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The biogenesis of mitochondria requires the import of hun-
dreds of precursor proteins. These proteins are transported
post-translationally with the help of chaperones, meaning that
the overproduction of mitochondrial proteins or the limited
availability of chaperones can lead to the accumulation of cyto-
solic precursor proteins. This imposes a severe challenge to
cytosolic proteostasis and triggers a specific transcription pro-
gram called the mitoprotein-induced stress response, which
activates the proteasome system. This coincides with the
repression of mitochondrial proteins, including many pro-
teins of the intermembrane space. In contrast, herein we
report that the so-far-uncharacterized intermembrane space
protein Mix23 is considerably up-regulated when mitochon-
drial import is perturbed. Mix23 is evolutionarily conserved
and a homolog of the human protein CCDC58.We found that,
like the subunits of the proteasome, Mix23 is under control of
the transcription factor Rpn4. It is imported into mitochon-
dria by the mitochondrial disulfide relay. Mix23 is critical for
the efficient import of proteins into the mitochondrial matrix,
particularly if the function of the translocase of the inner
membrane 23 is compromised such as in temperature-sensi-
tive mutants of Tim17. Our observations identify Mix23 as a
novel regulator or stabilizer of the mitochondrial protein
import machinery that is specifically up-regulated upon mito-
protein-induced stress conditions.

Mitochondrial biogenesis relies on the import of hundreds of
protein precursors from the cytosol. Proteins of the mitochon-
drial matrix are synthesized with N-terminal presequences or
matrix targeting signals (MTSs) which bind to surface recep-
tors on the mitochondrial outer membrane (1, 2). These recep-
tors are associated with the translocase of the outer mitochon-
drial membrane (TOM) complex, which serves as a general
entry gate for protein import (3–6). After translocation through
the protein-conducting channel in the TOM complex, MTSs
engage with the TIM23 complex of the inner membrane, which
facilitates their further transport into the matrix via a reaction
driven by the inner membrane potential and by Hsp70-medi-
ated ATP hydrolysis (7, 8). The interactions between the TOM
and TIM23 complex are dynamically regulated by the incoming

preproteins and depend on intermembrane space (IMS)-exposed
protein domains of several proteins, including Tom22, Tim50,
Tim21, andTim23 (9–13).
Most IMS proteins lack MTSs and employ a unique import

mechanism independent of ATP and the inner membrane
potential (14–16). Many of these IMS proteins contain charac-
teristic cysteine residues that are part of their targeting signal
(17, 18). These mitochondrial IMS sorting signal or IMS target-
ing signal sequences direct proteins through the protein-trans-
location pore of the TOM complex into the IMS, where they
associate with the hydrophobic substrate-binding region of
Mia40 (19, 20). Mitochondrial intermembrane space import
and assembly protein 40 (Mia40; coiled-coil-helix-coiled-coil-
helix domain containing 4 (CHCHD4) in humans) contributes
at least two functions: 1) it traps incoming IMS precursors via a
hydrophobic interaction with their mitochondrial IMS sorting
signal/IMS targeting signal and 2) it introduces disulfide bonds
into these substrates (21–23).
Most Mia40 substrates share a simple helix-loop-helix struc-

ture in which both helices are stabilized by two parallel disul-
fide bonds (24–27). Because of the specific spacing of the cyste-
ine residues in their primary sequence, these proteins are
referred to as twin Cx3C or twin Cx9C proteins. However, some
Mia40 substrates show different numbers and arrangements of
their cysteine residues: whereas Mia40 introduces five disul-
fides into the IMS protease Atp23, it is critical for the formation
of a single disulfide bond in the inner membrane proteins
Tim17 and Tim22 (28–31).
The protein import into mitochondria is under surveillance

of the proteasome. Arrested mitochondrial import intermedi-
ates induce severe stress, presumably because of the accumula-
tion of non-imported mitochondrial precursor proteins in the
cytosol (32–37). Conditions that perturb mitochondrial import
trigger a characteristic stress response that leads to an induc-
tion in expression of many chaperones and the constituents of
the proteasome (Fig. 1A) (33, 34, 38). Here we identify the
poorly characterized protein Mix23 as one of few IMS proteins
that are induced under these stress conditions. Mix23 is critical
for efficient protein import into mitochondria, and deletion of
Mix23 in temperature-sensitive tim17 mutants leads to syn-
thetic defects in growth and the import of proteins into the
mitochondrial matrix. Our results suggest that Mix23 is a
stress-regulated factor that is relevant for efficient protein
translocation intomitochondria.
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Results

Stalled import intermediates selectively induce Mix23
expression

Cloggers are slowly imported mitochondrial precursor pro-
teins that competitively inhibit mitochondrial translocation in
vivo and activate the mitoprotein-induced stress response.
Because of their slow import, inner membrane proteins with
N-terminal stop-anchor sequences (also called bipartite prese-
quences) have particularly strong competitive effects (32, 33).
These proteins include model substrates such as cytochrome
b2-DHFR and endogenous inner membrane proteins such as
cytochrome c oxidase 11 (Cox11) or Cox5a. To assess the effect
of clogger expression on proteins of the mitochondrial IMS, we
analyzed the data from our previous study (33) in which the cel-
lular mRNA levels were followed after induction of the model

protein cytochrome b2-DHFR for 90 min compared with con-
trol cells, which did not express the clogger protein. Whereas
most chaperones and proteasome subunits were up-regulated
under these conditions (Fig. 1B), the reaction of the gene
expression of IMS proteins was more heterogeneous (Fig. 1, C
and D). However, three IMS proteins, Mix23, cytochrome c 7
(Cyc7), and Cox23, were considerably up-regulated by expres-
sion of cytochrome b2-DHFR. Mix23 (initially named Mic23
but then renamed to avoid confusion with mitochondrial con-
tact site and cristae organizing system (MICOS) components)
is a poorly characterized protein with unknown function (39,
40). Its up-regulation followed a similar kinetics as that of pro-
teasome subunits (compare Fig. 1, E and F) and was also
observed with matrix-targeted proteins such as cytochrome
b2D19-DHFR. This indicates that the mitoprotein-induced
stress response leads to the induction ofMix23.

Figure 1. The expression of clogger inducesMIX23 expression. A, schematic representation of the mitochondrial import machinery and the cytochrome
b2-DHFR construct (Clogger) (33). B, cells expressing the clogger construct or an empty vector for control were shifted for 90 min from lactate medium to lac-
tate1 0.5% galactose medium. Cellular mRNA was isolated from three biological replicates and sequenced (33). Many chaperone (blue) and proteasome sub-
unit (red) genes were induced by clogger expression. C, most IMS proteins (red) were not significantly increased upon mitoprotein-induced stress. However,
clogger expression leads to an up-regulation of Mix23.D, shown are the relative changes in clogger versus control expression of genes coding for IMS proteins
(39). Dually localized proteins that are predominantly located in the cytosol were omitted. E and F, RNA levels ofMIX23 and PRE2 (coding for a proteasome sub-
unit) are shown for different times after clogger induction. See (33) for details.
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Mix23 is up-regulated upon mitoprotein-induced stress but
not upon heat stress

Next, we performed real-time qPCR measurements to study
the expression of MIX23 in more detail. This confirmed a
strong effect of cytochrome b2-DHFR on the transcript levels of
MIX23, which were up-regulated more than 4-fold (Fig. 2A).
MIX23 transcript levels were also significantly increased upon
overexpression of Cox11, an endogenous protein that is synthe-
sized with a bipartite presequence (41), albeit to a lower degree
(Fig. 2B). Mitoprotein-induced stress was also detected in
mutants of the mitochondrial TIM23 machinery (34, 42–44),
and we observed increasedMIX23 levels in temperature-sensi-
tive tim17-5mutants at permissive (25 °C) and semi-permissive
(33 °C) temperatures (Fig. 2C). In contrast, MIX23 levels were
more moderately affected in a temperature-sensitive mia40-3

mutant (Fig. 2D) in which the import of proteins into the IMS
but not into thematrix is compromised (45).
We next tested whether MIX23 expression is also induced

upon other stress conditions. However, increased temperature
did not result in MIX23 induction, whereas the target of the
heat shock response HSP82 was induced (Fig. 2E). The pres-
ence of neither aggregate in the cytosol led toMIX23 induction,
because neither the overexpression of a polyQ model protein
(huntingtin 97 (Htt97)-GFP) nor of a-synuclein significantly
changed the transcript levels ofMIX23 (Fig. 2F).
Because we observed that MIX23 is coexpressed with genes

of proteasome subunits, we tested whether clogger-mediated
MIX23 induction depends on regulatory particle non-ATPase 4
(Rpn4), which serves as a master transcription factor for com-
ponents of the proteasome machinery (46–48). Indeed, cyto-
chrome b2-DHFR expression in Drpn4 cells did not induce
MIX23 (Fig. 2G, cf. Fig. 2A). However, overexpression of Rpn4
in yeast cells (49) induced MIX23 expression as it does of the
established Rpn4 target putative proteasome subunit 2 (PUP2)
(Fig. 2H). Under the conditions here, the induction is mild
(about 1.4-fold) presumably because of the fact that the levels
of the Rpn4 protein are tightly regulated by a feedback mecha-
nism (46). From this we conclude that MIX23 and proteasome
subunits are coregulated via one common transcription factor
(Fig. 2I).

Mix23 is a Mia40 substrate of the IMS

Mix23 has been previously identified in a proteomic screen
for components that are released from isolated mitochondria
by a BCL2 associated X (Bax)-mediated opening of the outer
membrane (39). We confirmed the localization of Mix23 in the
IMS of mitochondria because it became accessible to protease
after rupturing the outer membrane by hypotonic swelling (Fig.
3A). Mix23 homologs are found throughout fungi and animals,
all containing four conserved cysteine residues (Fig. 3B and Fig.
S1).Mix23 lacks a presequence (Fig. 3B and Fig. S2), and its cys-
teine pattern is distinct from that of the twin Cx3C or twin
Cx9C proteins that represent well-studied substrates of the
Mia40 import pathway (20).
When mitochondrial proteins were denatured with SDS and

treated with the alkylating agent mmPEG24 (methyl-PEG24-
maleimide), Mix23 only shifted in size after the disulfide bonds
were reduced with TCEP (tris(2-carboxyethyl)phosphine), con-
sistent with the cysteines in endogenous Mix23 protein being
oxidized (Fig. 3C). The formation of disulfide bonds in IMS
proteins are catalyzed by the import component Mia40. Mia40
is also crucial for the import of Mix23, because mitochondria
from mia40-3 cells did not import radiolabeled Mix23 in an
in vitro import experiment whereas mitochondria of WT cells
imported Mix23 efficiently (Fig. 3D). The cysteine residues of
Mix23 are crucial for its Mia40-dependent import because a
mutant in which the six cysteine residues were replaced by ser-
ines was not imported (Fig. 3E). Thus, the import of Mix23
shows a similar Mia40-dependence as that of the twin Cx3C
protein Tim9 (Fig. S3A). Further, the import of presequence-
containing proteins such as Oxa1 does not require Mia40
(Fig. S3B). From this we conclude that Mix23 is an IMS

Figure 2. Mitoprotein-induced stress conditions specifically increase
MIX23 expression. A, WT cells with empty vector (e.v.) or GAL1-driven cyto-
chrome b2-DHFR plasmid (Clogger) were shifted to galactose-containing lac-
tate medium for 4 h. RNA was isolated andMIX23mRNA levels (and controls)
were quantified by qPCR. The values shown were normalized as described
under “Experimental procedures.” Mean values of six (three biological and
three technical) replicates are shown and were used for a Student’s t test.
*p, 0.05, **p, 0.01, ***p, 0.005. B, the experiment was repeated as in (A)
but GAL-COX11 was used instead of the clogger plasmid. C and D, MIX23
expression was analyzed in WT, tim17-5, andmia40-3 cells at permissive (25 °
C) growth conditions and after a 24-h shift to semi-restrictive (33 °C) condi-
tions. E, WT cells were grown in galactose medium and shifted for 2 h to the
indicated temperatures. F, WT cells were transformed with plasmids for
expression of Htt25-GFP, Htt97-GFP, or a-synuclein (SNCA), or with an empty
vector for control. After the shift to galactose for 4 or 6 h, MIX23 RNA levels
were quantified. G,MIX23 levels were measured inDrpn4 cells as described in
(A). Values were normalized to WT levels. H, Rpn4 was overexpressed from a
multicopy plasmid under control of the constitutive CYC1-promoter (49). I,
mitoprotein-induced stress leads to the simultaneous induction of MIX23
and the proteasome in an Rpn4-dependentmanner.
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protein with a conserved pattern of cysteine residues that is
imported into mitochondria via the Mia40 disulfide relay
(Fig. 3F).

High Mix23 levels lead to a severe growth defect

As reported above, mitoprotein-induced stress leads to a
considerable up-regulation of Mix23. We therefore tested the
effects of increased levels of Mix23 by expression of the protein
from a regulatable galactose metabolism 1 (GAL1) promoter
(Mix23:). In the presence of galactose, where Mix23 levels are
strongly increased, we observed a considerable reduction in
growth ofMix23: cells irrespective of temperature (Fig. 4A and
Fig. S3D). Obviously, increased amounts of Mix23 are not well
tolerated by yeast cells, potentially because the unphysiologi-
cally high levels of Mix23 clog the import machinery. A hall-
mark of the mitoprotein-induced stress response triggered by
cloggers is the induction of the Rpn4 response (33). Indeed, we
observed that Mix23: strongly induced the expression of a YFP
reporter from a reporter that contains the proteasome-associ-
ated control element (PACE) to which Rpn4 binds (Fig. 4B).

Because yeast cells can grow by fermentation on galactose
plates, the slow growth is not due to defects in respiration but
rather in a function of more general relevance.
We therefore tested whether increased levels of Mix23 inter-

fere with the import of proteins into isolated mitochondria.
Interestingly, we found that the import of the matrix protein
Atp1 and the inner membrane protein Oxa1 intoMix23:mito-
chondria was strongly diminished (Fig. 4, C–F). Similarly, the
import of the IMS protein Cmc1 into Mix23: mitochondria
was reduced (Fig. 4,G andH).
It was shown before that IMS proteins that fail to be

imported into mitochondria are degraded by the proteasome
(50–52). TheMia40 substrate Cox12 was identified as a protein
that is particularly unstable in the cytosol but stable in the IMS
so that its stability can be used to monitor its intracellular dis-
tribution (53, 54). We therefore tagged Cox12 by chromosomal
integration of an HA epitope in WT or Mix23: cells. When
synthesis of new proteins was inhibited by addition of cyclohex-
imide, Cox12 remained stable in the WT cells but was rapidly
degraded in the Mix23: mutant (Fig. 4I). The matrix protein

Figure 3. Mix23 IMS import is Mia40-dependent. A, isolated mitochondria were subfractionated by hypotonic swelling and incubation with proteinase K
(protease). The matrix protein Ilv5 remained inaccessible to protease at these conditions, whereas the IMS protein Mia40 and Mix23 were digestible once the
outer membrane (OM) was ruptured by swelling. B, schematic representation of Mix23 homolog sequences from different organisms (see Fig. S1 for details
and nonabbreviated species names). Positions of conserved cysteine residues are indicated in yellow. Mix23 was isolated from yeast mitochondria and ana-
lyzed by MS. Identified peptides are shown in green. See Fig. S2 for details. C, cell extracts were treated with the reductant TCEP and the alkylating agent
mmPEG24. Mix23 was detected byWestern blotting. In the presence of TCEP, but not in its absence, Mix23 was alkylated bymmPEG24, indicating that cysteine
residues are oxidized in Mix23 in vivo. D, Mix23 was synthesized in reticulocyte lysate in the presence of [35S]methionine and incubated for the indicated times
with mitochondria isolated from WT or mia40-3 cells that were both grown at 33 °C. Mitochondria were isolated and treated with proteinase K where indi-
cated. Proteins were resolved by SDS-PAGE and visualized by autoradiography. E, radiolabeled Mix23CS protein in which all six cysteine residues had been
replaced by serine residues was incubated with WT mitochondria and further treated as described in (D). F, schematic representation of the Mia40-mediated
import of Mix23 into the IMS, also showing themixed disulfide form as a reaction intermediate.
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mitochondrial ribosomal protein L40 (Mrpl40) served as a con-
trol in this experiment and was not degraded by Mix23 overex-
pression. Thus, in summary, we found that the synthesis of
high amounts ofMix23 interferes with the translocation of pro-
teins into mitochondria.

Mix23 is required for efficient preprotein import into tim17-5
mitochondria

Next, we tested the relevance of Mix23 for mitochondrial
functionality. Mutants lacking Mix23 did not show growth
defects on fermentative and nonfermentative carbon sources,
and the import or oxidation of matrix and IMS proteins was
not perturbed in the Dmix23 single mutant (Fig. 5 and Fig. S4,
A–E).
However, when MIX23 was deleted in the background of

a temperature-sensitive tim17-5 mutant, a synthetic growth
defect was observed even on fermentative glucose medium at
permissive temperatures (25 and 30 °C). Under these condi-
tions, the tim17-5 mutant grew indistinguishable from WT
cells. The tim17-5 Dmix23 mutant still grew at these condi-

tions, albeit with reduced colony size (Fig. 5B). No synthetic
defect was observed when Mix23 was deleted in a tempera-
ture-sensitive mia40-3 mutant (Fig. S3C), suggesting that
Mix23 is particularly relevant for matrix targeting but not for
the biogenesis of IMS proteins using the mitochondrial disul-
fide relay.
This synthetic genetic interaction of MIX23 and TIM17 was

confirmed by in vitro import experiments. The import of Oxa1
and Atp1 into tim17-5 Dmix23 double mutant mitochondria
was considerably reduced, particularly at elevated temperatures
(Fig. 5,C–F and Fig. S5,A–D), whereas the single mutants were
either not affected or less affected. The import of the Mia40
substrate Cx9C motif containing protein 1 (Cmc1) was not
diminished in the tim17-5 Dmix23mitochondria, confirming a
specific relevance ofMix23 for matrix-destined proteins (Fig. 5,
G and H and Fig. S5, E and F). It should be noted that tim17-5
Dmix23mitochondria were isolated from cells that were grown
at permissive temperature (25 °C) at which the tim17-5mutant
shows no obvious difference from WT cells (44). Apparently,
efficient Oxa1 import into the matrix of tim17-5mitochondria
requiresMix23.

Figure 4. Increased levels of Mix23 inhibit the import of proteins into mitochondria. A, the cells were transformed with an empty (WT) or a GAL1-
MIX23 plasmid (Mix23:) and grown to mid-log phase before 10-fold serial dilutions were dropped on the indicated plates. Note that the overexpres-
sion of Mix23 retarded cell growth independent of the temperature. B, the cells expressing YFP under control of an Rpn4-driven PACE element and a
minimal promoter were transformed with an empty or the Mix23: plasmid and grown on synthetic lactate at 30 or 40 °C. 3 h after induction by addi-
tion of 0.5% galactose, the fluorescence of YFP was measured. Means and S.D. of nine (three technical and three biological) replicates are shown.
Mix23 overexpression leads to a strong Rpn4-driven gene expression already at 30 °C. C–G, mitochondria were isolated from WT and Mix23: cells.
Radiolabeled precursor forms of the matrix protein Atp1, the inner membrane protein Oxa1, and the IMS protein Cmc1 were incubated with these mi-
tochondria for the times indicated before non-imported material was removed by protease treatment. Overexpression of Mix23 interfered with the ef-
ficient import of all three proteins. I, cells expressing an HA-tagged version of Cox12 were transformed with an empty plasmid (WT) or the GAL1-MIX23
plasmid (Mix23:). The cells were grown on lactate medium containing 0.5% galactose. Then cycloheximide was added to block protein synthesis. Ali-
quots were taken at the indicated times. The cells were lysed and Cox12 levels were analyzed by Western blotting. Note that upon overexpression of
Mix23, Cox12 is highly unstable and rapidly degraded.
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This suggests that Mix23 has a stabilizing or stimulating ac-
tivity on mitochondrial protein import. This is also supported
by the observation that Cox12 has a much lower stability
in Dmix23 cells, in line with a less efficient protein import

in this in vivo model (Fig. 5I). From these results we con-
clude that Mix23 is not essential for mitochondrial protein
import per se but stimulates or stabilizes protein transloca-
tion (Fig. 5J).

Figure 5. Mix23 facilitates efficient protein import into mitochondria. A, WT and Dmix23 cells were grown on synthetic lactate medium to log phase.
Then 10-fold serial dilutions were dropped onto synthetic lactate (2%) medium. B,MIX23was deleted in the background of the temperature-sensitive tim17-5
mutant. The resulting double mutant (and tim17-5 cells for control) was analyzed by a drop dilution assay on full glucose medium and grown at the tempera-
tures indicated. C–H, mitochondria were isolated from the strains indicated grown at permissive temperature (25 °C). Radiolabeled Oxa1 and Cmc1 proteins
were incubated with these mitochondria at the temperatures indicated. I, the cells were grown on glycerol-containing medium. Protein synthesis was inhib-
ited by addition of cycloheximide. Samples were taken 0, 30, and 60 min after cycloheximide addition. The cells were lysed and the levels of Cox12 and the
loading control Djp1 were analyzed byWestern blotting. J, model of a role of Mix23 as a factor that directly or indirectly influences the efficiency of mitochon-
drial protein import.
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Discussion

Themitochondrial IMS contains a number of small cysteine-
containing proteins that are imported byMia40. In yeast, where
IMS proteins are best characterized, Mia40 clients comprise
five twin Cx3C proteins, about 15 Cx9C proteins, and a small
number of proteins with cysteine residues in other arrange-
ments (25, 26, 39, 55). Here we show that Mix23 is a further
Mia40 substrate of the IMS whose cysteine residues do not
match the CxnC pattern. The Mia40-driven import of Mix23
into the IMS depends on its cysteine residues because a cyste-
ine-less mutant was not import-competent.
In yeast, Mix23 has six cysteine residues, four of which are

conserved. Mix23 homologs are found ubiquitously in fungi
and animals (many hundred homologous sequences in NCBI).
In humans, the Mix23-like protein was named coiled-coil do-
main containing 58, CCDC58. This protein is localized tomito-
chondria and found to interact with a number of IMS proteins,
including ATPase family gene 3 like 2 (AFG3L2), apoptosis
inducing factor mitochondria associated 1 (AIFM1), synthesis
of SCO1, and cytochrome c in recent high-throughput inter-
action studies (56–58). Its function is elusive, but increased
CCDC58 levels have been identified as an unfavorable prognos-
tic factor in endometrial hyperplasia (59) and in liver and uro-
thelial cancer (60) (RRID:SCR_006710). Consequently, a role
for CCDC58 in tumor progression was suggested. Moreover,
CCDC58 was identified as one of a few cellular proteins
whose absence provides resistance against the intracellular
bacterium Ehrlichia chaffeensis, the cause of monocytic ehrli-
chiosis (61).
Despite this pathophysiological relevance and although

CCDC58 is expressed in a wide variety of tissues in mice and
humans, including skeletal muscle, heart, and brain, (62, 63),
mice lacking CCDC58 were healthy and free of obvious symp-
toms (64). Thus, increased levels of CCDC58 were associated
with pathological conditions in cancer or pathogen-infected
cells, but its absence is obviously well tolerated under nonstress
conditions. This is reminiscent of what we observed in this
study. Yeast cells lacking Mix23 did only show mild defects,
whereas overexpression of Mix23 strongly affected cellular
functionality. However, it should be noted that the overexpres-
sion used in this study is certainly higher than that under physi-
ological conditions even in stressed cells.
The expression of Mix23 was strongly and specifically

increased by mitoprotein-induced stress, a condition that both
up-regulates (33) and activates (34) the cytosolic proteasome
system.Moreover, we found that Mix23 expression depends on
Rpn4, themaster transcription factor of the proteasome system
in yeast (46, 49). Thus, Mix23 serves as a stress-induced factor
that is coregulated with the proteasome. The coregulation of
MIX23 and proteasome components is also apparent from the
Serial Pattern of Expression Levels Locator database, which cal-
culates coexpression scores on the basis of hundreds of gene
expression microarray data (65). Here, MIX23 showed a coex-
pression with genes with a Gene Ontology (GO) annotation “mi-
tochondrial protein complex,” “mitochondrial large ribosomal
subunit,” “mitochondrial small ribosomal subunit,” and “protea-
some complex,” in line with a role in mitochondrial biogenesis

and proteostasis (Fig. S6). However, the fact that Mix23 and the
proteasome are under regulation of the same transcription factor
Rpn4 alone is not convincing evidence for a function of Mix23 in
protein quality control, but just shows that the regulation of their
cellular abundance adheres to similar regulatory patterns.
The molecular function of Mix23 in the IMS and the reasons

that this factor is up-regulated during mitoprotein-induced
stress remain unclear. An Rpn4-dependent regulation was also
described before for Mia40 (33, 66, 67). Still, we found no indi-
cation thatMix23 is of relevance for the functionality of themi-
tochondrial disulfide relay in the IMS, and the deletion of
MIX23 did not lead to synthetic defects in mia40-3 mutants.
However, the observed synthetic defect with the tim17-5muta-
tion suggests that Mix23 facilitates the import of presequence-
containing proteins (Fig. 5F). Such a role might be direct, for
example by interaction with IMS-exposed regions of the TOM
or the TIM23 subunits, which are well-known to be part of a
highly complex network of regulatory interactions (9–13). But
this role also could be more indirect, for example by an effect of
Mix23 on the local distribution of the translocases and their
interaction with proteins and lipids of the outer and inner
membranes. Several examples for such modulating factors that
influence the import machinery were reported in recent years,
such as Tim21 orMgr2 (10, 11, 44, 68, 69).
It will be interesting to unravel the molecular mechanisms in

detail by which Mix23 regulates mitochondrial protein translo-
cation and, in particular, its specific function in the context of
the cytosolic stress conditions that coregulate it together with
the proteasome and other Rpn4 targets.

Experimental procedures

Yeast strains and plasmids

All yeast strains used in this study are based on the WT
strains BY4742 (MATa his3 leu2 lys2 ura3), YPH499 (MATa
ura3 lys2 ade2 trp1 his3 leu2), or YPH499 Darg4 (MATa ura3
lys2 ade2 trp1 his3 leu2 arg4).
The mia40-3 and tim17-5 mutants were described previ-

ously (44, 45). For the detection of Cox12 and Mix23 in West-
ern blotting, a HIS3MX6 cassette was genomically integrated
downstream of the COX12 and MIX23 loci, respectively (70).
The mutants tim17-5 Dmix23 and mia40-3 Dmix23 were gen-
erated by genomically integrating the NatNT2 cassette into the
MIX23ORF. Positive colonies were verified by PCR.
For generation of the Mix23CS mutant, a variation of

the MIX23 DNA sequence was synthesized in which all cys-
teine-specific codons were replaced by those for serine. This
sequence was cloned into pGEM4 using the restriction sites
EcoRI and BamHI. The plasmid was verified by sequencing.
To generate a Mix23 overexpression plasmid, the coding

region ofMIX23 was amplified from genomic DNA and ligated
into a pYX223 empty vector plasmid between the GAL1 pro-
moter and an HA tag by using the restriction sites EcoRI and
SalI. For the Rpn4 activity reporter, the MIX23 sequence was
cloned into a p426 GAL1 vector, and a pNH603 PACE-YFP re-
porter plasmid was used as described before (33).
To produce radiolabeled lysate of Mix23, the coding region

ofMIX23 was amplified from genomic DNA and cloned into a
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pGEM4 plasmid using the restriction sites EcoRI and XmaI. All
plasmids were verified by sequencing.
All yeast strains used in this study are listed in Table S1.

Strains were grown in yeast completemedium (1% yeast extract
and 2% peptone) containing 2% of the carbon sources galactose,
glucose, or glycerol as indicated. Temperature-sensitive strains
(mia40-3 and tim17-5) were grown at 25 °C before switching
them to 33 °C. Strains containing plasmids were grown at 30 °C
in minimal synthetic medium containing 0.67% yeast nitrogen
base and 2% lactate as carbon source. To induce the expression
from the GAL1 promoter, cultures were supplemented with
0.5% galactose.

Drop dilution assay

To test growth on plates, drop dilution assays were con-
ducted. Yeast cells were grown in YPGal media or lactate selec-
tive media to mid-log phase. After harvesting 1 OD600 of cells
and washing with sterile water, a 1:10 serial dilution was pre-
pared in sterile water. Equal amounts of the dilutions were
dropped on agar plates to determine growth differences. Pic-
tures of the plates were taken after 2 to 3 days of incubation.

Growth curve assay

To test growth in liquid media, growth curves were per-
formed. Yeast cells were grown in lactate selective media to
mid-log phase. After harvesting 0.1 OD600 of cells and washing
with sterile water, the cell pellets were resuspended in the ex-
perimental media and transferred into a clear 96-well plate.
Automated A measurements were performed at 600 nm in the
ELx808TM Absorbance Microplate Reader (BioTek®). As were
measured for 72 h every 10min at 30 °C in technical triplicates.

Analysis of mRNA levels by quantitative real-time PCR

To determine relative mRNA expression levels, quantitative
real-time PCR was conducted. Yeast strains were treated as
indicated and grown until mid-log phase before RNA isolation.
The equivalents of two optical densities (600 nm) were used for
each RNA sample. RNA isolation was performed using the
RNeasy Mini Kit (Qiagen) with a column DNase digestion
(Qiagen). 500 ng of each RNA sample were used to synthesize
complementary DNA with a qScriptTM cDNA Synthesis Kit
(Quantabio). To measure relative mRNA levels, the iTaq Uni-
versal SYBR Green Supermix (Bio-Rad) was used with 2 ml of a
1 in 10 dilution of cDNA. Measurements were performed in
technical triplicates with the CFX96 Touch Real-Time PCR
Detection System (Bio-Rad). Relative mRNA expression was
calculated by the 22DDCT method (71). For normalization, the
housekeeping genes TFC1 or TFA2 were used because of their
stability in published gene expression data (72). See Table S3
for primer sequences.
Statistical significance was assessed using a paired one-tailed

Student’s t test.

Cox12 degradation assay

To investigate the role of Mix23 in the degradation of mito-
chondrial proteins of the IMS, a Cox12 degradation assay was

carried out essentially as previously described (54). Cells
expressing Cox12-HA were grown in yeast complete medium
containing 2% glycerol (or synthetic lactate medium with 0.5%
galactose in case of the Mix23 overexpression strain) before 0.1
mg/ml cycloheximide was added to stop protein translation.
Whole cell lysates were taken over time and visualized byWest-
ern blotting.

Isolation of mitochondria

To isolate crude mitochondria, yeast strains were cultivated
either in full or selective media under respiratory conditions.
The cells were grown to mid-log phase and harvested by cen-
trifugation (5 min, 3000 3 g). After washing the pellets with
water and centrifugation (5 min, 3000 3 g), the weight of
the cell pellet was determined. The pellets were resuspended
in 2 ml/g wet weight MP1 (100 mM Tris and 10 mM DTT),
incubated for 10 min at 30 °C, and centrifuged again (5 min,
30003 g). The pellets were washed with 1.2 M sorbitol and cen-
trifuged (5 min, 30003 g) before resuspending in 6.7 ml/g wet
weight MP2 (20 mM KPi buffer, pH 7.4, 1.2 M sorbitol, and 3
mg/g wet weight zymolyase from Seikagaku Biobusiness) and
incubated at 30 °C for 60 min. The following steps were con-
ducted on ice. After centrifugation (5min, 28003 g), the pellets
were resuspended in 13.4 ml/g wet weight homogenization
buffer (10 mM Tris, pH 7.4, 1 mM EDTA, 0.2% BSA, 1 mM

PMSF, and 0.6 M sorbitol), and a cooled glass potter was used to
homogenize the sample with 10 strokes. After homogeniza-
tion, the extract was centrifuged three times (5 min, 2800 3
g) while always keeping the mitochondria-containing super-
natant. To pellet mitochondria, the samples were centri-
fuged for 12 min at 17,500 3 g. The pellets were resus-
pended in SH buffer (0.6 M sorbitol and 20 mM HEPES, pH
7.4). The concentration of the purified mitochondria was
adjusted to 10 mg/ml protein. Aliquots were snap-frozen in
liquid nitrogen and stored at280 °C.

Import of radiolabeled precursor proteins into mitochondria

To prepare radiolabeled ([35S]methionine) proteins for im-
port experiments, the TNT® Quick Coupled Transcription/
Translation Kit from Promega was used. To determine the abil-
ity of proteins to be imported into mitochondria, in vitro
import assays were conducted. Mitochondria were resus-
pended in a mixture of import buffer (500 mM sorbitol, 50 mM

Hepes, pH 7.4, 80 mM KCl, 10 mM Mg(OAc)2, and 2 mM KPi)
with 2 mM ATP and 2 mM NADH to energize them for 10 min
at 25 °C. To start the import, the radiolabeled lysate was added
to the mitochondria. Import was stopped at different time
points by transferring the mitochondria into cold SH buffer
(0.6 M sorbitol and 20 mM HEPES, pH 7.4). The remaining pre-
cursors outside of the mitochondria were removed by protease
treatment for 30 min. 2 mM PMSF was added to stop protein
degradation. After centrifugation (10min, 25,0003 g, 4 °C), the
supernatant was removed. The pellets were resuspended in
SH buffer containing 500 mM KCl and 2 mM PMSF and cen-
trifuged again (10 min, 25,000 3 g, 4 °C). The pellets were
then lysed in 13 Laemmli buffer containing 50 mM DTT and
heated to 96 °C for 3 min. The samples were run on a 16%
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SDS-gel, blotted onto a nitrocellulose membrane, and visual-
ized with autoradiography.

Cysteine redox state detection by mmPEG24 shifts

To determine the oxidative state of proteins, mmPEG24 shifts
were conducted. mmPEG24 binds to reduced thiols, inducing a
size shift on SDS gels. For each free thiol, the addition of
mmPEG24 increases the size of the protein by 1.2 kDa. Mito-
chondria were incubated in 80 mM Tris, pH 7, 10% glycerol, 2%
SDS, and 0.05% bromocresol blue. Then, mmPEG24 was added
to alkylate free thiols. To gain a maximum shift (all thiols
reduced), the reducing agent tris(2-carboxyethyl)phosphine
was added to a control sample before the mmPEG24 treatment
to reduce all disulfide bonds. The samples were analyzed by
Western blotting.

Mitochondrial subfractionation

To determine the localization of Mix23 inside mitochondria,
a swelling assay was performed. Here, reduced osmolarity of
the HEPES buffer causes swelling and subsequent rupture of
the outer membrane of mitochondria. Protease treatment sub-
sequently digests proteins of the outer membrane and the IMS.
Therefore, mitochondria were incubated on ice in either SH
buffer (no swelling) or 20 mM HEPES buffer (swelling and rup-
ture) with and without the presence of 100 mg/ml proteinase K.
After 30 min, SH buffer with 20 mM PMSF was added. Mito-
chondria were then pelleted by centrifugation (10 min, 14,000
rpm, 4 °C). The pellets were resuspended in Laemmli buffer
containing 50 mM DTT, heated at 96 °C for 3 min, and visual-
ized byWestern blotting.

YFP reporter assay

The cells were grown to mid-log phase (OD600 value of
0.5–0.8) in selective lactate medium. 3 h after addition of
galactose, equal amounts of cells (4 OD600 3 ml) were col-
lected by centrifugation (20,000 3 g, 5 min, room tempera-
ture), resuspended in 400 ml synthetic defined medium (100
ml per OD600 and OD600 3 ml). 100 ml of this cell suspen-
sion were transferred to flat-bottomed black 96-well imag-
ing plates (BD Falcon) in technical replicates. The cells were
sedimented by gentle spinning (303 g, 5 min, room temper-
ature), and fluorescence (excitation 497 nm, emission 540
nm) was measured using a ClarioStar Fluorescence plate
reader (BMG Labtech). A corresponding WT strain not
expressing YFP was used for background subtraction of
autofluorescence. Statistical significance was assessed using
a paired one-tailed Student’s t test.

Identification of coexpressed genes and GO enrichment
analysis

To identify genes coexpressed with MIX23 across all tran-
scriptomics datasets deposited in the yeast Saccharomyces ge-
nome database, the Serial Pattern of Expression Levels Locator
database (65) was queried for MIX23 with the online interface
provided by the Saccharomyces genome database (https://spell.
yeastgenome.org). Genes with an adjusted correlation score of

at least 1.4 were considered as coexpressed with MIX23 and
subjected to a GO enrichment analysis with GOrilla (RRID:
SCR_006848) (73). The 170 coexpressed genes and MIX23
were set as an unranked target list, and the complete Saccharo-
myces cerevisiae genome was set as the background list. p values
for enrichment were calculated according to a hypergeometric
distribution and corrected for multiple testing using the Benja-
mini-Hochberg procedure.

Whole cell lysates

To determine the protein levels of whole cells, whole cell
lysates were prepared. To do so, yeast at an A of 1.5 (600 nm)
were harvested and washed with water. The pellets were
resuspended in Laemmli buffer containing 50 mM DTT.
After adding glass beads, the cells were lysed using a cell
beater at 4 °C. Then, the cells were heated at 96 °C for 3 min.
Lysates were stored at220 °C until visualization by Western
blotting.

Antibodies

Antibodies were produced in rabbits using recombinant
purified proteins (see Table S4). Secondary antibodies were or-
dered from Bio-Rad (Goat Anti-Rabbit IgG (H1 L)-HRP Con-
jugate). The horseradish peroxidase–coupled HA antibody for
Western blotting was obtained from Roche (Anti-HA-Peroxi-
dase, High Affinity (3F10), catalog no. 12013819001). The Anti-
HA agarose antibody for immunoprecipitation was obtained
from Sigma-Aldrich (monoclonal Anti-HA agarose antibody
produced in mouse, A2095). Antibodies were diluted in 5%
nonfat drymilk-TBS (Roth, T145.2).

Data availability

All relevant data for this study are contained within this arti-
cle and in the supporting information. Materials and strains are
available from the authors.
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