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Abstract

Objective: Thymidine kinase 2, encoded by the nuclear gene TK2, is required for mitochondrial 

DNA maintenance. Autosomal recessive TK2 mutations cause depletion and multiple deletions of 

mtDNA that manifest predominantly as a myopathy usually beginning in childhood and 

progressing relentlessly. We investigated the safety and efficacy of deoxynucleoside 

monophosphate and deoxynucleoside therapies.

Methods: We administered deoxynucleoside monophosphates and deoxynucleoside to 16 TK2-

deficient patients under a compassionate use program.

Results: In 5 patients with early onset and severe disease, survival and motor functions were 

better than historically untreated patients. In 11 childhood and adult onset patients, clinical 

measures stabilized or improved. Three of 8 patients who were nonambulatory at baseline gained 

the ability to walk on therapy; 4 of 5 patients who required enteric nutrition were able to 

discontinue feeding tube use; and 1 of 9 patients who required mechanical ventilation became able 

to breathe independently. In motor functional scales, improvements were observed in the 6-minute 

walk test performance in 7 of 8 subjects, Egen Klassifikation in 2 of 3, and North Star Ambulatory 

Assessment in all 5 tested. Baseline elevated serum growth differentiation factor 15 levels 

decreased with treatment in all 7 patients tested. A side effect observed in 8 of the 16 patients was 

dose-dependent diarrhea, which did not require withdrawal of treatment. Among 12 other TK2 
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patients treated with deoxynucleoside, 2 adults developed elevated liver enzymes that normalized 

following discontinuation of therapy.

Interpretation: This open-label study indicates favorable side effect profiles and clinical efficacy 

of deoxynucleoside monophosphate and deoxynucleoside therapies for TK2 deficiency.

Encoded by the nuclear gene TK2, thymidine kinase 2 (TK2) is the first enzyme in the 

deoxypyrimidine salvage pathway within mitochondria. TK2 phosphorylates the nucleosides 

deoxycytidine (dC) and deoxythymidine (dT) to generate deoxycytidine monophosphate 

(dCMP) and deoxythymidine monophosphate (dTMP). These pyrimidine deoxynucleoside 

monophosphates are subsequently converted to deoxynucleoside triphosphates required for 

mitochondrial DNA (mtDNA) replication and maintenance.1,2 Autosomal recessive TK2 
mutations cause mtDNA depletion, multiple deletions, or both.3–5

Although the phenotypic spectrum of TK2 deficiency includes late onset cases of mild 

chronic progressive external ophthalmoplegia,3,6–8 the most frequent clinical presentations 

are infantile onset and childhood onset progressive limb and bulbar myopathy with 

restrictive lung disease.3,4,9–13 The infantile onset form manifests rapidly progressive 

myopathy weakness with motor regression and respiratory insufficiency occasionally 

accompanied by central nervous system involvement and virtually uniform early fatality 

with postonset survival of 1 year.4,5,10 The majority of patients with early onset before age 2 

years also show severe and rapid progression. The less severe forms begin in childhood 

through adulthood and exhibit slower progression; however, bulbar, proximal limb, and 

respiratory weakness can be severe, causing inability to walk or breathe independently.
3,4,6,12

We reported that, in the H126N knockin mouse model of TK2 deficiency, oral 

administration of the TK2 products dCMP and dTMP act as molecular bypass therapy and 

prolong median life span by 2- to 3-fold.14,15 However, we subsequently observed that after 

administration, dCMP and dTMP are rapidly catabolized to the nucleosides dC and dT, 

suggesting that nucleosides, rather than nucleotides, are the major active therapeutic agents. 

We demonstrated that dC and dT treatment of Tk2-deficient mice delayed disease onset, 

prolonged life span, and restored mtDNA copy number.16 In this situation, deoxynucleosides 

function as a substrate enhancement therapy.

Based on our promising preclinical results for this often-lethal disease, we obtained approval 

to initiate compassionate use of oral dC + dT, dTMP+dCMP, or both sequentially in TK2-

deficient patients. Here, we report the outcomes of 16 TK2-deficient patients who received 

these pharmacological treatments.

Patients and Methods

Study Design

The objective of the study was to evaluate safety and efficacy of oral dC + dT, dCMP

+dTMP, or both for TK2 deficiency on a compassionate use basis. In 10 academic medical 

centers from 5 countries (Spain, USA, Chile, Guatemala, and Italy), treatments were 

initiated under compassionate use (expanded access as defined by the US Food and Drug 

Domínguez-González et al. Page 3

Ann Neurol. Author manuscript; available in PMC 2020 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Administration [FDA]17) protocols. Compounds were obtained under investigator-sponsored 

Investigational New Drugs in the United States and under compassionate-use exemptions in 

other countries. All patients or legal guardians signed informed consent forms for treatment. 

The FDA, Spanish Drug Agency (Spanish Agency of Medicines and Health Products), and 

Italian Medicines Agency as well as the Columbia University Medical Center Institutional 

Review Board and the local pharmacy committees of each center approved the 

compassionate use treatment. We also obtained written informed consent for publication of 

the patients’ images and videos.

Patients

We analyzed outcomes of 16 genetically confirmed TK2-deficient patients (P1–P16) who 

had received treatment for at least 1 year prior to September 1, 2017. Twelve cases were 

from Spain and 1 from Italy, and 3 were followed in the USA (1 each from the USA, Chile, 

and Guatemala).

Treatment

In 6 patients, treatment was initiated with oral dCMP+dTMP at 1-to-1 (weight:weight) ratios 

until 2015, when cell and mouse studies indicated that deoxynucleotides were precursors for 

deoxynucleosides16,18 (mean duration of treatment with nucleotides = 21.4 months, range = 

11–47 months) and therapy was converted to oral dC + dT at 1-to-1 (weight: weight) ratios 

in all but 1 patient (P11), who opted not to change to nucleosides. The duration of 

nucleoside treatment varied from 6 to 36 months, with an average of 15.5 months as of 

August 31, 2017. All 16 patients are continuing treatment.

Doses administered to patients were based on the dosages used in preclinical studies of 

H126N Tk2 mutant mice.15,16 Doses were titrated up to 400mg/kg/day depending on 

tolerance. Doses differed and were adjusted based upon frequency of stools, which was 

observed to increase in proportion to the dose. All patients are currently maintained on doses 

between 300 and 400mg/kg/day of each nucleoside or nucleotide.

Outcome Measures

Survival Analysis.—Survival was assessed in all patients.

Motor Assessment.—All patients underwent periodic motor assessments using at least 1 

of the following scales: 6-minute walk test (6MWT),19 North Star Ambulatory Assessment 

(NSAA; evaluates motor goals with a score range of 0–34 as values of minimum and 

maximum motor skills, respectively and expressed in linearized data logit transformed 0–

100 scores),20,21 and Egen Klassifikation (EK; evaluates functional capacity in 

nonambulatory patients with a score range of 30–0 as values of minimum and maximum 

functional capacity, respectively).22

Respiratory Evaluation.—We measured forced vital capacity (FVC) and maximal 

inspiratory pressure (MIP) in an upright position in compliant patients. In individuals on 

mechanical ventilation (MV), daily ventilatory support requirements were recorded.
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Nutritional Status.—We collected data on the evolution of weight (percentile) or body 

mass index (BMI) data. Underweight is defined as BMI < 18.5 or weight percentile <10. 

Requirements for nasogastric tube and percutaneous endoscopic gastrostomy (PEG) were 

recorded.

Creatinine Kinase.—Creatine kinase (CK) was measured in serum, before and after 

treatment.

Serum Growth Differentiation Factor 15.—Serum growth differentiation factor 15 

(GDF-15), a proposed biomarker of mitochondrial myopathy, was measured before and 

during treatment as described.23

Safety Assessments

Serial blood tests and electrocardiograms were performed to assess baseline hematological, 

renal, hepatic, and cardiac functions as well as possible toxicity of the treatment. All 

Common Terminology Criteria for Adverse Events 4.03 grade 2 or higher adverse events or 

new clinical events were recorded.

Statistical Analyses

Kaplan–Meier survival analysis (SAS 9.4 for analysis and R 3.5.1 for replication and 

graphical output) was used to determine the survival rate of a historical control group of 44 

early onset severe myopathy patients (onset before 24 months and rapid progression) from 

the literature.5,6,9–13,24–30 For other outcomes, 95% confidence intervals (CIs) and 

associated 2-sided p values were obtained for the mean values of each outcome at every visit 

and for the change between visits. We evaluated the change in the outcome measures after 6 

months of treatment and after ≥12 months of treatment, relative to baseline. The value after 

≥12 months was the mean of all values in that period.

Role of the Funding Sources

The sponsors of this study did not contribute to the study design; collection, analysis, and 

interpretation of data; writing of this paper; and decision to submit this work for publication.

Results

Patients

The phenotype of the 16 TK2-deficient patients (P1–P16) spanned the clinical spectrum of 

the disease (Tables 1 and 2).4,5,10,12

Five patients (P1–P5) had early onset severe myopathy defined by (1) onset before 24 

months; and (2) inability to walk, use of MV, or both within 1 year of onset. Four of these 5 

patients required mechanical ventilation and enteric feeding. Two of these patients were 

never able to walk, and the other 3 had lost the ability to walk prior to treatment initiation. 

All were underweight before the treatment. They did not manifest encephalopathy or 

systemic involvement other than myopathy. These individuals were compared to a matched 
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historical control group of 44 reported TK2 patients who fulfilled the same criteria.
4–6,9–13,24–30

The other 11 patients showed slower progression. Three (27.3%) lost the ability to walk 

during the course of the disease, whereas 8 (72.7%) were still walking at treatment onset. 

All had dysphagia; P12 and P14 required enteric feeding. The majority of the patients (60%) 

had marked weight loss. Of the 11 patients, 5 (45.5%) required MV for an average of 11 

hours per day. In the 4 late onset cases (P13–P16; onset ≥12 years old), respiratory 

symptoms overshadowed limb weakness, and 2 individuals (P14 and P15) required MV at 

night with only minimal limb weakness.

Survival and Function of Early Onset Severe Myopathy Subjects

Compared to a published cohort,4 our treated early onset severe myopathy patients differed 

significantly in postonset survival (p = 0.0078; Fig 1). Only 27.3% of historical controls 

survived at least 2 years after onset (95% CI = 0.17–0.45),4 compared to all 5 treated 

patients (range = 2.1–6.3 years, mean ± standard deviation = 3.93 ± 1.66). All 5 treated early 

onset patients achieved clinically meaningful improvements in motor functions 

(Supplementary Videos 1–5).

Motor Evaluation

6-Minute Walk Test.—6MWT was performed in the 8 patients who were able to ambulate 

prior to starting treatment and in 1 patient (P11) who regained the ability to walk after 1 year 

of treatment (Table 3). The distance walked improved in all but 1 (7/8 [87.5%]; P7 lacked 

baseline 6MWT). Six patients, who were on prolonged treatment (18–36 months), showed 

protracted improvement (Fig 2). The mean increase was 56m (95% CI = -21.7 to 113.7) after 

6 months of treatment and 88.5m (95% CI = −5.47 to 171.5) at last follow-up, which ranged 

from 12 to 36 months of treatment; the mean increases appear to be clinically meaningful 

based upon estimates in Duchenne muscular dystrophy (DMD) indicating that mean 

minimal clinically important differences are 28.5 to 31.7m.19 The subgroup of patients with 

low baseline 6MWT performance (<300m, range = 0–175m) displayed the greatest 

improvements; after 6 months of treatment, mean increase over baseline was 146m (95% CI 

= 133.3–158.7), and after 12 to 36 months, the average increase was 171.9m (95% CI = 

84.5–259.2). In contrast, patients with high baseline 6MWT distances (≥300m, range = 386–

530m) showed stable or slightly improved performance on therapy. Two patients with early 

onset severe myopathy (P3 and P5; Table 4, Supplementary Videos 3 and 5) and 1 childhood 

onset patient (P11) who had lost the ability to walk prior to treatment gained independent 

ambulation on treatment.

There were no statistically significant differences in the motor evaluation outcomes.

Egen Klassifikation.—In the early onset severe myopathy group, EK score was available 

in 3 of 5 patients, revealing average improvements of 6 points (95% CI = −13.7 to 25.7) after 

6 months of treatment, 17.3 points (95% CI = −3.8 to 38.5) after 12 months, and 23 points 

(95% CI = 7.9–38.1) after 18 to 36 months (see Fig 2C, Table 4). Among patients with 

disease onset at >2 years old, we obtained the EK score at baseline and after 6 months of 
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treatment in 2 of 3 nonambulant patients, who showed improvements of 3 and 17 points. 

These changes are not statistically significant; however, they are clinically meaningful based 

on an estimated 2.39-point change corresponding to functional and global state changes in 

patient with spinal muscular atrophy and DMD.31

North Star Ambulatory Assessment.—In the sole early onset severe myopathy patient 

who was able to perform the NSAA, mean score improved by 16 points after 12 months of 

treatment (see Table 3). In the group of 11 patients with later onset, 5 patients were assessed 

by the NSAA. Their scores improved at every assessment relative to baseline, with mean 

improvements of 1.6 (95% CI = −0.6 to 3.8) after 6 months and 6 points (95% CI = −2.1 to 

14.1) after 12 to 36 months of treatment (see Fig 2D). This improvement is not statistically 

significant. The mean NSAA score change is clinically meaningful after 12 to 36 months 

using a logit transformed scale of 0 to 100, which demonstrates an 11.5-point increase 

(baseline mean = 60 points and post-treatment = 74.5 points), with estimated minimal 

important differences of 6.9 to 8.8 points in patients with DMD.21

Respiratory Evaluations

Mechanical Ventilation.—Nine patients required MV at baseline (see Tables 2 and 4). 

One (P3) was weaned off MV within 18 months of treatment initiation. The other patients 

who required nocturnal MV remained stable or improved partially after 12 months of 

treatment. None of the patients increased their time on MV, no patients initiated MV while 

on therapy, and none had respiratory complications including pneumonias.

FVC and MIP.—Of 8 patients whose respiratory function could be evaluated, 7 showed low 

baseline FVC (<80% of predicted value), with restrictive lung disease patterns (see Fig 2E). 

After 6 months of treatment, FVC revealed an average increase of 7.2% (95% CI = −3.2 to 

17.5). After 12 to 36 months of treatment, FVC showed a slight decline, but overall mean 

was 3.3% (95% CI = −0.4 to 7.0) higher than baseline (see Table 3). MIP measurements in 5 

adult patients showed a mean increase of 5.6% (95% CI = −18.3 to 29.5) after 6 months of 

treatment that persisted after 12 to 36 months (see Fig 2F, Table 3). None of these 

relationships is statistically significant.

Nutrition/Dysphagia

In the early onset severe TK2-deficient patients, BMI and weight percentile increased 

progressively with prolonged treatment, eventually reaching normal values in 4 of 5 patients 

(80%; see Table 4 and Supplementary Table 1). Of the 3 patients in this group requiring 

enteric feeding at baseline, 2 (P1 and P3) were able to permanently discontinue enteric 

feeding after 18 and 36 months oftreatment.

In the later onset group of 11 patients with slower progression, we obtained body weights in 

10. Of six who were underweight at baseline, 5 (83%) gained weight and 4 (67%) 

normalized after 6 to 36 months of treatment (Supplementary Table 2). Both patients (P9 

and P14) who required enteric feeding prior to treatment became able to feed exclusively by 

mouth after 6 months oftherapy.
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Creatine Kinase

In 4 of 16 (25%) patients, baseline CK levels were 5- to 10-fold above normal (see Table 2); 

in all 4, levels normalized after 6 months of treatment (Supplementary Tables 1 and 2). The 

remaining 12 cases showed normal or moderately altered CK levels (2–3-fold above normal) 

without changes on treatment.

Growth Differentiation Factor 15

Baseline serum GDF-15 levels were elevated above the upper limit of normal (550pg/ml) in 

all 7 patients tested (see Fig 2G, 2H, and Table 5). The highest levels were in P2 and P5 with 

the early onset severe presentation, followed by P12 with childhood onset and late onset 

patients with more moderate increases. In all cases, levels of GDF-15 declined between 4 

and 33 months of treatment. Normal values were reached in 3 of 7 patients. In the remaining 

4 patients, GDF-15 levels decreased between 1.5- and 12-fold.

Adverse Effects

No treatment-related serious adverse effects were observed in any patient. Safety blood tests 

and electrocardiogram were normal in all cases. The only drug-related adverse effect 

observed in 8 patients was diarrhea, which was dose-dependent, transient in most cases, and 

did not prompt suspension of treatment in any patients. Doses or administration schedules 

were modified to eliminate diarrhea. Diarrhea prevented 2 patients (P12 and P13) from 

reaching the recommended dose of 400mg/kg/day. One patient experienced mild and 

transient abdominal pain. Prior to treatment, P14 had elevated transaminases (approximately 

10-fold above upper limit of normal) that were attributed to TK2 deficiency and normalized 

after 1 year of treatment with dC + dT.

In addition to the 16 patients reported here, 12 TK2-deficient patients initiated dT + dC 

(each at up to 400mg/kg/day; Supplementary Table 3). Two adults (P10, 58 years old; P11, 

63 years old) after 3 to 4 months of treatment developed increased transaminases (alanine 

aminotransferase 8–13-fold and aspartate aminotransferase 3–6-fold above normal) and y-

glutamyl transferase (GGT; 2.1–3.7-fold above normal) with normal bilirubin and alkaline 

phosphatase levels. In both cases, 3 months after discontinuing therapy, transaminases 

returned to normal. P10 had a prior episode of spontaneous transient elevated transaminases 

several years before starting therapy. Twenty days after restarting dT + dC (each at 

200mg/kg/day), P11 had recurrent elevated transaminases (3.0–4.1-fold above normal), 

which again returned to normal after stopping treatment.

Discussion

We have administered pyrimidine deoxynucleoside and deoxynucleotides as novel 

pharmacological therapies in 16 patients with mitochondrial myopathy due to TK2 

deficiency. Although we initially used dTMP and dCMP, after identification of dT and dC as 

the active agents in vitro and in vivo,16,18 we administered dC and dT to all but 1 patient 

(P11), who continues dTMP and dCMP treatment. The therapies exerted striking effects on 

survival in the early onset severe myopathy patients through amelioration of muscle 

weakness, which enabled reductions or discontinuation of mechanical ventilation and 

Domínguez-González et al. Page 8

Ann Neurol. Author manuscript; available in PMC 2020 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gastrostomy feeding as well as gaining ability to walk in the majority of these severe cases. 

Oral deoxynucleosides and deoxynucleotides produced no major side effects during this 

long-term treatment. The beneficial effects of the therapy were verified by functional tests, 

including 6MWT, EK, and NSAA, with mean changes that appear to be clinically 

meaningful. In addition, serum levels of GDF-15, a sensitive diagnostic biomarker for 

mitochondrial myopathy,23,32,33 were highly elevated at baseline and markedly declined in 

all 7 patients tested. Thus, GDF-15 assessment provides objective biomarker data supporting 

therapeutic response to deoxynucleosides and deoxynucleotides.

Our data indicate that nucleoside treatment can (1) reverse early onset tetraplegia and enable 

termination of mechanical ventilation and PEG (P3; Supplementary Video 3), (2) halt early 

onset disease progression and improve muscle weakness (P1-P5; Supplementary Videos 1–

5), (3) produce considerable functional improvements in childhood onset patients (P9, P11), 

and (4) stabilize weakness in late onset patients after an initial mild improvement (P14, 

P16). Four treated patients were weaned off invasive respiratory support (P3), gastrostomy 

feeding (P1, P3, P9, and P14), or both (P3), and 3 gained independent ambulation on 

treatment (P3, P5, and P11). Furthermore, the 6MWT showed improvements in treated 

patients with low baseline performance (164m, 95% CI = 24.3–303.8), with clear increases 

in the distance walked (mean increase 171.9m, 95% CI = 84.5–259.2) at last followup (12–

36 months of treatment).

In contrast to the early onset patients, in 4 late onset patients, therapy produced smaller 

beneficial effects, with stabilization or mild improvements in motor and respiratory 

functions. Stabilization of respiratory function is an important clinical outcome, because it 

may reduce morbidity and mortality in late onset patients. Nevertheless, 2 adult patients who 

started dT + dC therapy after the initial cohort developed elevated transaminases and GGT, 

which normalized after discontinuing treatment; these findings raise the possibility of 

hepatic toxicity of the therapy in some older adults. Our observations require confirmation in 

a larger number of patients with long-term follow-up.

A cytokine member of the transforming growth factor β family, GDF-15, is induced and 

secreted by muscle cells in response to mitochondrial damage,23 and has been identified as a 

biomarker for mitochondrial diseases via an unbiased global gene expression screening of 

muscle from patients with TK2 deficiency.32 Since then, elevated GDF-15 levels have been 

confirmed to have high sensitivity (67.8–97.9%) and specificity (87.7–96.2%) for 

mitochondrial diseases, indicating potential utility as a first-line diagnostic test for these 

diverse disorders.33–35 Although it has been proposed as a potential biomarker for 

therapeutic efficacy in mitochondrial diseases,36 this is the first report to link GDF-15 levels 

with clinical improvements in a clinical trial for a mitochondrial disorder. Our data 

demonstrate that in patients with TK2 deficiency, baseline circulating GDF-15 levels were 

elevated before deoxynucleoside therapy and decreased significantly with treatment in 

patients. Furthermore, these results indicate that GDF-15 may be a valuable biomarker in 

future clinical trials for mitochondrial diseases.

In conclusion, treatment with oral dT + dC, the substrates of TK2, in 15 TK2-deficient 

patients and dTMP +dCMP in 1 patient provided clinically notable benefit, especially in the 
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infantile and childhood onset forms of the disease. The improvement or stabilization of 

respiratory function in the late onset patients suggests that this subgroup may also benefit 

from nucleoside supplementation, although longer longitudinal studies are needed to 

establish this point. Further studies are ongoing to support potential regulatory approvals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1: 
Kaplan–Meier survival curve of the 5 TK2-deficient patients with early onset severe 

myopathy (onset before 24 months and rapid progression defined by never acquiring ability 

to walk or loss of ability to walk, to breathe independently, or both within 1 year of onset) 

showed 100% survival for at least 2 years after treatment (range = 2.1–6.3 years; 3.93 ± 1.66 

years, mean ± standard deviation). In contrast, the untreated historical control group with 

TK2-deficient early onset severe myopathy revealed that only 27.3% of patients survived at 

least 2 years after onset.4–6,9–13,24–30 Shading indicates upper and lower 95% confidence 

interval. Comparison of treated versus untreated early onset severe myopathy patients 

demonstrated a significant difference in postonset survival (p = 0.0078).
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FIGURE 2: 
Changes from baseline in different outcome measures. (A) The graph shows individual 

values of distance walked in the 6-minute walk test (6MWT) at baseline and during the time 

on treatment, showing continuous improvements in 8 of 9 patients who were able to be 

evaluated by this test at any point in the treatment (note that P11 was nonambulant at 

baseline but regained independent gait after 12 months of treatment). (B) The group of 

patients with low performance (<300m) at baseline in the 6MWT showed more pronounced 

improvement after ≥12 months of treatment (mean 171.9m, 95% confidence interval [CI] = 

84.5–259.2) than patients with higher basal performance (>300m, mean = 27.1m, 95% CI = 

−32.8 to 87). (C) Individual scores in the Egen Klassifikation (EK) at baseline and after 

treatment show improvement in every visit compared to the previous one in the 3 early onset 

severe myopathy patients evaluated by EK. The mean change in the score after 6 months of 

treatment and after 12 to 36 months, above baseline, showed progressive improvement. (D–

Domínguez-González et al. Page 14

Ann Neurol. Author manuscript; available in PMC 2020 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



F) North Star Ambulatory Assessment (NSAA) scores (D) showed improvement in all the 

patients evaluated in the group with slower progression, with a trend to improvement in 

forced vital capacity (FVC; E), and maximal inspiratory pressure (MIP; F) showed mild 

improvement or stabilization with slight fluctuations between visits, as reflected in the 

individual graphics. Both FVC and MIP showed a trend to mild improvement, with 

stabilization of the values during the treatment. Change in score (absolute values) in EK, 

NSAA, FVC, and MIP were estimated by 95% CI at every period of treatment relative to 

baseline. There were no statistical differences in any of the outcome measures. Serum levels 

of growth differentiation factor 15 (GDF-15) in individual subjects (G) and aggregated in 

later onset and early onset groups (H).
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