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Abstract Rapid technological advances in non-invasive imaging, coupled with the availability of large data sets and the expan-
sion of computational models and power, have revolutionized the role of imaging in medicine. Non-invasive imaging
is the pillar of modern cardiovascular diagnostics, with modalities such as cardiac computed tomography (CT) now
recognized as first-line options for cardiovascular risk stratification and the assessment of stable or even unstable
patients. To date, cardiovascular imaging has lagged behind other fields, such as oncology, in the clinical translational
of artificial intelligence (AI)-based approaches. We hereby review the current status of AI in non-invasive cardiovas-
cular imaging, using cardiac CT as a running example of how novel machine learning (ML)-based radiomic
approaches can improve clinical care. The integration of ML, deep learning, and radiomic methods has revealed di-
rect links between tissue imaging phenotyping and tissue biology, with important clinical implications. More specifi-
cally, we discuss the current evidence, strengths, limitations, and future directions for AI in cardiac imaging and CT,
as well as lessons that can be learned from other areas. Finally, we propose a scientific framework in order to en-
sure the clinical and scientific validity of future studies in this novel, yet highly promising field. Still in its infancy, AI-
based cardiovascular imaging has a lot to offer to both the patients and their doctors as it catalyzes the transition
towards a more precise phenotyping of cardiovascular disease.
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1. Introduction

Modern medicine is characterized by the generation of a vast amount of
data, which include high-resolution imaging modalities. With the amount
of medical information increasing at an unprecedented rate, medical pro-
fessionals are turning to novel technologies in order to interpret these
large sums of data, maximize efficiency while ensuring patient safety and

well-being.1 The arrival of artificial intelligence (AI) and its application in
medicine has brought hope that it can improve health outcomes by sup-
plementing human intelligence and by maximizing the diagnostic and
prognostic value of existing tests while minimizing physician burden.1

Non-invasive imaging is the pillar of modern cardiovascular diagnos-
tics, with modalities such as cardiac computed tomography (CT) now
recognized as first-line options for cardiovascular risk stratification and
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the assessment of stable and unstable cardiovascular patients.2,3 Among
all routinely available diagnostic tests, coronary CT angiography (CCTA)
has the highest sensitivity (95–99%) for detection of coronary artery dis-
ease (CAD) (defined as stenosis >_50% on invasive coronary angiogra-
phy), with a specificity of 64–83%.4 The clinical benefit associated with
the use of CCTA to diagnose stable CAD and guide downstream
decision-making has been provided by two large clinical trials, namely
PROMISE (Prospective Multicenter Imaging Study for Evaluation of
Chest Pain) and SCOT-HEART (SCOTtish computed tomography of
the HEART).5,6 These randomized controlled trials have been instru-
mental in establishing CCTA as a first-line diagnostic test, as highlighted
in recent national and international guidelines.2,3

Thanks to its role as a first-line diagnostic test, the availability of large
data sets and registries and significant advances in radiomic analysis
methods and machine learning (ML) systems, cardiac CT offers an opti-
mal platform to bridge AI with clinical medicine. The basic principle be-
hind these novel ‘radiomic’ approaches is that CT scans are more than
images, they are data.7 In other words, the traditional grey-scale images
of cardiac CT scans can now be represented using complex mathemati-
cal formulae that enable the characterization of features and detection
of patterns invisible to the naked eye.

The aim of this review is to provide an overview of AI in modern car-
diac CT, and its dual implications in clinical care and scientific research
and discovery. We first discuss key terms in the field of AI including ‘big
data’, ‘machine learning’ (ML), ‘deep learning’, and ‘radiomics’. Next, we
review the current evidence, strengths, limitations, and future directions
of AI in non-invasive cardiovascular imaging, using cardiac CT as a run-
ning example of the many challenges and opportunities. Finally, we pro-
pose a scientific framework in order to ensure the clinical and scientific
validity of future studies in this novel, yet highly promising and exciting
field.

2. Artificial intelligence, machine
learning, and big data

2.1 Artificial intelligence vs. machine
learning
The terms ‘artificial intelligence’, ‘machine learning’, and ‘big data’, al-
though distinct, are often mistakenly used interchangeably. Artificial intelli-
gence (AI), also known as ‘machine intelligence’, is a broad term that
refers to the ability of a machine or computational programme to exe-
cute tasks that are characteristic of human intelligence, such as pattern
recognition and problem-solving.8 While the concept of AI is not new,9

modern AI has benefited enormously from an increase in available com-
putational power and large data sets that can be used to train these sys-
tems.10 Just in the field of cardiac CT imaging, it is currently estimated
that >42 000 cardiac CT scans are performed every year in the UK
alone, whereas this number is expected to reach 350 000 if the National
Institute for Health and Care Excellence (NICE) guidelines were to be
fully implemented.2,11 On the other hand, the process by which an AI sys-
tem autonomously acquires knowledge by identifying and extracting pat-
terns among a group of observations (a ‘data set’) is called machine
learning (ML).12,13

2.2 Big data
‘Big data’ is a term frequently used to describe vast amounts of collected
data, whether that is genomic data from large biobanks or numerous CT

scans from electronic health record archives and large cohorts or regis-
tries.14,15 Even though ML algorithms can be trained using both small and
large data sets, the availability of large data sets provides the necessary
sample variation to maximize both the internal and external validity (re-
producibility) of the trained algorithms.16 It also reduces the risk of over-
fitting, a state where a trained model is too complex, mirroring the noise
in the original training data set.16

Data sets are matrices of data, where rows typically describe a single
observation (e.g. patient) and columns describe the values of different
features for each observation,17 including labels for a given condition (e.g.
‘dead’ or ‘alive’) to be used for prediction or classification purposes. As
the fuel for ML, the quality of the data sets is critical in determining the
quality of the final ML models.18 These core attributes are described by
the five ‘V’s of big data: Volume, Velocity, Variety, Veracity, and Value.
ML algorithms benefit from data sets that are large (Volume), generated
and processed rapidly (Velocity), come from different sources (Variety),
are trustworthy (Veracity), and above all provide answers to important
questions, such as diagnosis or prognosis of a disease (Value).15

2.3 Unsupervised, supervised, and deep
learning
Within the field of ML, there are two broad task categories: supervised
and unsupervised learning (Figure 1).13 The selection of the right model
often relies on an operator’s expertise, nature of the data set, and the
purpose of the final AI system.17

Supervised learning is an iterative process which selects (or removes),
processes, and assigns appropriate weightings to features in order to
predict a given value or class.13 The former is typically known as regres-
sion (i.e. linear or logistic regression with feature selection), whereas the
latter is known as classification. Further to traditional linear regression,
newer statistical approaches, such as ‘neural networks’, support vector
machines and decision trees have come to light in order to maximize the
flexibility of the training algorithms and model complex non-linear rela-
tionships between the features.13,17 For instance, neural networks are
modelled based on the neurons of the human brain with input and out-
put layers, separated by several ‘hidden layers’, which are connected in
nodes, similar to human synapses. In addition, some of these algorithms
can be combined (‘bagging’ and ‘ensemble’ algorithms) to generate
stronger predictors using a series of weaker predictors.

Based on artificial neural networks, deep learning refers to a particu-
larly powerful ML method often used in imaging for pattern recognition
and classification (e.g. diagnosis of melanoma or diabetic retinopa-
thy19,20). It mimics human cognition by using convolutional neural net-
works (CNNs) and is characterized by the ability to learn based on prior
experience, thus simulating human-like decision-making.1

As opposed to supervised learning, unsupervised learning is not relying
on a label but uses the features of a data set to identify inherent patterns.
The most common example is that of clustering (e.g. ‘k-means’ or hierar-
chical clustering).13 These approaches analyse the n-dimensional space
of a data set to identify clusters of spatially related observations using a
‘distance’ measure. Such approaches are important in identifying previ-
ously ignored phenotype clusters in patients based on their presentation
or imaging features and often challenge perceptions about the homoge-
neity of a given condition.21

2.4 Performance assessment
Validation is a key step that aims to improve the validity and reproducibil-
ity of a given algorithm. This is usually done by randomly splitting the

2042 E.K. Oikonomou et al.



Figure 1 Artificial intelligence and machine learning. While AI describes a programme capable of performing tasks typical of human intelligence, machine
learning refers to the process through which an AI system is trained to learn. The two main types of machine learning used in medicine are supervised and
unsupervised learning. In the former, different algorithms such as regression or more advanced methods reflecting the structure of the human brain (neural
networks), using decision trees or projecting a data set into a higher-order space to identify optimal separation planes (hyperplanes in support vector
machines) or combination thereof are used to predict the class or value of a given label. In unsupervised learning (e.g. clustering), the data set is analysed to
identify inherent patterns of the data, often using hierarchical or k-means clustering methods.

Artificial intelligence in cardiac CT 2043



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
data into a training, a validation, and a testing set.16,22 Where available, an
‘unseen’ external data set from an independent population may be used
as the final testing data set to assess the external validity of a model. In
classification problems, common metrics are the accuracy (proportion
of correct predictions relative to the total number of observations) and
the area under the curve (AUC) of receiver operating characteristic
curves, which reflects the increase in correct classifications as one
accepts more false positives.22 Other metrics include log-loss, precision,
and recall, the Dice coefficient, whereas regression tasks are assessed us-
ing different metrics (i.e. root mean square error).22

3. Radiomics: a link between CT
imaging and machine learning

The term ‘radiomics’ refers to the application of complex mathematic
formulae to a given radiological image (e.g. a CT scan) that enable the
calculation of a wide number of features, relating to the shape, attenua-
tion, and ‘texture’ of a given volume of interest (Figure 2).23 As an isotro-
pic imaging modality that is composed of superimposed numerical
matrices [Hounsfield Unit (HU) values],24 CT is a prime candidate for
the application of radiomic methods.25

The main concept in radiomic analysis is that of the radiomic texture.
Statistical texture refers to the stochastic or random properties of the
spatial distribution of grey levels within an image using statistical meas-
ures, such as marginal probabilities.26 Contrary to shape-related or first-
order statistics that are derived directly from an attenuation histogram
ignoring the distribution of attenuation values in the three-dimensional
space, texture statistics reflect the unique spatial arrangement of vox-
els.27 These second- or higher-order statistics are derived from grey-
level intensity matrices, which can be calculated using different methods
(Figure 2). A detailed description of the mathematical formulae behind
the calculation of all these features goes beyond the focus of this review
article, and relevant information can be found in other articles.28

Radiomic features can be calculated using both the original images as
well as mathematical transformations of the original data, such as wavelet
decompositions. Wavelet transformation decomposes the data into
high- and low-frequency components, which describe the pattern and
rate at which attenuation changes along spatial directions. At high fre-
quency, the wavelets can capture discontinuities, ruptures, and singulari-
ties in the original data. At low frequency, the wavelet characterizes the
coarse structure of the data to identify the long-term trends. Thus, the
wavelet analysis allows extraction of hidden and significant temporal fea-
tures of the original data, while improving the signal-to-noise ratio of im-
aging studies.29,30

Overall, radiomic approaches bridge the gap between CT scans and
generating data sets that can be used in ML and thus generate AI systems.
Any image or volume can be broken down into a range of radiomic fea-
tures that describe the phenotypic variation in radiodensity/attenuation
in the given tissue.26,28 These numbers can then be fed into an ML algo-
rithm that can be used for classification or prediction purposes.
Furthermore, this provides an unparalleled opportunity for a more per-
sonalized assessment model. This has long been demonstrated in the
field of cancer imaging, where comprehensive radiomic characterization
of lung tumours was found to be superior to traditional tumour, node,
and metastasis staging in predicting future mortality,28,31 and also associ-
ated with discrete transcriptional changes in tumour biology.31

4. Machine learning and radiomics
in cardiovascular medicine: from
electrocardiogram to cardiac CT

To date, AI approaches in Cardiology have traditionally focused on elec-
trocardiogram (ECG) and echocardiogram interpretation, particularly
with the use of deep neural networks (DNNs). The availability of these
tests provided researchers with vast amounts of data in order to train
their algorithms. DNNs have been shown to have high sensitivity
(�93%) and specificity (�90%) in diagnosing acute myocardial infarc-
tion,32 as well as classifying arrhythmias and electrical conduction abnor-
malities, with accuracy comparable with that of trained cardiologists.33

The power of big data and AI was demonstrated in a recent landmark
study which analysed 180 922 patients with 649 931 normal sinus
rhythm ECGs and demonstrated that a CNN algorithm was able to reli-
ably detect the presence of atrial fibrillation [AUC of 0.87 (95% confi-
dence interval 0.86–0.88)].34 More recently, however, with the
increasing adoption of cardiac CT as the go-to test for the non-invasive
assessment of CAD,11 the focus of AI research has expanded to the
analysis and interpretation of cardiac CT scans.

4.1 Image processing, detection, and
segmentation
AI and deep learning can improve the speed of the initial steps of image
pre-processing, boundary detection, and volume segmentation, which
are often time-consuming in the busy clinical setting. An ML algorithm
that mapped features related to image quality (i.e. noise, contrast, misre-
gistration scores, and uninterpretability index) and was trained in 75
CCTA scans before being validated in 50 independent studies, had excel-
lent discriminatory accuracy in identifying low-image quality (AUC of
0.96 in the validation set). In an independent set of 172 CCTAs, the
agreement between manually assigned visual image quality score (5-
point Likert scale) and the ML algorithm was found to be high [Cohen’s
kappa of 0.67 (P < 0.01)].35 Three-dimensional CNNs with subject-
specific data set normalization have also been shown to improve the ac-
curacy of coronary artery lumen segmentation compared with tradi-
tional methods.36

4.2 Coronary artery calcium
Traditionally measured using ECG-gated non-contrast CT scans of the
heart, coronary artery calcium (CAC) provides a simple and quick indi-
rect assessment of the extent of coronary atherosclerosis.37 As a result,
CAC is often used in the risk stratification of selected patients where a
risk-based treatment approach remains uncertain based on traditional
risk factors.38 Several ML and DNN approaches have been developed to
automate the calculation of CAC from cardiac CT scans. A CNN trained
in 4973 cases showed very strong correlation with manual measure-
ments in a testing set of 1000 scans.39 A texture-based radiomic ap-
proach has also shown promise in detecting CAC from non-ECG-gated
chest CT scans.40 In total, more than 150 publications have been pub-
lished on automating the methods for CAC detection, highlighting the
need for more automated tools in the clinical setting.41 Despite the fact
that CAC may fail to detect low-attenuation, non-calcified plaques that
are known to be more prone to rupture compared with calcified
lesions,42,43 the diagnostic and prognostic value of CAC in primary pre-
vention is supported by numerous studies. In a recent analysis of 13 054
participants from the CONFIRM registry, a boosted ensemble ML algo-
rithm incorporating clinical variables as well as the CAC score (derived

2044 E.K. Oikonomou et al.
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from non-contrast cardiac CT scans) was found to accurately estimate
the likelihood of obstructive CAD on CCTA with an AUC of 0.881 (vs.
AUC of 0.773 for the clinical ML algorithm alone).44

4.3 Coronary plaque detection
Clinicians interpreting CCTA scans focus, among other things, on the
identification of lesions that may be causing significant narrowing to the
coronary lumen. While this is normally based on visual assessment of the
reconstructed images, ML algorithms have been shown to be highly ac-
curate in identifying such obstructive lesions. A support vector machine
algorithm applied in 42 CCTAs had a sensitivity of 93% and specificity of
95% in identifying coronary artery lesions compared with a human
observer.45

4.4 Haemodynamic assessment of
coronary lesions
Evaluating the haemodynamic effects of a coronary lesion in a non-
invasive manner is a challenging task.46 This is often assessed by estimat-
ing the myocardial flow reserve on 13N-Ammonia positron emission to-
mography (PET) (abnormal if <_2),47 or the invasive lesion-specific
fractional flow reserve (FFR) on cardiac catheterization (abnormal if
<_0.80).48 ML-derived algorithms that incorporate several measures of
plaque composition (e.g. stenosis, non-calcified, low-density non-
calcified, calcified and total plaque volumes, contrast density difference)
were found to be superior in detecting haemodynamically significant ob-
structive lesions compared with the degree of luminal stenosis alone
(AUC of 0.84 vs. 0.76 for lesion-specific FFR,48 and 0.83 vs. 0.66 for

Figure 2 Radiomic characterization of textural features. For a given volume of interest, differences in the underlying histological structure will result in dif-
ferent texture patterns that can be described using higher-order features that reflect the unique spatial arrangement of voxels and their attenuation on com-
puted tomography. Histogram-based first-order features only reflect the voxel attenuation distribution. Different texture patterns (same number of voxels
with similar attenuation values but different location) may still have identical histogram and therefore similar first-order statistics.

Artificial intelligence in cardiac CT 2045
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.13N-Ammonia PET in a separate study47). Other similar comprehensive
approaches that rely on ML-based synthesis of several plaque features
have demonstrated high accuracy in identifying haemodynamically signifi-
cant lesions (AUC of 0.89 on a per-lesion level and 0.91 on a per-patient
level) which is comparable with that of complex computation fluid dy-
namic modelling.49,50 Interestingly, processing time for the ML-based ap-
proach was significantly shorter compared with computation fluid
dynamics (40.5 min ± 6.3 vs. 43.4 min ± 7.1; P = 0.042).50 Further to
plaque-derived measurements, models trained to characterize resting
myocardial CT perfusion (i.e. gradient boosting classifiers) as well as
deep learning analysis algorithms of the left ventricular myocardium have
significantly improved the discriminatory accuracy of diameter stenosis
for detection of ischaemia (FFR <_ 0.80).51,52

4.5 Coronary plaque phenotyping
Whereas detection of coronary plaques and their haemodynamic signifi-
cance relies on ML-based combination of several, yet common CCTA-
derived metrics, a more comprehensive assessment of the plaque micro-
environment, histology, and ultimately biology requires a more in-depth
radiomic characterization of its phenotype.

These high-risk plaque features offer an individualized insight into the
vascular biology of each plaque.53,54 For instance, vascular wall remodel-
ling in atherosclerosis is the end-result of complex pathways that con-
verge to cell migration and extracellular matrix remodelling, often due
to an imbalance in the relative expression and activity of matrix

metalloproteinases and their inhibitors in the plaque microenviron-
ment.55 The resulting outwards vascular remodelling can then be
detected on CCTA as a relative increase in vascular diameter around the
plaque captured by the remodelling index.53 Low-attenuation plaque, on
the other hand, is associated with a lipid-rich necrotic core, an extracel-
lular mass in the intima induced by necrosis and apoptosis of lipid-laden
macrophage foam cells.56 Such a high-risk plaque phenotype composed
of a thin fibrotic cap above a necrotic core is often described as a ‘nap-
kin-ring sign’ (NRS) on CCTA, manifesting as a low-attenuation area sur-
rounded by a high-attenuation rim.53,57 Finally, spotty calcification
identifies inflamed areas of confluent coronary calcification and microcal-
cification.53,58 Vascular calcification represents a local response to an in-
flammatory microenvironment, with a well-defined link between
inflammatory cell infiltration and osteoblastic metaplasia.59

Radiomic phenotyping of a given plaque can identify such high-risk pla-
que features as changes in the attenuation histogram and radiomic tex-
ture of a plaque, thus standardizing what is often a subjective and
operator-dependent process (Figure 3). In an analysis of 30 NRS lesions
and 30 non-NRS plaques with similar degree of calcification, luminal ob-
struction, localization, and imaging parameters, Kolossvary et al.60 dem-
onstrated that 916 radiomic features were significantly different
between the two groups, with 418 of these features reaching an AUC of
>0.80. Texture-shape statistics such as short- and long-run low grey-
level emphasis had the highest AUC (0.918 and 0.894, respectively),
whereas none of the conventional CCTA metrics discriminated between

Figure 3 Radiomic phenotyping of coronary lesions. Differences in coronary plaque composition will manifest as different radiomic texture patterns on
computed tomography analysis, which can then be quantified using first- and higher-order radiomic features. Changes in these metrics can be used in an au-
tomated way to not only detect plaques but also produce a deep characterization of the histology and biology of a given lesion.

2046 E.K. Oikonomou et al.
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the two groups. More recently, in an analysis of 44 plaques from 25
patients that underwent multimodality imaging, CCTA-derived radiomic
parameters outperformed conventional metrics (i.e. stenosis, plaque vol-
ume) in identifying intravascular ultrasound-defined attenuated plaques,
optical coherence tomography-detected thin-cap fibroatheroma and
18F-sodium fluoride (18F-NaF) positivity on PET, a marker of microcalcifi-
cation and coronary inflammation.61 Finally, in an analysis of 445 cross-
sections taken from 21 coronary arteries from seven male hearts that
were imaged ex vivo, a radiomics-based ML model was found to be supe-
rior to visual assessment (AUC = 0.73 vs. 0.65; P = 0.04), low attenuation
(AUC = 0.55; P = 0.01), and mean HU (AUC = 0.53; P = 0.004) in the
identification of advanced atheromatous lesions.62

4.6 Myocardial tissue characterization
Application of radiomic texture phenotyping in myocardial segmenta-
tions has also highlighted the ability of low-dose, thick-slice, non-contrast
cardiac CT to detect myocardial pathology, such as scarring and infarc-
tion. Myocardial texture mapping showing increased heterogeneity on
delayed iodine-enhanced images may enable the detection of scarred
myocardial tissue in patients with myocarditis,63,64 as well as detect left
ventricular dilation and systolic/diastolic function in patients with

recurrent ventricular tachcycardia.65 Of note, texture analysis of thick-
slice CT images of the left ventricle may discriminate infarcted myocar-
dial tissue from healthy areas (AUC of 0.78 and 0.90 in two separate
studies).64,66 The latter model included the first-order statistic of kurtosis
and the higher-order statistic of short-run high grey-level emphasis,
highlighting the complementary nature of first and higher-order radiomic
features in characterizing tissue histology.66

4.7 Adipose tissue characterization
Epicardial and total thoracic adipose tissue depots can be detected on
cardiac CT by applying an attenuation-based segmentation approach,
which classifies voxels with attenuation values between -190 and -30 HU
as adipose tissue/fat. Epicardial adipose tissue (EAT), the layer of fat lo-
cated between the visceral layer of the pericardium and the myocardium,
is involved in cardiovascular disease pathogenesis through direct para-
crine interaction with the adjacent coronary artery and myocardial tis-
sue.67–70 In addition, several observational studies have described a
positive association between the degree of epicardial obesity and the
presence of coronary calcification, CAD, as well as the future incidence
of adverse cardiac events.71 However, segmentation of the EAT on CT
scans is an intensive process that requires manual editing from an

Figure 4 Radiomic phenotyping of perivascular fat to detect coronary inflammation. (A) Radiomic characterization of perivascular fat by means of the fat
attenuation index to detect vascular effects on the adjacent fat. (B) Prognostic value of perivascular fat attenuation index phenotyping for all-cause and car-
diac mortality in the Cardiovascular Risk Prediction using Computed Tomography study. Reproduced with permission from Oikonomou et al.78
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experienced operator. Several groups have now succeeded in develop-
ing automated, ML-derived solutions by enabling automated tracking of
the pericardial layer and segmentation of epicardial fat-containing voxels,
including random forest classifiers,72 rotation forest algorithms using a
multilayer perceptron regressor,73 as well as deep learning methods that
allow computation in less than 6 s with strong correlation between the
manual and automated measurements (e.g. r = 0.924 for EAT).74

4.8 Radiomic phenotyping of perivascular
fat
Perivascular adipose tissue (PVAT) plays a key role in regulating vascular
homeostasis and disease75 and participates in a complex bidirectional in-
terplay with the adjacent arterial wall.67,68,76,77 In the presence of vascu-
lar inflammation, the release of pro-inflammatory mediators into the
surrounding PVAT blocks the ability of perivascular pre-adipocytes to
differentiate into mature lipid-laden adipocytes. This creates an
inflammation-induced gradient in PVAT composition, which can be
detected on standard CCTA as spatial changes in the PVAT radiomic
texture, quantified by the fat attenuation index (FAI).77 In the CRISP-CT
study, FAI radiomic mapping at baseline offered incremental prognostic
value for future adverse cardiac events beyond traditional risk factors,
extent of coronary atherosclerosis, and presence of high-risk plaque fea-
tures, highlighting a residual cardiac risk hidden in the PVAT radiome
(Figure 4).78 Further work has confirmed that unadjusted or adjusted
(FAI) PVAT attenuation is associated with the presence of unstable
lesions in acute coronary syndromes,77,79 predicts the future progression
of coronary atherosclerosis,80 is reduced in response to anti-
inflammatory therapies with novel biologics in patients with psoriasis,81

and is strongly associated with local vascular inflammation, as assessed
by 18F-NaF PET-CT imaging.82

In addition to inflammation, dysfunctional adipose tissue remodelling
is also characterized by fibrosis and changes in adipose tissue vascular-
ity.75,83 By applying a radiotranscriptomic approach, we recently
developed an integrated CT signature of pericoronary fat that links the
‘radiome’ of pericoronary fat to not only inflammatory but also
permanent fibrotic and microvascular changes (Figure 5), thus functioning
as a surrogate marker of cumulative coronary injury and ageing.
More importantly, when tested in participants of the SCOT-HEART
study, this integrated signature (known as Far Radiomic Profile) pre-
dicted a significant residual cardiac risk not captured by traditional risk
factors, CAD, high-risk plaque (HRP) features, or coronary calcium
score (CCS).84

4.9 Cardiac risk prediction
Supervised and unsupervised ML approaches have shown promise in
identifying patterns with significant prognostic value for future adverse
cardiac events in patients undergoing CT. For instance, using a registry of
10 030 patients undergoing CCTA with 25 clinical and 44 CCTA param-
eters, Motwani et al.85 developed and tested a boosted ensemble ML al-
gorithm that had higher discriminatory accuracy for 5-year mortality
compared with the Framingham Risk Score (FRS) or modified Duke in-
dex (DI) alone (AUC of 0.79 vs. 0.61 for FRS and 0.62 for DI; P < 0.001).
Similarly, an ML extreme gradient boosting algorithm derived from de-
tailed plaque analysis of standard 16 coronary segments on CCTA had
greater prognostic accuracy for myocardial infarction and death than
current CCTA integrated risk scores (AUC of 0.771 vs. 0.685–0.701,
P < 0.001 for other scores such as DI).86 Finally, in a study of 2924
Framingham Heart Study patients that underwent chest and abdomen

CT, measures of valvular/vascular calcification, adiposity, and muscle at-
tenuation were collected and used in an unsupervised manner to identify
a cluster of patients with unfavourable multiorgan phenotype and a 2.6-
fold higher prospective mortality risk compared with the favourable phe-
notype group, independent of CAC, visceral adipose tissue, and FRS.21

These findings highlight the ability of ML to identify patterns in the data
sets that are of significant diagnostic and prognostic value, yet invisible to
the human eye.

5. A proposed quality control
framework for future studies

AI-powered radiomic phenotyping of patients using cardiac CT can iden-
tify signatures for precision diagnosis and prognosis, thus providing an ad-
ditional powerful tool in modern medicine. However, the great power
of AI and ML comes with great responsibility,18 highlighting the need for
a standardized approach to ML-based prediction modelling. Five core
steps have been described in a radiomics study, namely data selection,
medical imaging, feature extraction, exploratory analysis, and modelling.7

Given the flexibility offered to researchers by the wide range of
available software, methods and ML algorithms, the literature is full of
competing models, different algorithms, and often contrasting
approaches to feature selection, model development, validation, and
performance assessment. This in turns introduces bias in these studies,
limits their reproducibility and therefore potential clinical value. Based
on the work of Lambin et al.,7 we propose a set of guidelines to ensure
the high quality of radiomic studies in the field of cardiovascular CT
(Table 1). Moving forward, scientific societies should also focus on the
standardization of radiomic feature definitions and their extraction
methods in order to ensure generalizability and reproducibility. To date,
there is no scientific consensus statement on the use of radiomics in car-
diovascular imaging.

6. Limitations

Several limitations should be kept in mind when designing an ML-based
radiomic study. First, the quality of all AI and ML systems depends on the
quality of the raw data and features that were used to train these in the
first place. An accurate data set with minimal missing values and proper
parameterization is of paramount importance; however, this is often
challenging in ‘big data’ studies that include electronic health records and
data from multiple sources.17,18 In particular, the ‘ground truth’ is often
hard to determine in cardiac CT imaging studies due to interrater vari-
ability, although easier compared with other imaging modalities.
Likewise, variations in CT acquisition parameters may also affect the va-
lidity of imaging and particular radiomic markers, which are sensitive to
changes in slice thickness, scanner type, tube voltage, and pitch.87

Second, many complicated ML systems function as a ‘black box’, provid-
ing minimal insight into the logic behind a given algorithm.13 As a result,
there have been several concerns regarding the acceptance of such a
tool by physicians and patients alike. It should be noted that artificial and
human intelligence are not competing, and AI systems can reduce the
work burden of clinicians, who will still have the final say in deciding pa-
tient management.1 Nevertheless, this also raises a series of ethical and
regulatory questions regarding the use of AI in patient care rather than in
research alone.88 Third, different types of bias, such as selection bias in
the patients or CT scanning protocols included in the training phase, will
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Figure 5 Radiomic phenotyping to detect biological hallmarks of dysfunctional adipose tissue. (A–C) Manhattan plots presenting the strength of associa-
tion between adipose tissue radiomic features and the relative gene expression of TNFA (inflammation), COL1A1 (fibrosis), and CD31 (endothelial marker,
vascularity). (D) Component plot of the three principal components of the adipose tissue radiome. (E) Comparison of nested linear regression models with
relative gene expression as the dependent variable and (i) clinical risk factors alone (Model 1: age, sex, hypertension, hypercholesterolaemia, diabetes melli-
tus, and body mass index); (ii) Model 1þmean attenuation (Model 2); and (iii) Model 2þ PVAT radiome (first three principal components) as the indepen-
dent predictors. Imc, informational measure of correlation 2; L/H, low/high wavelet transformation; SALGLE, small area low grey-level emphasis; SDLGLE,
small dependence low grey-level emphasis; SRLGLE, short-run low grey-level emphasis. Reproduced with permission from Oikonomou et al.84
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transfer into the derived ML algorithms.89 Finally, the multidimensional
nature of radiomic features means that are for a small to moderate data
set, there will always be a danger of overfitting.16 The redundancy in
these features should be noted and accounted for, and proper validation
approaches should be applied to minimize this risk.

7. Conclusions

In an era of increasing digitalization and accumulation of vast amounts of
medical information and images, AI and ML provide novel solutions to
the old problems of disease diagnosis and risk prediction. The simulta-
neous development of the field of radiomics now enables the quantita-
tive mapping of routine cardiac CT scans, generating arrays of features
that can be fed into ML algorithms for improved cardiovascular
disease diagnosis and risk stratification. These novel approaches may
transform the structure of modern healthcare, by relieving the
physician from time-consuming image processing tasks, and maximizing
the diagnostic and prognostic yield of existing images, with
important clinical and health economic benefits (Figure 6). Still in its

infancy, AI-based cardiovascular imaging has a lot to offer to both the
patients and their doctors, as it catalyses the transition towards a more
personalized model of care.
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Table 1 Methodological quality in studies using radiomics in cardiac computed tomography imaging

Checklist Descriptions

1. Pre-defined image protocol and registration Prospective registration of radiomic studies, including pre-defined imaging protocols to be used consistently

in all patients and study sites.

2. Segmentation robustness Intra- and inter-operator levels of agreement for repeated segmentations and calculation of the robustness

of radiomic features (i.e. intraclass correlation coefficient).

3. Technical parameters Assessment of the sensitivity of radiomic features to changes in technical acquisition parameters, across dif-

ferent scanners and vendors.

4. Scan–rescan robustness Robustness of radiomic features to scan–rescan analysis using the same scanner, parameters, and other

settings.

5. Normalization and standardization Protocol-defined selection of the methods for pre-processing and standardization (e.g. Z-score transforma-

tion) of radiomics.

6. Algorithm selection The rationale for the selection of a given machine learning algorithm should be clearly described.

7. Multiple comparisons and redundance Addressing the potential redundancy of radiomic features (i.e. dimension reduction or feature removal) as

well as multiple comparisons (e.g. Bonferroni adjustment).

8. Multivariable models Radiomic-based models should still be adjusted for traditional risk factors and expected factors and co-

variates

9. Associations with known clinical variables The strength and nature of the association of radiomic-based models with traditional risk factors (i.e. coro-

nary calcium) should be explored and discussed.

10. Risk group identification Where risk groups are to be defined based on a radiomic signature, the method for cut-off identification

should be defined a priori.

11. Discrimination–performance Measures of performance should be appropriately selected based on the task (classification and regression)

and nature of the data (e.g. C-statistic vs. accuracy for unbalanced groups).

12. Calibration Present appropriate calibration metrics.

13. Validation Discuss the process for internal (e.g. cross-validation) and external validation (i.e. unseen data).

14. Comparison to clinical ‘gold-standard’ Where a radiomic model is proposed as a replacement for an established ‘gold-standard’, the change in dis-

crimination and reclassification should be discussed.

15. Clinical utility and cost-effectiveness If possible, a clinical utility and cost-effectiveness analysis should be performed, including the time saved or

wasted for each type of analysis, and clinical benefit to the patient.

16. Accessibility Investigators should provide information about the accessibility of their code and availability for use in inde-

pendent studies.

Modelled based on the work by Lambin et al.7
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Corrigendum to: Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell
intermediates cells via mesenchymal stem cell intermediates [Cardiovasc Res 2012;96:391–400 https://doi.org/10.1093/cvr/cvs253]

The authors regret an error in Figure 2C of this manuscript.

During the preparation of the figure, the author used HF-iPSC Vimentin and GAPDH gel images as a template to ensure the images were the
same size and proportionally placed.

In error, this template was not removed, resulting in both Fig. 2C and 2D GAPDH and Vimentin gel images being the same. Original blots were
provided to verify this and have been added as a supplement. The authors apologise sincerely for this error and the figure has now been
corrected.

This matter was investigated by the ESC Journals Family Ethics Committee, who endorsed this resolution.

This change does not affect the overall scientific message of the paper.

Published on behalf of the European Society of Cardiology. All rights reserved. VC The Author(s) 2020. For permissions, please email: journals.permissions@oup.com.

Figure 2 A gene expression profile of hiPSC as they undergo differentiation. (A and B) RT-PCR for pluripotency-associated genes and genes
associated with mesendodermal, endodermal, or ectodermal lineages in (A) F-iPSC; (B) HF-iPSC. (C and D) RT-PCR for EMT-associated genes
at the indicated stages of hiPSC differentiation. Please note brightness contrast correction was used to enhance visibility for the pur-

poses of clarity.


