syn-
thetic agonist peptide p16. Finally, we uncover a significant phys-
iologic role for Gpr116 in the kidney, where it plays a critical role
in modulating renal acid secretion. This result suggests Gpr116
may be a valuable therapeutic target for the treatment of acid/base
disorders, stone formation (54), and possibly urinary tract infec-
tions (55). In future studies it will be important to investigate the
Gpr116-stimulated signaling pathways that limit surface expression
of V-ATPase in A-ICs as well as the potential therapeutic benefits
of targeting renal Gpr116.

Methods
A full description of methods is available in SI Appendix.

Materials. HEK-293 cells with stable, heterologous expression of murine
(mGpr116) and human (hGpr116) Gpr116 were kindly provided by Marie-
Gabrielle Ludwig, Novartis, Basel, Switzerland. Gpr116 primary antibody was
the generous gift of Shigehisa Hirose, Tokyo Institute of Technology, Tokyo,
Japan. A new Gpr116 antibody was generated during the present experi-
ments following the protocol described previously (9). Briefly, following the
protocol of Abe et al. (9), a nucleotide construct encoding amino acid resi-
dues 232 to 675 of rat Gpr116 was cloned into a bacterial expression system
(GenScript). Immunogen protein was purified and validated by SDS/PAGE.
Two New Zealand rabbits were immunized with the purified protein and
given three subsequent boosts. Primary polyclonal antibody targeting the
immunogen protein was harvested from the sera of both animals and
affinity-purified against the immunogen protein before use. All antibodies
used are listed in Table 1. Primary antibody targeting AQP2 was a kind gift
of Paul Welling, The Johns Hopkins University, Baltimore, MD (56), and
primary antibody targeting pendrin was a kind gift of Susan Wall, Emory
University, Atlanta, GA (57). All TaqMan Real-Time PCR Assays (Thermo
Scientific) used are listed in Table 2.

Table 1. Antibodies used in the study

Antibody Host species Target species Dilution Technique Vendor Source

Gpr116 Rabbit Rat, mouse 1:150/1:1,000 IF, WB Abe et al. (9)
Gpr116 Rabbit Rat, mouse, human 1:1,000 WB Present study
V-ATPase (B1) Rabbit Mouse 1:100 TEM Battistone et al. (31)
V-ATPase (B1/2) Mouse Rat, mouse, human 1:150 IF Santa Cruz (sc-55544)
Pendrin Rabbit Mouse 1:200 IF Royaux et al. (57)
AQP2 Chicken Mouse 1:150 IF Wade et al. (56)
AE1 Rabbit Rat 1:150 IF Alpha Diagnostic (AE11-A) Battistone et al. (31)

IF, immunfluoresence; TEM, transmission electron microscopy; WB, Western blot.

Table 2. TaqMan real-time PCR assays used

Gene TaqMan ID Exon boundary

ADGRF5 (Gpr116) Mm00685646_m1 6–7
SFTPC (SP-C) Mm00488144_m1 1–2
AQP2 Mm00437575_m1 1–2
SLC4A1 (AE1) Mm00441492_m1 3–4
ATP6V1B1 Mm00460309_m1 2–3
ATP6V0D2 Mm01222963_m1 1–2
ATP6V1G3 Mm00616840_m1 2–3
AQP6 Mm00558232_m1 1–2
CLCN5 (ClC-5) Mm00443851_m1 8–9
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Animals. All mice were housed in accordance with the policies and procedures
of the The Johns Hopkins Institutional Animal Care and Use Committee and
University of Texas–Health Science Center at Houston Animal Care and Use
Committees. Gpr116flox animals were provided as a generous gift from Brad
St. Croix, National Cancer Institute, Bethesda, MD. These mice contain loxP
sites flanking either side of exon 2, encoding the start codon, in Gpr116 (15).
Ksp-Cre animals (Cdh16 promoter) were purchased from The Jackson Lab-
oratory. Ksp is a tissue-specicfic cadherin that is expressed in tubular epi-
thelial cells in the kidney, including the collecting duct, and was used to
selectively delete Gpr116 from the nephron (58). KO animal genotype was
Gpr116flox/flox; Ksp-Cre. WT animal genotype was Gpr116+/+; Ksp-Cre or
Gpr116flox/flox (no Cre). Induction of metabolic acidosis in mice was achieved
by addition of 280 mM NH4Cl to the drinking water with 0.5% sucrose for 48
h, whereas 0.5% sucrose in water was used as the vehicle control (23). All
mice were male between the ages of 3 and 6 mo unless otherwise noted.
Data from female mice are presented in SI Appendix, Fig. S6.

Statistical Analysis. Results are presented as mean ± SEM. Analysis of WT and
KO samples was performed using a Kruskal–Wallis test followed by a Dunn’s
multiple comparisons test, and P values were adjusted using Bonferroni’s
correction. For analysis of only two groups, a Mann–Whitney test was per-
formed and an exact P value is reported. All statistical tests were performed
using GraphPad Prism 8.3.0. P < 0.05 was considered significant.

Data Availability. All data generated or analyzed as a part of this study are
included in the main text or SI Appendix.
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